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We present a theoretical and experimental study on the influence of a magnetic field on the
energy-level statistics in metal nanoparticles. Based on the random-matrix theory, a gradual field-in-
duced crossover behavior is predicted from the orthogonal to the unitary ensemble. Experimental data of
the electronic specific heat of metal nanoparticles for different fields in the quantum-size temperature

regime compare favourably with these theoretical (analytical) predictions.
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1. Introduction

A large number of papers have been devoted to
the experimental and theoretical investigation of
the thermodynamic properties of small metal parti-
cles (nanoclusters), in order to test the predictions
based on the random-matrix theory of the energy-
level statistics (for reviews see [1—4]). The discrete
character of the energy spectrum of a nanocluster
can be regarded as a direct manifestation of the
quantum size effect. The Wigner—Dyson [5,6] ran-
dom ensemble description relies upon the functional

P(H):
P(H) Dexp [-v TrV(H)] . )

This functional is chosen to describe the probability
distribution for the random ensemble of N x N
Hamiltonian matrices of the electrons in the na-
noclusters. An ensemble is called Gaussian if
V(H) O H 2. This distribution is successfully used
in the absence of strong electron-electron correla-
tions [1,2]. In the Gaussian distribution the argu-
ment of the exponential becomes a simple sum over

all the matrix elements: Tr /2 = > |7‘[12]| =3 E% ,
ij i

so that it does not contribute to the correlations

between the levels {E;}, because the probabilities

for the different E,’s factorize:
P(H)Oexp[-vTr H 10 |_| exp[—VE?]:P({En}) .
i

(2)

Therefore, the spectral correlations in the Gaussian
ensemble are purely geometrical in their nature [1],
since they follow solely from the Jacobian

JUE ) 131:

JUEN =[] E, - )" (3)

i<j

The term «geometrical» used above is based on the
fact that the Jacobian relates volumes in the two
equivalent abstract spaces of the random variables,
thus reflecting their geometrical structure:

P(H)duIH) = duU) PUENIE [ ¢E;-

(4)

Here the volume element du(}[) is the «natural»
volume measured in the space of the Hermitian
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matrix elements j{ ., which factorizes into
the product dp(U) |_| dE; of the volume elements
du(U) and [1 dE; in "the subspaces of the eigenvec-
tors and elgenvalues of the matrix # As is apparent
from Eq. (3) and (4), the character of the statisti-
cal distribution of the level-spacings depends only
on the index v [7], which counts the number of
degrees of freedom in the matrix elements ,7{] . This
number reflects the symmetry of the system in
question and can only take the values 1, 2 or 4 for
the real, complex or real quaternion matrix ele-
ments, respectively. The matrix elements may be
chosen real when time-reversal symmetry exists,
while they become imaginary when this symmetry is
broken, e.g., by an external magnetic field or mag-
netic impurities. In time-reversal symmetric systems
with broken spin-rotation symmetry, e.g., as a con-
sequence of spin-orbit interaction, the matrix ele-
ments are real quaternions. The details of the inter-
actions inside the system do not change these
general symmetries, and hence, the spectral correla-
tions possess universality. The corresponding
Gaussian ensembles of random matrices, depending
on their symmetry, are called orthogonal (v =1),
unitary (v =2) or symplectic (v =4) ensembles re-
spectively, or in the abbreviated form: GOE, GUE
or GSE. Thus, the symmetry of the Hamiltonian
matrices of the clusters changes either from GOE to
GUE, or from GSE to GUE upon application of an
external magnetic field. We remark that the conse-
quences of random perturbations on the energy level
spectra of an assembly of small metal particles and
the ensuing thermodynamic properties were first
investigated by Kubo [8], using the Poisson distri-
bution for the energy level statistics. Shortly after-
wards, Gor’kov and Eliashberg [9] pointed out the
relevance of the Wigner—Dyson formalism for small
metal particles and demonstrated the profound in-
fluence of the level repulsion on the low-tempera-
ture thermodynamics of the small metal particles in
the two limiting cases of GOE and GUE. A more
detailed consideration of the metal-cluster thermo-
dynamics in these two limits was later made in [10].
Theoretical justification of the Wigner—Dyson sta-
tistics was provided in [11] for the case of diffusive
(nonballistic chaotic) electron motion inside the
cluster. The most recent theoretical achievements,
which include justification of the Wigner—Dyson
statistics for the nonintegrable chaotic systems,
«ballistic billiards», with random scattering at the
boundaries, are summarized in [1].

