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Shell effects in alkali metal nanowires
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After making a cold weld by pressing two clean metal surfaces together, and gradually separating the
two pieces, a metallic nanowire is formed, which is progressively thinning down to a single atom before
the contact is lost. We show evidence that the radii of such nanowires are influenced by electronic shell
filling effects, in analogy to electronic shell structure in metal clusters. A modulation of the shell effect,
known as supershell structure, is clearly observed. For sodium and potassium at larger diameters there
is a crossover to crystalline facets with shell-closings corresponding to the completion of an additional
atomic layer. We conclude that a complete analogy exists between shell structure in metallic clusters

and nanowires.

PACS: 73.20.Dx, 73.40.Jn

Introduction

The understanding of processes that occur on an
atomic scale when two materials are brought into
contact is of fundamental importance to problems
such as adhesion, hardness, plastic and elastic re-
sponse to external strength, fracture, friction and
wear [1]. For conducting materials a new phenome-
non appears due to quantization of conduction chan-
nels [2—4]. Novel techniques enable one to create
and study the properties of nanowires down to a
chain of single atoms [5,6]. For these experiments,
as well as for the above-mentioned problems, the
processes connected with stability and cohesive en-
ergy of nanoscopic contacts are of primary impor-
tance.

The stability of microscopic and nanoscopic ob-
jects is tightly connected with the so-called shell
effects. In three dimensions, shell effects are con-
cerned with the numbers of microscopic particles
(barions in nuclei, electrons in an atom, atoms in a
cluster) for which an enhanced stability of the
system is found. These are called «magic numbers».
For the periodic table of elements the noble gases,
with fully occupied electronic shells, acquire the
highest stability, since they possess the largest ioni-
zation potential and are chemically inert. For the
clusters emitted by a vapor jet in a mass spectrome-
ter, the abundance of «magic masses» is enhanced,
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since these clusters possess higher stability as com-
pared to the others [7-9].

In metallic clusters, one distinguishes two differ-
ent shell effects: one is connected with conduction
electrons for which the cluster behaves like a giant
atom [7-9], and the other relates to the configura-
tion of atoms in the cluster [9,10]. Both are due to
minima in the cluster free energy, but the first
requires conduction electrons, while the second also
applies to non-conducting materials.

In this paper we describe in detail the shell
effects discovered by us in an open system: a metal-
lic nanowire [11—13]. In these objects electrons are
not confined along the wire axis. In spite of this,
shell effects manifest themselves as peaks in a
histogram for the electrical conductance of the wire
recorded for wires while the wire diameters are
changed, showing the most stable configurations.
Since the conductance depends on the wire cross-
sectional area, the latter quantity gives, on the one
hand, the number of conduction electron modes in
the two lateral dimensions, and, on the other hand,
the number of atoms. Both of these effects, elec-
tronic and atomic, are distinctly seen in the conduc-
tance histograms, which exhibit their coexistence
and crossover. Thus, there appears to be a complete
analogy between the shell effects in metallic clus-
ters and nanowires.



2. Experimental technique

For our study of nanowires we use (Fig. 1,a) the
mechanically controllable break-junction (MCB)
technique developed in Ref. 14. The metallic sam-
ple was fixed by Stycast epoxy on a flexible sub-
strate made from phosphor bronze (bending beam)
and supported by three points: two are on the upper
side of the bending beam (counter supports), and
the third is at the opposite side supported by a
movable piezo driver. A metallic sample, prepared
as a thick wire, is electrically isolated from the
bronze substrate. The wire was circularly notched in
the middle in order to concentrate the pulling
strength at the center while the substrate was bent
by mechanical (not shown) and piezo drivers. By
fixing the sample as close as possible near the
notch, a large reduction (100-1000) is achieved in
the ratio between movement of the electrodes with
respect to each other and the expansion of the piezo
driver, in the perpendicular direction.

In order to study alkali metals, two important
modifications are made. First, due to extraordinary
reactivity of alkaline elements contact with the ambi-
ent environment must be avoided. This is achieved by
making all the preparations in paraffin oil. The
sample is cut into the shape of a rectangular bar, at
the center of which we cut a notch. Since the bar
with the notch is also covered by the oil, it cannot be
glued and should be fixed mechanically. For this
purpose we use four tiny bolts and nuts that are
electrically isolated from the substrate (Fig. 1,b) [4].
After mounting, the whole setup is rapidly placed in
an evacuated metallic can and put into the cryostat
with an environmental temperature of 4.2 K. The
walls of the can that are being kept at helium
temperature serve as a cryogenic pump ensuring a
very high vacuum around the sample. The bar is then
broken at the notch by mechanical bending of the
substrate. The cyclic electrical movement of the piezo
drive rod periodically sweeps the electrical conduc-
tance between the electrodes from a desired value
(of the order of tens to hundreds of conductance
quanta”) down to a complete separation (conduc-
tance much less than one quantum unit). The impor-
tant advantage of the MCB device is that the cryo-
pumping action of the low-temperature environment
ensures that the freshly exposed fracture surfaces are
not polluted by adsorbates.

