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Muonium diffusion in solid CO,
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The quantum diffusion of interstitial muonium atoms in solid CO, is studied in the temperature range
from 5 to 200 K using the technique of muonium spin rotation and relaxation. Muonium exhibits
coherent bandlike dynamics between 140 and 160 K. At low temperature Mu undergoes strong
localization.

PACS: 66.30.Jt, 66.35.+a, 67.80.Mg, 76.75.+i

When positive muons are implanted into insula-
tors they often form muonium (pu*e™ or Mu) atoms,
analogous to hydrogen atoms but nearly an order of
magnitude lighter [1]. The dynamics of such light
atoms, being intrinsically quantum mechanical in
nature, is of special interest because it provides
critical tests of quantum diffusion theories [2—4].
The basic issue in nonclassical transport is whether
a wavelike or particlelike description is appropriate,
i.e., whether the tunneling is coherent or incohe-
rent. This depends on whether the interaction with
the environment is such as to lead to spatial locali-
zation of the wave function or to bandlike (Bloch
wave) motion. One of the possible channels for
localization of a particle is through its interaction
with lattice excitations (phonons, librons, mag-

nons, etc.). In a dissipative environment [5,6] the
lattice excitations can be represented as a bath of
harmonic oscillators; interaction with this environ-
ment causes a crossover from coherent quantum
tunneling to incoherent hopping dynamics when the
particle «dressed» with the lattice excitations can
be effectively thought of as a polaron.

At low temperatures, the environmental excita-
tions are frozen out. In this case, conventional
understanding suggests that the only possible chan-
nel for particle localization is the introduction
of crystal disorder, which thus may dramatically
change the transport properties of a solid. A well-
known example is the spatial localization of elec-
tron states near the Fermi level in a disordered
metallic system, which leads to a transition into a
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dielectric state (the Anderson transition) [7]: cohe-
rent tunneling of a particle is possible only between
levels with the same energy (e.g., between equiva-
lent sites in a crystalline lattice); in the case of
strong randomness, states with the same energy may
be too spatially separated for tunneling to be ef-
fective.

Although the concept of localization by disorder
has been introduced primarily in order to describe
the electronic transport properties of solids, it may
also be applied to the quantum dynamics of heavier
particles, whether charged or neutral [4,8,9]. Re-
cent experimental results for positive muons (u*) in
dilute metallic alloys [10], as well as for muonium
atoms (Mu = 4™ + ¢7) in «dirty» insulators [11,12],
clearly indicated that crystal disorder introduced by
impurities dramatically changes the nature of quan-
tum diffusion for particles [1200 times heavier than
the electron. In these experiments the environ-
mental coupling could be varied or switched on and
off by changing the temperature — for interstitial
muons in aluminum metal [10], the low-energy
couplings to conduction electrons are suppressed
below the superconducting transition, as a BCS
energy gap opens at the Fermi surface, while for
muonium in insulators [11,12], inelastic interac-
tions with phonons are frozen out at low tempera-
tures. Similar arguments apply for the well-known
system of a dilute solution of heavy 3He atoms in
‘He crystal [13,14].

A common and crucial feature of all the above-
mentioned experiments is that the particle tunnel-
ing bandwidth A is small compared with all other
relevant energy parameters, especially U, the cha-
racteristic shift in the particle’s energy level (rela-
tive to its value in the perfect lattice) due to
crystalline disorder. For elastic strains, U is ex-
pected to vary as U (a/ 7)™3 with the distance 7 from
a point defect, where U, is the maximum shift
corresponding to a site one lattice constant ¢ away
from the defect center. (Of course, U actually has
discrete values near the center; this continuous
formulation is only meaningful when » >> a.) For
example, typical values of U [] 103 K exceed muon
bandwidths in metals by 6-7 orders of magnitude;
in insulators the difference is not so extreme but
still Uy >> A [4,15]. Under these circumstances,
the influence of crystalline defects extends over
distances R Da[UO/A]V3 >> g. The quantum dif-
fusion of the interstitial particle is therefore domi-
nated in these case by strong, long-range crystal
disorder.