In this note we present a preliminary report on
detailed theoretical predictions [12], together with
a comparison to recently obtained experimental
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data [13—15], for the specific heat behavior of metal
nanoclusters in the crossover regime induced by an
external magnetic field. The crossover manifests
itself as a gradual transition from the orthogonal to
unitary Gaussian distribution of the electronic en-
ergy levels (GOE-to-GUE transition) of the nano-
clusters. We remark that these measurements repre-
sent the first experimental observation of the
presence of the quantum-size effect in the electronic
specific heat and susceptibility of metal nanoparti-
cles.

Mathematically, the basic change resulting from
the GOE-to-GUE crossover lies in the appearance
of the (random) imaginary part of the electron
Hamiltonian matrix due to the breaking of the
time-reversal symmetry by the external magnetic
field. This phenomenon was modeled by Pandey
and Mehta [16] by the addition of a random anti-
symmetric real matrix .4 with imaginary weight ia
to the real symmetric Hamiltonian matrix .‘7‘6 :

H= I +ioAg. (5)

The parameter O is proportional to the magnetic
flux @ through the system, i.e., through the
nanoparticle, so that the relation between o and ®
depends on the geometry of the particle and on the
ratio of its size (radius R) to the electron mean free
path I. For a ballistic sphere (R << I) with diffuse
boundary scattering of electrons this relation is [2]:

, o0 gn )
Na E}FE 25 15
is the Fermi velocity, & is the mean level
spacing at the Fermi energy of the nanoparticle, and
N is the matrix dimension indicating the total
number of the single-electron states taken into ac-
count in the model of the nanoparticle. The addi-
tion of an independently randomly distributed ma-
trix A4 to the (random) real symmetric matrix .‘7% )
effectively doubles the number of degrees of free-
dom in the elements of the Hamiltonian matrix %
so that the Gaussian distribution of 7 takes the
form:

where v 7

0 o A0
z)ufmexpgz L f@%- @

40 402 0
0

Here the variance v? determines the mean level
spacing & =Tw,/VN in the vicinity of the Fermi
energy of the cluster in the limit N >>1 and
0 << 1. As was explained above, the doubling of
the dimensionality of the phase-space of the off-dia-
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gonal matrix elements leads [16] in turn to the
doubling of the exponent v in the eigenvalue (level)
distribution function P({E,}), from v =1 in GOE to
v =2 in GUE:

PosMEN 6o GED O [T 1E,-E) [ explE]] -
i<j k

= [E,=E [ expl=2E}1 O Pgyp(E N 6y (E)) -

i<j k
(®

The subtle feature of this crossover is that the
doubling of v is actually energy-dependent [2]. The
GOE-to-GUE transition is completed on the energy
scale E if |6Ei| > E, where 8F; is the energy shift due
to the «perturbation» 0.4 in the Hamiltonian (5):

2

_ 2 ij
O, =« ZE—E 9

izj 1 J

Simultaneously, the «high-energy» part of the spec-
trum on the scale E >> 8E; remains distributed
according to the upper line of Eq. (8) with v =1, as
it would be in the case of an orthogonal ensemble.
Therefore, measuring the thermodynamic properties
of the nanoparticles in the external magnetic field
may give an experimental verification of the rela-
tion (8) and of the gradual nature of the GOE-to-
GUE transition, provided that these properties de-
pend on the different energy scales at the different
temperatures.

On basis of the above discussion we expect the
specific heat of the nanoclusters to be a relevant
thermodynamic characteristic for the observation of
the GOE-to-GUE crossover in magnetic field. In
order to investigate this problem quantitatively, we
consider an ensemble of metal particles with half of
the clusters having an even number of electrons and
the other half having an odd number. Our calcula-
tion was done [12] in the low temperature limit,
T << 9, so that only a few electronic levels need to
be explicitly considered. Taking into account all the
different possibilities of the formation of the lowest
excited energy states, one finds the following ex-
pressions for the low-temperature partition func-
tions of the even and odd clusters, Z and Z_44
respectively:

even

z, . =(1+2 cosh (P)(1 +2e) + O ),
(10)

Z .4 =2 cosh (hB/2)(1 + 2P + 0P | (11)
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where B = 1/7T is the inverse temperature in energy
units, i.e. taking kz = 1. Also k= guz H, where [y
is the Bohr magneton, g =2 is the Lande factor,
and H is the external magnetic field.

Using Eqs. (10) and (11) we have for the free
energy F

F:—%T(ln Zeven+ln Zodd) , (12)
where the coefficient 1,/2 represents the fifty /fifty
probability to find an even,/odd cluster in the
macroscopically large assembly of otherwise identi-
cal metal particles.