The conductance is measured in a four-terminal
dc constant voltage mode. A fixed bias voltage is
applied, in the range 1-100 mV, so that the current

*  One conductance quantum equals G, = 2¢ /b = (12907Q)7!
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Fig. 1. a — Schematic drawing of a substrate with a sample
mounted in a three-point bending configuration. The bending of
the substrate due to the movement (or expansion) of the piezo
over a distance A, shown in gray, causes the epoxy droplets to
move apart by d, leading to the breaking of the junction. The
amount of bending is exaggerated for clarity. &6 — A model of
an alkali break junction. The principle is the same here as in «,
but the two epoxy drops are replaced by four M1 bolts with
nuts fixing the sample to the substrate. The length of the sub-
strate remains 22 mm.

through the contact is proportional to its conduc-
tance. Since the high bias heats the wire at large
conductances, we prefer to use the smallest possible
biases. Our experience leads to the conclusion that
up to the bias of [J10 mV the heating can be
neglected. The drift and calibration of the current-
to-voltage converter is verified against standard
conductors of 1, 10 and 10()G0 , ensuring an overall
accuracy in the conductance better than 1% for
G > 10G,, . Scans are taken continuously by ramp-
ing the displacement 0 =1 of the electrodes with
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respect to each other, using the piezo driver. Each
individual curve of the conductance versus the dis-
placement, G(I), is recorded in [10.1 seconds from
the highest conductance into the tunneling regime.
The curves are digitized with 16-bit resolution and
a data acquisition rate of [110° point/s. The con-
ductance scale is divided into 1500 bins and data
points from up to [J10° individual scans are accu-
mulated automatically, creating a conductance his-
togram at the given experimental conditions (tem-
perature, voltage bias, indentation depth). For most
cases we have found that about 103 scans are
enough to achieve convergence in the shape of the
histograms. The speed of scanning is limited from
above by the data acquisition rate of the electronics,
and from below by a reasonable time required for
the experiment (normally, several hours). To com-
pare different histograms, we normalized them by
their area over a fixed conductance range.

3. Results

3.1. Experiment

Low temperature histograms and scans. In Fig. 2
we show histograms for Na, K and Li taken at
T =4.2 K, along with typical scans (see inset). All
histograms display the characteristic series of peaks
in succession at 1, 3, 5, 6, in units of reduced
conductance” which was shown in theoretical and
experimental works [4,15,16] to be the hallmark of
quantum mode degeneracy for electronic wave func-
tions in a wave guide with circular cross section.
This degeneracy arises from the azimuthal quantum
number, which takes two values (- and +). When
this happens (at ¢ = 1, 3, and 6, and further on) the
conductance increases by 2 quanta for increasing
nanowire diameter.

First we discuss the positions of these peaks.
They are more or less shifted to the left compared to
the integer values. The least shift occurs for the
g = 1 peak and it increases noticeably for higher g.
Phenomenologically, this increase can be described
by a series resistance of the order of [L1100Q, origina-
ting from the backscattering of electron wave func-
tions by defects and surface irregularities [4,17,18],
and inelastic scattering by phonons. The latter may
be the cause for a noticeably larger shift for Li, for
which it is known the electron-phonon interaction
parameter is several times larger than for Na and
K [19].
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Fig. 2. Normalized conductance histograms of > 1000 indivi-
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dual conductance traces of Na, K and Li measured at 4.2 K
under cryogenic vacuum at a constant voltage bias of 10 mV.
The curves for K and Na are shifted for clarity by 0.15 and 0.3,
respectively. Typical individual conductance traces (scans) are
shown in the inset. g = G/G,, where G, = 2¢2/h, is the re-
duced conductance.

The intensities of the first few peaks for Na and
K, on the one hand, and Li on the other hand, are
also quite different. The height of the peaks at
g =1 and 3 in Li is much lower than for Na and K.
On the contrary, the peaks at ¢ =5, 6 in Li is
noticeably higher than those for Na and K. This
may be explained qualitatively by a much higher
mobility of Li atoms even at helium temperature,
which may be due to tunneling because of the light
Li mass and the decrease in the potential barriers at
the surface, making a contact of just a few atoms
unstable.