An essential characteristic of particle transport
under conditions of long-range crystal disorder is its
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inhomogeneity at low temperatures [4,16,17], whe-
re the particle dynamics cannot be described in
terms of a single correlation time T, . The particle
hop rate is in this case predicted [4] to follow

Q(T)
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(1)
where Ao is the renormalized tunneling amplitude,
Q(T) is the particle’s energy level broadening due
to coupling with lattice excitations, and §(R) =
=aldU/dr],_p is the difference between energy
levels at two adjacent tunneling sites due to disor-
der. (We ignore the possibility of degenerate adja-
cent sites at the same R.) At low temperatures the
phonon width is reduced and

(2)
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Equation (2) describes the dynamics of particles in
the vicinity of defects, where the inhomogeneity of
the crystal results in a spatial distribution of hop
rates, Tc_1(R). Another fraction of particles initially
located so far from impurities or defects that A,
exceeds E(R) [as well as Q(T)] undergoes bandlike
propagation. In the limiting case of very low tem-
peratures (or below a superconducting transition),
inelastic scattering by phonons (or conduction elec-
trons) is strongly suppressed. The two fractions
cannot then exchange particles — they are manifest
in the appearance of two distinct components in the
muon polarization function P(#) [10-12]; this may
be taken as a signature of spatial inhomogeneity of
the particle dynamics when the disorder is described
by a long-range potential.

The foregoing discussion, like all previous theo-
retical treatments of quantum diffusion (see, e.g.,
[4,8,9]) implicitly assumed that the diffusing parti-
cle has access to only one site per unit cell.

In the harmonic approximation, the transport
properties of a neutral particle in a simple crystal-
line insulator (e.g., a monoatomic or ionic crystal)
depend only on the phonon modes of the lattice. For
crystals composed of molecules, two additional con-
tributions enter from the internal vibrational and
rotational degrees of freedom of the molecules.
Internal vibrations of molecules scarcely change the
particle dynamics because of their extremely high
frequencies. Molecular rotation, however, is a dif-
ferent matter. Two extremes are possible: the mole-
cules may rotate almost freely in the crystal or the
rotational motion may be severely restricted and
hence transformed into torsional excitations (lib-
rons). Since the typical rotational frequencies of
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molecules in crystals are still much higher than the
particle bandwidth, in the first extreme the energy
levels for a particle moving in different unit cells
are degenerate and therefore its dynamics remain
unperturbed. In the second extreme the anisotropic
interaction between molecules (which causes orien-
tational ordering in the first place) changes the
crystalline potential so that this degeneracy is lif-
ted. As far as the particle dynamics are concerned,
this splitting of adjacent energy levels acts as an
effective disorder, creating the bias & in Eq. (1).
Here we report our study of muonium dynamics in
solid CO, , in which the anisotropic part of inter-
molecular interaction is so strong that lattice keeps
its orientational order in the entire solid phase.

Solid carbon dioxide was one of the first few
solids (also quartz and ice) in which muonium atom
formation was observed, about 30 years ago [18].
However, there was no explanation for the mysteri-
ous muonium relaxation in CO, . The muonium
relaxation rate was measured in transverse magnetic
field of 7.2 Oe to be about 0.6[08 s™'. This relaxa-
tion rate, although not high, is, however, noticeable
and cannot be associated with nonuniformity of the
magnetic field, as in the same experiment a few-
times-lower relaxation rate has also been measured.
Nor can the muonium relaxation in CO, be ex-
plained by its interaction with nuclear magnetic
moments, as all of them are equal to zero in carbon
dioxide.

The source of muonium relaxation in solid CO,
can be understood if muonium is anisotropic. The
reason for the muonium anisotropy is that in the
environment of surrounding atoms of the medium,
muonium’s electron function is not necessary the
spherically symmetric 15 state. The effective spin
Hamiltonian for static Mu in solid CO, in an
external field H, assuming an anisotropic muon—
electron hyperfine interaction, has the form [19]

f[:hASeESu—geuBSeE[H—guuuSuE[H, 3)