The specific heat C,, , magnetization M, and
magnetic susceptibility X can be derived from the
well-known relations

9°F _OF

_0°F

C. =-T —, :
oH X OH?

Vv 6T2

In the simplest equidistant model for a metal
nanoparticle, due to Frohlich [17], in which all the
levels are at a constant interlevel spacing 0, these
thermodynamic functions are given by the formulae:

-5

1 ) 1 ) €
C == (B} ——— + 2p): ————
v U ey TP (112

1 BZ Ah2e 2B 4 (h - 5)2eB(h_6) +(h+ 6)2e—B(h+6)

2 (1 +2¢7%® cosh (AB))? ’
(14)
. sinh (~2B) 0
M =gp tanh (h3,/2) + )
IHp g B e® + 2 cosh (hB)E
(15)
x=Bouy I L, 2*Peosh(®) g
B % cosh? (7B/2) (eESB + 2 cosh (hB))2H
(16)

It is obvious from the above expressions that in the
equidistant model there is effectively a gap in the
density of states at the Fermi-level, leading to an
exponentially vanishing specific heat at low enough
temperatures, i.e. T << 8. The opposite extreme to
the current model is the Poisson level distribution
P(E; - E].) O exp [—|E1. - E]-|/5], corresponding to
no gap at all, which was used by Kubo [8]. Unlike
in the distributions (8), the Poisson’s distribution
entails a finite probability for the two levels to
«stick together», thus neglecting the level repul-
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sion. Hence, the pseudo-gap in the density of states
at the Fermi-energy, caused by the off-diagonal
random matrix elements between different elec-
tronic states in the cluster, disappears in the Pois-
son model.

2. Averaging over the level distribution in the
crossover region

Our aim here is to obtain more realistic expres-
sions for the thermodynamic functions of the metal
nanoclusters than those given in Egs. (14), (15),
and (16), which were derived for an equidistant
model of the energy levels. Actually, for small
particles one usually assumes that minor perturba-
tions such as surface irregularities (even of an
atomic scale) will be sufficient to make the level
distribution random. Here we will suppose the
random distribution to obey the Wigner—Dyson
Gaussian ensemble statistics. Indeed, the published
experimental data [14] for the temperature depend-
ences of the specific heat of the metal nanoparticles
clearly showed the inapplicability of the equal level
spacing model, in which case the specific heat
becomes exponentially small at the temperatures
T << 3. Comparison of the experimental curves
in [14] with the theory leads to the conclusion that
the experimental behavior has to be described by a
model based on a non-vanishing probability of even
the smallest level spacings. When these spacings are
much less then the average distance between the
levels (8), they will make essential contributions to
the specific heat at the lowest temperatures,
T << 9, so that the energy gap due to the quantum
size effect becomes a pseudo-gap. Then, the explicit
averaging over the appropriate level distribution is
essential to describe the data.

It proved to be possible to perform such an
averaging analytically [12] for the case of the low
enough temperatures, where only the lowest excited
states of the clusters should be important. The
approximation used here consists in the averaging of
the low-temperature thermodynamic functions
A@®, T, H), found for the equidistant model, with
the two-level correlation function R, . For this
purpose we substitute an equidistant level spacing
0 by a random variable € and then perform an
integration over this variable:

[ee]

AT, H, 3) = J' , %DA@ T, H) d %D. (17)
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Let the level distribution function p, (x) define
the probability to find a spacing x between two
energy levels, while there are # other energy levels
being located between those two. Here we normal-
ize the random level spacing € by the average
interlevel spacing 0 near the Fermi-level of a clus-
ter: x = €/0. Then, the two-level correlation func-
tion is defined as follows:

R, (x) = Z p,(x) - (18)
0

At small enough x<<1, we have
Ry(x) - py(x), and in the limit x >> 1, R,(x) - 1.
From the work of Pandey and Mehta [16], using
also relation Eq. (6) (see [2]), we have an analyti-
cal expression for R, for an arbitrary external
magnetic field H:

2

Ghin (Tre) O
R\x)=t-g——0+

o ™ [

Tt 0

1 2 2 i 522
+¥J.ksin(kx)e2kp ko’SmZﬂem dz |

(19)

where p =1.154;H /3 for a spherical particle and
where ballistic electron motion inside the particle is
supposed [12]. Then, without magnetic field, p = 0,
Ry(x <<1) Ux, while in the strong field limit,
p >> /T Ry(x <<1) Ox%. The probability to
find two levels close together, x << 1, decreases
with the field from Ox to a2, This effect is called
the «interlevel repulsion» in a magnetic field and
causes a change of the low-temperature dependence
of the field-independent contribution to the elec-
tronic specific heat (second term on the right hand
side (rhs) of Eq. (14)) from CGOE 0 7?2 for GOE
(H=0) to CSUVEDTS for GUE (UgH >> )
[9,10]. Inc1dentally, in case of metal nanopartlcles
with strong spin-orbit coupling (GSE level-statis-
tics), this contribution to specific heat is expected
to behave as CCiSE O 75 at low enough tempera-
tures [10]. On the other hand, the spin-flip contri-
bution to C,; (incorporated in the third term on the
rhs of Eq. (14)), after averaging with the function
R,(x), brings T-linear contribution to the electronic
specific heat (C,)), which masks the crossover in the
temperature dependence described above. This later
fact, as far as we know, was not considered in the
previous works, see [9,10]. Below we present the
calculated dependences of C,, on the temperature
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and the external magnetic field H and compare
them with the recently obtained experimental re-
sults.

3. Discussion

As a main result to be concluded from the calcu-
lated dependences shown in Fig. 1, we point out
that the GOE-to-GUE transition in magnetic field
has a gradual crossover character. The underlying
reason is that the distribution of the level spacings
on the «small energy scale», ¢/h << 1, obeys GUE
statistics already at small fields 2,/ << 1, while
the level spacings for large energy, €/h >> 1 re-
main distributed according to GOE until the field
becomes strong enough, ie., 2/0=1. Thus, in
small fields, 2/d << 1, the temperature dependence
of the specific heat may be separated into three
different regions. In the lowest temperature region,
T << h <<}, the electronic specific heat C, con-
tains the unitary ensemble part: CSUE(T) o719,
with a =3, together with the spin-flip contribu-
tion: Cglr(T) 0 TRy(h/3). In the intermediate tem-
perature interval, 2 << T <<, the temperature
dependence remains the same as in the orthogonal
ensemble, i.e., with o =2: C_(T) O T2, because the
spin-flip contribution in this case merely changes
the numerical prefactor in front of T2. Finally, in
the <«high temperatures region, T'>> 0§, the tem-
perature dependence of the electronic specific heat
follows the wusual Fermi-liquid bulk behavior:
C,(T) O T. Different characteristic regions are
clearly seen in Fig. 1, where the contributions to
specific heat are plotted separately for the two
different magnetic field values as functions of the
temperature in units of the average level spacing 0.
As can be seen in Fig. 1, in the weakest field,
h =0.19, the Schottky contribution due to the odd
clusters masks the CgUE(T) 073 term within a
substantial part of the low temperature interval,
while the crossover from o0 =3 viaa =2toa =1 in
the higher temperature region is quite pronounced
in the upper panel of Fig. 1. In the higher magnetic
field A = 10 the Schottky peak had moved to higher
temperatures, where it is superimposed on the much
larger even cluster contribution to the specific heat
and so it does not mask substantially the 7° term
in the total C,| as in the weakest field case. Ne-
vertheless, the spin-flip contribution, which is
0 TR,(h/), still masks the T° GUE term in the
low temperature interval: T < {h, &}. In the even
stronger magnetic field £ =1.620 (not shown in
Fig. 1) practically the whole low temperature inter-
val T << 9 is occupied by the unitary ensemble
contribution to the specific heat Cg VE(T) O 73.
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Fig. 1. Calculated temperature dependences of the electronic
specific heat C, and its different constituents (lower panel),
and of their logarithmic derivatives (upper panel, for £,/3 =0.1
only) for a random Gaussian ensemble of metal clusters at two
different values of the external magnetic field H (in units
gugH /). The temperature is expressed in units T,/ (putting
ky=1).

The spin-flip term CZ{I] T is again the strongest
one here, as R,(h/d) saturates at h/0>> 1:
R, - 1. Hence, the spin-flip term mimics the
«bulks> behavior at low temperatures 7'<0 < A.
Then, at T 29, C_(T), smoothly crosses-over into
the «actual» bulk behavior, C_(T) O T. The two
regions are separated by the Schottky contribu-
tion, which in this case could be visible only in the
0ln C, /0In T vs. In T dependence, but is hardly
noticeable in the C,(T) curve (not shown).
Furthermore, based on the above discussion, we
would expect a direct crossover from the GOE,
C, (1o T2 to the bulk C (1) OT behavior of
specific heat in zero magnetic field, where the
spin-flip contribution is absent. Indeed, this behav-
ior was measured in a series of Pd metal clusters of
different sizes ranging from 2 nm to 15 nm in di-
ameter [13—15], and is shown in Fig. 2. In this
figure the electronic contributions to the specific
heat are shown, which were obtained at very low
temperatures (T < 1 K), by subtracting the phonon
(lattice) contributions from the measured data. The
special feature of these metal clusters is that they
appear as part of chemically synthesized, molecular
compounds, each compound containing metal clus-
ters of a given uniform size embedded in a stabiliz-
ing ligand shell [18-21]. The metal cluster com-
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Fig. 2. Electronic specific heat (in zero field) of the metal
nanoclusters discussed in the text. Data were scaled on the
theoretical prediction (solid curve) with the average energy
level spacing & as the adjustable parameters. The transition
from bulk-like behavior (O T) to quantum-size behavior (O T?)