Next, we draw attention to the broad maxima at
g =8, 11, 15, which are slightly more intense just
in Li, presumably, again due to the enhanced mobil-
ity of Li surface atoms. We shall see below that
these broad peaks are precursors of the electronic
shell-effect for alkali metal nanowires. Together
with the peak at g = 5 they give the most favorable
diameters, corresponding to the local minima in the
electronic part of the thermodynamic potential. As
to peak at g =5, this point of view is supported
taking into account that, according to the theoreti-
cal calculation of sodium histogram [20], the inten-
sity of the g = 5 peak should be noticeably smaller
than the peak at g = 6. In fact, in experimental
histograms (see Fig. 2) they are approximately of

* From now on we shall use the reduced conductance as g = G/G, , where G, = 262 /h.
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the same intensity. Another confirmation that the
g =5 peak is not connected with the fully open
conducting channel comes from Ref. 18, where its
behavior is radically different from that of the
peaks at g =1, 3, 6. Thus, we propose that the
enhanced intensity of the g =5 peak is due to the
broad maximum of the favorable diameters dictated
by the electronic shell effect.

Scans taken at helium temperature and shown in
the inset in Fig. 2, exhibit smooth variations (pla-
teaus) interrupted by a sharp decrease (steps), evi-
dencing that the elastic elongations are followed by
atomic rearrangements. This points at the crystal-
line structure of the neck. Only for the low-lying
conductances the plateaus coincide with quantum
units (= 1, 3, 5, 6), which can be even seen statisti-
cally on the average scan plotted by integrating the
histogram. For higher conductance, g = 7, though
the steps in the scans look as sharp as for lower g,
no peaks on the low-temperature histogram appear.
This means that the plateaus occur with nearly
equal probabilities for any conductances in different
scans, leading on the average to the smooth back-
ground in the histograms. According to Ref. 21,
from the smooth part of the scans one can find the
approximate shape of the neck. We shall turn to
this issue below when discussing the atomic shell
structure of the nanowires. At low temperatures,
the piezo voltage versus elongation of the neck can
be calibrated using the Fowler—Nordheim formula
or the Gundlach oscillations [22] for the tunnel
regime at biases of the order of a few Volt.

By storing several intermediate histograms dur-
ing the accumulation of the final histograms, for the
full number of scans for a given contact, one can
obtain an impression of their evolution with increas-
ing numbers of scans. One can observe both the
purification of the metal under the contact, which
leads to more distinct shell-effect structure with
increasing number of indentations, as well as to the
opposite behavior, which we ascribe to the adsorbed
impurities [23].

Temperature dependence of the scans. Let us
describe the temperature dependence of the scans,
taking Li as example (Fig. 3). Figure 3,z shows
two scans for low and elevated temperatures, typi-
cal for all the alkali metals studied. As the tempera-
ture increases, the low-lying conductance plateaus
become unstable. Moreover, the piezo voltage is no
longer the only parameter controlling the evolution
of the neck, as a result of the strongly enhanced
diffusion of the surface atoms. The atoms in the
wire experience tension not only from the external
force but also from the Laplace pressure. This
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Fig. 3. @ — Typical individual scans for Li break-junctions at
two different temperatures. 1 piezo-Volt corresponds approxi-
mately to 0.5 A b — Long plateau at 140 K, shown on a loga-
rithmic scale in the inset.

means that putting the external force to zero the
conductivity of the neck still evolves with time
until the contact disappears.

We mentioned above that Li atoms revealed
increased diffusion when we considered the low
intensity of the g =1 peak in the Li histograms at
helium temperatures. The enhanced mobility of the
atoms also leads to the anomalous behavior of the
conductance trace G(Vpiezo) at high temperatures
shown in Fig. 3,b, where it steeply drops to zero
from a fairly high conductance. For Li at T = 140 K
all steps on the G(Vpiezo)—scans disappear and all
structure in the histograms disappears except at
g = 5. This peak in the histogram becomes very high
corresponding to anomalously long plateaus in the
scans. The length of the plateaus reaches several
tens of /:%, while typical plateaus correspond to less
than 1 A. The same qualitative behavior was ob-
served for Na, although for this metal it was more
difficult to register scans at such elevated tempera-
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ture. We interpret this phenomenon in the follow-
ing way.