where A is the muonium hyperfine tensor, and S, g,
and M are the spins, g factors, and magnetic mo-
ments of the respective particles. For example, in a
variety of cubic semiconductors muonium centers
are observed with a hyperfine interaction that is
axially symmetric about any of the [111] crystal
axes. For a state of this type (which is the simplest
case of anisotropic muonium), A is diagonal with
elements A| and A . The essential feature of aniso-
tropic muonium is that at zero magnetic field the
muon spin will oscillate at a frequency which is
equal to one-half of the anisotropic part of the
hyperfine interaction (4 = A) divided by Planck’s
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constant. In the general case (when A is a matrix of
high order) several frequencies are observed [20].
The amplitudes of oscillations at these frequencies
are functions of the angles between the principal
axes of A (which are determined by the configura-
tion of muonium sites in the crystalline cell) and
the initial muon polarization. In the case of muo-
nium diffusion this will result in apparent muonium
relaxation [21]. The hopping sites are equivalent,
but have principal axes making different angles
with the muon polarization direction; thus when a
Mu atom hops to a new site its spin begins to
oscillate with different amplitudes for all the fre-
quency components, resulting in an effective relaxa-
tion mechanism on the time scale of a mean oscilla-
tion quarter-period. To date the theory of the time
evolution of the anomalous muonium polarization
function in the hopping regime is undeveloped. In
quartz [21], anomalous muonium diffusion was de-
scribed using a Kobo—Toyabe zero-field stochastic
relaxation function with hopping [22], using a con-
stant empirical «static width» of 4 times the highest
oscillation frequency. In the current paper we pre-
sent a way of estimating anomalous muonium hop
rates in a host with zero nuclear moments regardless
of the exact notions about the muonium hyperfine
tensor and depolarization function.

The experiments were performed on the EMu
beamline of the ISIS Pulsed Muon Facility at the
Rutherford Appleton Laboratory. Ultrahigh-purity
CO, (less than 10™ impurity content) was con-
densed from the gas phase into a liquid and then
frozen into a disc-shaped cell (24 mm in diameter
and 5 mm deep). Solid samples were carefully
grown from the liquid phase at typical speeds of
about 5 mm h by applying a vertical temperature
gradient of about 5 K across the cell. Positive
muons of 28 MeV /¢ momentum and 100% spin
polarization were stopped in the samples and p*
spin rotation (SR) time spectra were recorded at
various different temperatures and applied magnetic
fields. Positrons from the muon decay are emitted
preferentially along the direction of the muon po-
larization, so that the time-differential u* SR tech-
nique, details of which can be found elsewhere [1],
produces direct measurements of the time depend-
ence of the muon decay asymmetry A(£), which is
proportional to the muon polarization function P(£).

The formation of anisotropic muonium in solid
CO, was detected by observing the oscillation sig-
nal in zero magnetic field. A typical experimental
spectrum in zero magnetic field at low temperature
is represented in Fig. 1. Then a set of u* SR spectra
was measured in a weak transverse magnetic field
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Fig. 1. Experimental uSR spectrum in pure CO, in zero mag-
netic field at 40 K.

H =2G . Transverse magnetic field spectra show a
nice anisotropic muonium precession signal. In all
the temperature interval the envelope of this pre-
cession is approximated by a simple exponential
function P(t) Uexp (-A#). Usually the technique of
muonium transverse relaxation is used to extract
hopping rates of isotropic muonium in a host with
nonzero nuclear moments. In this case the effective
spin Hamiltonian of muonium in a crystal in an
external magnetic field consists of electron, muon,
and nuclear Zeeman interactions, the muonium hy-
perfine (HF), and the nuclear hyperfine (NHF)
interactions (see, e.g., [15]). Qualitatively, modu-
lation of the NHF interactions results in relaxation
of the muonium electron spin, which in turn leads
to the observed muon depolarization via the muo-
nium HF interaction. As the muonium HF constant
A is usually several orders of magnitude higher than
the NHF interaction (which for simplicity we cha-
racterize by a single parameter d), it is the latter
which sets the time scale for isotropic muonium spin
relaxation. In the case of anisotropic muonium, the
hyperfine interaction changes from site to site or the
HF interaction is modulated «by itself», and the
value of the muonoum hyperfine interaction anisot-
ropy about 2(A” — Ap)/h will set the time scale for
the anisotropic muonium spin relaxation. To make a
connection with the standard theory of muonium
diffusion this modulation can be presented by «ef-
fective» & or &. In the standard theory the envelope
of the muonium precession signal can be approxi-
mated by a simple exponential

P(t) Oexp (-/T,) , (4)
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where T, is the transverse relaxation time of the
muonium spin. The muonium relaxation rate T 51
has a simple form in two limits: if muonium «hops»
from site to site at a rate TC_1 >> & (fast hopping
limit), then the transverse relaxation rate is given
by T ;' = SZTC . For very slow diffusion (T! 3)
the muonium spin relaxation takes place on a time
scale shorter than T, and T; = 8. [In this case
P(?) is better approximated by a Gaussian relaxa-
tion function.]