can be clearly seen.

pounds mentioned here were made by two different
groups, namely that of profs. Moiseev and Var-
gaftik in Moscow, and the group of prof. G. Schmid
at the University of Essen. The compounds indi-
cated by Pd, Pd,, and Pdg contain respectively
561, 1415, and 2057 Pd atoms per cluster. There are
two Pds compounds, namely with chemical formula
Pd Pheng (OAc) g, synthesized by Moiseev and
Vargaftik (Pd;-M), and Pdsg Pheng O, synthe-
sized by SChIIlld (Pds-S). The chemical formulae of
Pd, and Pdg are Pd1415Phen114 1650 and
Pd,,s-Cinchsg , respectively. Here, Cinch stands
for cinchonidine, Phen for phenanthroline and
Phen®" is a phenanthroline derivative. The sample
denoted by Pd-coll is a Pd colloid with average
particle size of 1.25000° atoms /particle and a small
size distribution of 5-10%. The Pd, and Pdg metal
clusters compounds and the Pd-coll were also syn-
thesized by Schmid and coworkers.

It is worth pointing out that the only adjustable
parameter needed to scale the experimental C | vs.
T data upon the theoretical curve in Fig. 2 is the
average energy level spacing 8. The values used are
given in the figure and indeed vary roughly with
the inverse volume of the particles, as expected
from theory (the particle diameters are approxi-
mately 2.4, 3.2, 3.7, and 15 nm for Pds, Pd. ,
Pdg , and Pd-coll, respectively). Accordingly, the
crossover from quasi-bulk behavior (C,; O T') to the
quantum-size regime (C_; O T2) near T/5 E0.2 ac-
tually occurs at lower temperature the larger is the
particle. This same trend can also be seen in the
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experimental field dependence of the specific heat,
as shown in Fig. 3. It should be pointed out here
that the mere presence of a field dependence is in
itself a quantum size effect, since the bulk metal
will not show such behavior. Comparing the data of
Pd5 , Pd; , and Pd-coll, one observes that the onset
temperature of the field-dependence is indeed
lower, the larger the particle. We note that the data
in Fig. 3 show the raw measurements, i.e., with the
lattice contributions not yet subtracted. The latter
give a T3 term, which becomes rapidly negligible
below 1 K, as can be seen most clearly from the
Pd-coll data. The specific heat behavior of bulk Pd
has been included in Fig. 3 as the dotted curves.
Comparing this with Pd-coll, one observes that for
the latter the linear term is still 20—-30% lower than
for the bulk, which can be understood in terms of a
lower average density of states at the Fermi-energy
in the nanoparticles due to surface effects [22].
Finally, Fig. 4 shows the field-dependence meas-
ured for Pd; on a linear temperature scale, with the
phonon contribution subtracted. The zero-field data

N
L0
o
N
L0
3
N
L0
o
-6 1
1001 1 10

Fig. 3. Temperature dependence of the measured specific heat
(including phonon contributions) for Pd. , Pd,, and Pd-coll.
The dotted curves give the behavior found for bulk Pd.
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Fig. 4. Temperature dependence of the electronic specific heat
of Pd, obtained after subtraction of the lattice contribution.
Dotted curve: equal level spacing model. The other curves fol-
low from the calculations discussed in the text (compare
Fig. 1).

clearly display the 72 dependence predicted for the
GOE model, in contrast with the exponential de-
pendence following from the equal level spacing
model (dotted curve). The Schottky anomaly found
in low field is ascribed to the odd-electron clusters
and is in good agreement with the theoretical pre-
diction (also shown in Fig. 1 for /83 =0.1).

In conclusion, we have presented theoretical and
experimental results describing the quantum-size
effects in the thermodynamic properties of nanosize
metal clusters with random distribution of the elec-
tronic energy levels in different external magnetic
fields in the few-Kelvin temperature range. The
experimental data show a good qualitative agree-
ment with theoretical predictions based on the
Wigner—Dyson /Mehta—Pandey
theory.

random-matrix
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