At T = 140 K the Li nanowire <melts», although
the temperature of bulk melting point is much
higher. By this we mean that the diffusion of atoms
over the length of the nanowire becomes much
faster than our data acquisition rate. According
to Refs. 24, 25 a strong depression of the mel-
ting point is expected for small systems due to
the Laplace tension. The change of the melting
temperature T, compared to the bulk value T,
is approximately given by (T, -T,)/T,=
=2(0, — 0,)/QR, where Oy is the surface tension
in liquid and solid phases, respectively, Q is the
heat of fusion, and R is the wire radius [26]. Thus,
we suggest that at the starting point of the long
plateau a liquid-like metallic neck appears, which
connects the solid banks. Further elongation of the
neck proceeds continuously, decreasing its diameter
as the wire is stretched, approximately as a power
law g O (V_. ) with n El-1.3.
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Fig. 4. Temperature evolution of conductance histograms for Na
and Li. The histograms have been normalized to the total area
under the curves.
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Temperature dependence of the histograms. The
temperature dependences of Na and Li histograms
are shown in Fig. 4. One recognizes the low tem-
perature curves similar to those shown in Fig. 2.
While raising the temperature, the low-conductance
peaks gradually disappear due to increasing thermal
instabilities. On the other hand, for thicker wires a
new succession of strong peaks grows, owing to the
increased mobility of atoms at elevated tempera-
tures. We shall consider these series of peaks in
detail in the next Sections. Here, we only point out
that the positions of these peaks on the conductance
axis does not correspond to those that might arise
due to individual quantum modes, which would
increment either by one or two conductance quanta.
Instead, these peaks are broader and reveal a sepa-
ration that grows with conductance. The intensities
of these peaks depend, among other parameters, on
the depth of indentation, which can approximately
be characterized by the highest value of conduc-
tance scale in the histogram. A second parameter is
the voltage bias, at which the scans are recorded.
Unfortunately, there are additional parameters that
we can hardly control with the technique used.
These include possible surface contaminations and
the orientation of the crystallites on the two elec-
trodes. We stress that these drawbacks mainly con-
cern the intensity of the peaks and much less their
positions on the conductance axis, while the period
of the peak series remains almost unaltered. Since,
as shown below, there are two mechanisms leading
to different series of peaks with different periods
(namely, electronic and atomic shell series), the
positions of the peaks depend upon the relative
intensity of these mechanisms. Fortunately, the true
frequencies of the oscillations can be obtained from
the Fourier transform of the experimental histo-
grams.

3.2. Electronic shell and supershell effects

In this Section we describe the observation of
electronic shell-effect oscillations [11,12] in alkali
metal nanowires. Experimental results depend on
several factors discussed above. We emphasize once
again that all shell-effect structures are observed at
elevated temperature, at which atoms have enough
mobility to occupy the most favorable positions in
the lattice structure. This structure corresponds to
the local minima of the total free energy of the
nanowire.

Histograms and peak positions. A typical histo-
gram for sodium is shown in Fig. 5,a. The positions
of the main peaks, labeled by sequential numbers,
are regularly spaced as a function of ¢g!/2. That
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Fig. 5. Conductance histogram for sodium constructed from
= 14000 individual traces recorded at T' =90 K and at 100 mV
voltage bias (@); conductance histogram for potassium con-
structed from [15000 individual traces recorded at T = 100 K
and 8 mV voltage bias (b); conductance histogram for lithium
constructed from [18000 individual traces recorded at
T =100 K and 10 mV voltage bias (¢). We count the split peak
#3 as a single peak, as for Na (see @). The peaks are numbered
as shown, and a plot of peak positions vs. their index number is
fit by a straight line in the insets. The slopes are 0.581 + 0.005,
0.54 £ 0.005, and 0.62 £ 0.02 for Na, K, and Li, respectively.
Note that the x-axis is given as the square root of g.

means that they periodically appear as a function of
the radius of the wire, since for a circular nanowire
the radius of the smallest cross section R, obtained
from the Weyl semi-classical [27] expression for a
ballistic regime, reads:

2 2
g, ~rf0n 2o BrRO
Y g2no5 kR o?2ao

where k, is the Fermi wavevector and
(ki R/ 2)2 = gg is the Sharvin conductance. We
prefer to plot g!/? along the abscissa, since it is the

experimentally measured quantity, while the in-
ferred radius depends somewhat on the shape of
nanowire. For example, for a contact in the form of
an orifice gy, Elgg[1 = 1/(kp R)], which makes the
correction to the Sharvin conductance smaller [16].
The inset in Fig. 5,¢ demonstrates that the peak
positions are periodic, with a period of [10.58. We
see that at elevated temperatures the g = 1 peak is
absent and the highest intensity is reached at
g = 16. The shape of the background is determined
by the global variation of the conductance with
elongation, which in turn depends on the effective
length of the nanowire that deforms during elonga-
tion [21,28] (see below). This length is located near
the narrowest cross section of the nanowire and can
be qualitatively described with the model consid-
ered in Ref. 21. The latter is valid when diffusion of
the atoms from the neck to the electrodes can be
neglected”. Superimposed in the main periodic
structure we note an oscillating behavior of the
envelope of the maxima in the histogram of
Fig. 5,a. This modulation is the signature of the
supershell effect and will be considered in more
detail in the section on the Fourier transformation.
Finally, we draw attention to the small-intensity
oscillations at ¢g!/2 2 7.5. They have a much
smaller period and are due to the crossover from
electronic to atomic shell effect (see below).

Similar periodic structure is seen for potassium
(Fig. 5,6) and lithium (Fig. 5,c). The periods
shown in the insets are 0.54 and 0.62 for K and Li,
respectively. Maximal amplitudes are observed at
g'7?2 04-5, and the peak at g = 1 is missing just as
for Na. The periods are close to what is observed in
Na, although a small change in the slope is often
observed for different samples. The modulation of
the peak heights also varies from contact to contact.
While a modulation is clearly seen in the Li histo-
gram (Fig. 5,¢), for the given K contact (Fig. 5,b)
only a non-monotonous behavior around the peaks
with indices 3-5 is found. In the next Section we
present a different K histogram, which exhibits
much more modulation by the superposition of dif-
ferent shell effects (Fig. 7).

Fourier transformations. Determination of the
average period from the slope of the peak positions
in terms of ¢'/? versus their indices (see insets in
Fig. 5) gives limited information about the pro-
babilities for observing specific conductance values.
For example, in this way, one cannot account for
the non-monotonous behavior of the peak heights.

*  We shall discuss the transformation length [21] in the paragraph concerning the atomic shell structure.
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The problem arises, whether to count the peaks
with smaller amplitude.

Fortunately, we can make use of a direct Fourier
analysis of the histograms, which exposes a super-
position of several periodic components. A typical
example for sodium is shown in Fig. 6. In order to
avoid a huge low-frequency tail in the Fourier
spectra, we subtract a smooth background shown by
the dashed curve in the inset of Fig. 6,a. The
resulting curve is displayed on the main panel of
Fig. 6,a. It reveals a clear low-frequency modula-
tion with a period of [J4.0. Here, we use the
variable k; R instead of g'/? for the abscissa, by
use of the Weyl expression (1), which will prove
convenient for comparison with the theoretical re-
sults in the discussion section below. The Fourier
spectrum for this histogram is shown in Fig. 6,b. It
contains two prominent frequencies 0.64 and 0.89,
where the first has a smaller intensity than the

*  The latter corresponds to the frequency 0.866.
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second. The latter of the two frequencies is very
close to the (average) one obtained for the magic
numbers in spherical clusters [11]. As will be dis-
cussed below, for clusters the intensity of the first
principal frequency is negligibly small, and the
observed frequency equals the average of triangu-
lar and square orbits: (0.83 +0.90),/2 = 0.86 (see
Table). The presence of the lower frequency compo-
nent for the nanowires, explains why the frequency
of the second prominent peak is a little bit larger
than what would be obtained from the averaged
period A(g1/%) E10.58 given by the slope in the inset
of Fig. 5,4". In Fig. 6,b the low intensity peaks at
frequencies above 1 are presumably due to the

Table

First few shortest classical periodic orbits and their frequencies
in circular geometry. The circle (£ =1, p = ©) marks the end of
the first band (¢ = 1); the second one contains trajectories which

make two revolutions around the center (¢ =2), the third —
three, etc.

Shape t p Perimeter L Frequency
f=1/AkR)
@ 1 2 4R 2/T=0.64
1 3 3V3R 3V3,/2m=0.83
1 4 4V2R 22 /1= 0.90
Q 1 0 2TR 1
@ 2 4 8R 4,/T=1.27
. 2nd . 2na
2 5 | 10R sin —[]| 5 sin F=—[= 1.51
0° 0 0° 0
@ 2 6 6V3R 3V3,/m=1.65
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harmonics and combinations of the two principal
frequency.