Figure 2 presents the temperature dependences of
the muonium transverse relaxation rate T 51 in solid
CO, and CO, plus 0.1% of N,O impurities, ex-
tracted from the spectra by fitting single-exponen-
tial relaxation functions (4).

In pure CO, at high temperatures above 160 K,
T 51 decreases with decreasing temperature or the
hop rate increases with decreasing temperature.
This is an unambiguous manifestation of quantum
diffusion which has also been recognized for mu-
onium in KCI [23] and solid nitrogen [24]. Such
strong temperature dependences of the muonium
relaxation at high temperatures in solid CO, cannot
be due solely to the Q(T) dependence in Eq. (1) in
the regime of dynamical destruction of the band
(Q >> &), but must rather be caused by exponen-
tial renormalization of the tunneling amplitude, due
to strong one-phonon scattering.

The muonium relaxation levels off at lower tem-
peratures below about 160 K. This plateau must
represent the onset of muonium band motion [4,15],
which occurs if the coherence is preserved, Q <<~AO
(but still T > A,), and the disorder is weak, § << A, .

The band motion does not extend to the lowest
temperatures, however: T 51 begins to increase with
decreasing temperature below about 140 K. These
data indicate that interstitial muonium atoms un-
dergo gradual localization in CO, at low tempera-
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Fig. 2. Temperature dependence of muonium relaxation rate in
solid CO, in weak transverse field H =2G (circles: pure CO, ;
stars: CO, + 0.1% N,0).
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tures where Q << & and that the particle dynamics
follow Eq. (2).

Experiments with doped CO,, were performed to
estimate the muonium hopping rate from the trap-
ping regime of muonium diffusion. Transverse re-
laxation data in solid CO, with 0.1% N,O impuri-
ties are represented in Fig. 2 by stars. When the Mu
atom hops rapidly in CO, (causing low values of
T 51 due to dynamical <«narrowing»), it finds a
N,O impurity in the CO, crystal and reacts chemi-
cally (probably to form the MuNNO" radical [25]),
which explains the fact that the maximum T?
value for Mu in CO, +N,O significantly exceeds
that for slowly hopping Mu in pure CO, at low
temperatures, where it is determined by the anisot-
ropy of Mu hyperfine tensor. This chemical reaction
results in an exponential relaxation of the Mu
polarization, the rate of which is determined by the
time required for Mu to approach the N,O impurity
within a distance a of about one lattice constant,
after which the reaction occurs immediately. Then
the rate of trapping is [26]

A=4mDc, (5

where D = a2 /4t . is muonium diffusion coefficient,
and ¢ is the concentration of impurities. From the
maximum relaxation rate T _1max 0107 s~ we can
estimate 1, . Omne/T 351 113009 s71. For the
bandlike regime the <hop rate» is given by Tc_1 =
=22 A, [27]. By substituting 1, .. we can esti-
mate the muonium bandwidth in CO, to be about
1072 K. This value may be compared with muonium
bandwidths in KCl and solid nitrogen (0.16 and
1072 K, respectively) [15].

At high temperatures the clear maximum in T 51
for Mu in CO, +N,O marks the crossover from fast
to slow Mu diffusion near N,O impurities. In this
temperature range the strong coupling to phonons
allows Mu to overcome the defect potential and
move to react with N,O. However, the energy shift
& which the particle has to overcome is much larger
close to the defect than far from it, making the Mu
hop rate strongly dependent on the distance from
the defect.

At low temperatures the suppression of inelastic
interactions with the lattice changes Mu diffusion
drastically — Mu atoms are stuck (or «frozen») at
some distance far from N,O impurities, causing a
strong reduction of the reaction rate (Mu relaxation
rate). At very low temperature Mu atoms simply
can not approach N, O impurities due to suppression
of the inelastic interactions, and T 51 becomes the
same in pure and doped crystals (Fig. 2).
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In conclusion, we have presented evidence for
the bandlike motion of light interstitial muonium
atoms in CO, crystals.
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