Considering the histogram for potassium
(Fig. 7,a), which is different from the one in
Fig. 5,b, we see that there are again two prominent
peaks in the Fourier transform, at 0.63 and 0.84,
close to those observed for sodium. In addition,
there is an appreciable maximum around 2.2, which
is difficult to explain in terms of overtones, but
stems from the atomic shell effect, as we will see
below. For the given K histogram one obtains an
average period of A(k; R) El1.15 from the slope of
the peak positions, giving an average frequency of
1/A(kp R) = 0.87. This nearly coincides with the
upper principal frequency because of the small in-
tensity of the first principal frequency.

Finally, let us consider the Fourier transform of
the Li histogram from Fig. 5,c. Figure 8,6 shows
three peaks of about the same intensity. Those at
frequencies 0.66 and 0.93 are of the same origin as
the principal frequencies in Na and K. As to the
lowest frequency at 0.25, it may be due to an
anomalously strong interference of the principal
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Fig. 8. a — Conductance histogram for lithium from Fig. 5,¢
with a smooth background subtracted (the original curve and
the background are shown in the inset). & — Fourier spectrum
of the curve in a.

frequencies, giving rise to a difference-frequency
with a period of 4.2. This may be due to the fact
that the intensity of the first principal peak (at
0.66) is as strong as the second one. It is interesting
to note, that both principal Fourier frequencies in
Li are higher than in Na and K. However, the
average frequency of (0.66 +0.93),/2=0.78 is
lower than in Na, corresponding to a larger average
period A(g'/?) = 0.64 (or Ak, R) E11.27). Indeed,
since in Li the intensities of the two principal peaks
are approximately the same, we can simply average
their frequencies, while this is would not be correct
for Na and K.

3.3. Atomic shell effect [13]

Searching for the shell oscillations at still higher
conductance, we have found a new series that ap-
pears to be due to the pure classical effect similar to
that found in clusters. As in clusters, we named it
an «atomic shell effect» and discuss its origin in the
next Section. We start by presenting the main
experimental facts concerning this effect.
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Fig. 9. Potassium histogram constructed from 1000 individual
conductance traces recorded at 1 mV voltage bias and at
T =100 K. Peaks are sequentially numbered and their position
is plotted as a function of this number in the inset. Straight
solid lines show the slopes 1.447 and 0.241 for full atomic
shells and single hexagonal facets, respectively. A linear fit for
the electronic-shell points gives 0.61 (dashed straight line).
A linear fit to the experimental data starting with number 6
gives a slope of 0.224. Along with g'/% values on the x-axis the
corresponding &, R values are given on top, according to for-
mula (1).

Crossover from electronic to atomic shell effect.
The most spectacular results are achieved for potas-
sium. The corresponding histogram is shown in
Fig. 9. It shows two types of oscillations with a
relatively sharp crossover at g1/? = 6. In the inset,
the reduced conductances, corresponding to the
peaks in the histogram, are plotted against their
sequentially numbered indices. The index number of
the peaks is also shown in the histogram, where
they are labeled at increments of five. The first few
points in the inset, corresponding to the strong
peaks in the histogram, have an approximate slope
of 0.61, which agrees reasonably well with the slope
determined for the electronic shells. Beyond the
first few points, up to 48 points obey a linear
relation with a slope of 0.225 + 0.001. Structure in
the histograms with this particular period has been
reproducibly observed for many contacts. One can
see that the transition between these two sets of
oscillations (electronic and atomic) is quite sharp,
although the shorter period pattern extends a little
with reduced amplitude into the lower conductance
range, where it overlaps with the electronic shell
oscillations.

For sodium, the crossover is found at larger
diameters than for potassium (Fig. 10) with periods
equal to (0.62 £ 0.05)g!/?2 and
(0.224 + 0.001)¢"/? for electronic and atomic
shells, respectively. For comparison in Fig. 10 we
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Fig. 10. Sodium histogram constructed from 10424 individual
conductance scans recorded at 100 mV voltage bias and at
T =100 K. Peaks are sequentially numbered and their position
vs. number is plotted in the inset. Straight-line fits give slopes
of 0.62 and 0.224 for electronic and atomic series, respectively.
One of the typical histograms for potassium is shown for com-
parison (dotted curve).

plot the histogram for the potassium nanowires as a
thinner curve. Some discrepancies between the Na
and K histograms are seen in the low conductance
range, which are mostly influenced by the different
voltage bias. However, the behavior remains basi-
cally the same.

Superposition of electronic and atomic-shell
structure at low conductances. Atomic-shell oscilla-
tions can be observed at conductances starting as
low as g =6-7. In Fig. 11 we show some of the
histograms recorded in a single series under seem-
ingly the same experimental conditions. In the first
recording no distinct oscillations were observed
(not shown). Each trial, which consisted of many
scans, was performed by making a contact with a
resistance of about 1 Q (~ 10%g) and then mecha-
nically receding the electrodes to bring the conduc-
tance down to the tunneling regime. The next
several trials are displayed in Fig. 11 (curves 1=5).
It is seen that for this particular sample the histo-
grams change drastically from those resembling the
atomic-shell oscillations (curves 7, 2 and 3) to ones
having the electronic shell periodicity (curves 4 and
5). Presumably, this is due to the increase in the
mobility of the surface atoms. Namely, for the last
trials the mobility of atoms at the surface is increase
so much that no crystalline facets (see below) could
be created during acquisition time for the scans.
Other causes may be the random crystal orientation
of the neck, creating a favorable condition for one
of the two shell effects, and altering the shape of
the nanowire during many indentations. Interest-
ingly, the extreme shape of histograms presented in
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Fig. 11. Evolution of shell-oscillations obtained in successive
runs in the same experiment for a potassium nanowire at
T=80K, V. =
riod is clearly seen, while for curves 4 and 5 the period is due

=10 mV. In curves 2 and 3 the atomic-like pe-

to the electronic shell effect. Each histogram consists of several
thousands up to several tens of thousand scans.

Fig. 11 (curves 4 and 5) reproduces quite satisfac-
torily the electronic-shell histograms presented
above. The same is true for the atomic-shell histo-
grams at low conductances (curves 2 and 3). As an
illustration, in Fig. 12, we show by a thick line
the histogram for another sample (recorded in an
experiment approximately a year later) and super-
imposed on curve 2 from Fig. 11 (note the change
in the x-coordinate). The reproducibility of the
peak positions is quite good, despite important
variations in the amplitudes. One should not think
that the electronic-shell structure is negligibly
small for these curves. The Fourier transformation
shown in Fig. 12,6 for the full curve in Fig. 12,a
clearly shows the characteristic frequencies for both
shell effects: electronic peaks at 1.2 and 1.8 and the
atomic peak at 4.4. Other features with lower
intensity may be explained as harmonics and sub-
harmonics of the principal frequencies.

Additional structure of atomic-shell oscillations.
Occasionally, the atomic-shell oscillations reveal
additional structure in their amplitude and peri-
odicity. The peaks can be grouped by sixes, based
on the amplitudes, as seen for example in Fig. 9.
Here, the thin vertical lines at g1/2 =6.3, 7.6, 8.9,
and 10.5 indicate higher amplitudes and correspond
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Fig. 12. a — Two conductance histograms for potassium show-
ing mainly atomic-shell oscillations. The dotted curve is curve 2
from Fig. 11, while the full curve was taken almost a year
later. Good reproducibility is seen for the measurements. b —
Fourier spectrum of the full curve in @. Superposition of two
shell effects is seen from the peaks in the Fourier spectrum at
1.2 and 1.8, and 4.4 for electronic and atomic principal fre-

quencies, respectively. 7=80 K, V. =10 and 20 mV for the

dotted and full curves, respectively.

to the index numbers 7, 13, 19, and 26. For other
contacts, there may be other envelope patterns. The
period of these higher amplitude peaks equals
1.36 = 0.224 x 6, which is very close to a single
close-packed monatomic layer, covering the
nanowire (see below). Moreover, the period be-
tween adjacent peaks as a function of the reduced
conductance g appears not to scatter randomly
around a linear dependence as one might expect. A
linear dependence follows when the period is con-
stant as a function of ¢'/2. Instead, when the
distance between the adjacent peaks is averaged
over 3 points (as shown in the inset of Fig. 13) in
order to smoothen fluctuations, they can again be
grouped by approximately six peaks (Fig. 13). For
this particular contact, the averaged period exhibits
a smooth staircase where the vertical steps closely
coincide with the higher amplitude peak indices
(numbers 7, 13, 19, and 26). The difference in
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Fig. 13. The averaged period of the oscillations in Fig. 9 plot-
ted vs. peak index. Vertical dotted lines mark the positions of
peaks with maximal amplitude (numbers 7, 13, 19, 26). The
gray staircase is a guide to the eye to identify the step struc-
ture. Part of a conductance histogram is shown in the inset
to explain the averaging procedure [Ag[= 2 [(g; =g, +
+ (941
mal cross section of the wire is sketched in the lower right cor-

—g,)]1. Artist impression of atomic positions in the nor-

ner. For simplicity, we draw the two-dimensional structure. Six
facets symbolize six data points at each plateau, while the
height of the step corresponds to successive layers for a close
packed structure.

height of the plateaus is approximately one G,
This behavior will be explained in the next Section.

4. Discussion

4.1. Electronic shells

Exact quantum mechanical result. To understand
semi-quantitatively the electronic shell effect in the
formation of metallic nanowires, we use the sim-
plest model of a metallic circular cylin-
der [15,29,30,33], which connects two metallic res-
ervoirs (electrodes). A more realistic shape for the
wires [21] will be considered later. When the wire
diameter d is comparable with the De Broglie wave
length of conduction electrons at the Fermi energy,
quantum size effects in the lateral dimensions lead
to a finite number of conductance channels, each
corresponding to an electron wave propagating
along the wire axis z. In order to obtain the energy
spectrum of these modes €(k,), one solves the
Schrédinger equation to obtain

ek)=¢, + 2m2 , (2)
e
where
;22
8mn = 9 2 yfnn’
m, R

m, is the electron mass, y,  is the nth zero of the
mth Bessel function of the first kind, R is the radius
of the nanowire, d = 2R, and £, is the z-component of
the electron wave number. In any single one-dimen-
sional sub-band the total number of states per unit
length of the wire (including spin degeneracy) is

2k @ p2m, 0
=2 G550
avh* O

N, () =2

Vese,, ©

21T

and the density of states is

@) c2m 4
D (g-g )=—— :
mn(8 8mrz) dS D]T2h_2 O %-_-E— (4)

mn

Let us now consider a cylinder of finite length L,
radius R and volume V being elongated at the ends
so that its volume V = TR?L remains constant. To
use expressions (2)—(4) we should impose the con-
dition L >> R which allows us to consider the
cylinder as quasi-infinite in the z-direction. The
total number of the occupied states in such a cylin-
der filled up to the bulk Fermi energy €, is”

€

F
N(s)—szn(aF)—zj'LD (e—g, )de=
l

= Z 2L|:—1—D Ve= €

The total energy of the electron system is

*  The assumption that the Fermi energy of the wire is always equal to that of the bulk is, generally speaking, invalid [31]. This
correction, however, does not change the results qualitatively and, since we are only interested in the periodicities of the
thermodynamic quantities, it can be ignored for the sake of simplicity.
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Assuming [ = €, at low temperatures we can write
the thermodynamical potential

1/2
4 OPm, 3,2
Q=E-puN=- LB—D > Epmg,)7
|j12 m,n

whose derivative with respect to the length gives us
the force

1/8,
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The density of states, the thermodynamic potential
and the force are calculated as a function of the
wire radius for a given Fermi energy using the
formulae
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Fig. 14. Density of states (DOS) a and force ¢ in the nanowire calculated using Eq. (5). Smooth backgrounds, subtracted before
performing the Fourier transforms, are also shown. b and d show Fourier transforms of the oscillating parts of DOS and the force,

respectively.

Fizika Nizkikh Temperatur, 2001, v. 27, Nos. 9/10

1103



o 2D—1/2
Oy 0O
1 0 mn [l
D(k, R) = — m—?mm ,
TIEFm,n% FRD %
ey o af
F mn
Q(k,.R) = - - og
r sem, (kR 5,0 %ﬂ%%
()
3
F(k, R) =— x
e
o 2 D3/2 o 2 D1/2
20 B0 Vin 0 D00 O
2B kR T gre kgD B
mnl]g COrF0g (kR 5 OF 05 O

The results for a sodium nanowire with a con-
stant volume of 10 nm? and the bulk Fermi energy
are plotted in Fig. 14. Whenever the bottom of
another sub-band falls below the Fermi energy, the
density of states and the force reveal singularities.
The force, being the derivative of the thermody-
namic potential with respect to the length of the
cylinder, describes the response of the system to
elongation. When its value is non-zero the wire
tends to shorten (negative force) or stretch (posi-
tive force) spontaneously in order to reduce its free
energy; only when the force is zero a true state of
stability is achieved. We should also take into
account that in the classical limit of large diameters
we should recover a constant destabilizing force
resulting from the surface tension. Therefore, we do
not have truly stable nanowires, but rather those
with enhanced stability at the radii where the force
is minimal. Those minima in the absolute value of
the force give the diameters at which the wires are
particularly stable. At the lowest conductances
these minima occur synchronously with the conduc-
tance jumps, coinciding with the maxima in the
density of states. But when multiple singularities of
the spectrum are very close to each other forming a
bunch (like ones at k, R = 8.5, 10.5, 12 etc.) the
force shows one global extremum. This bunching
and the corresponding pronounced force extrema
mark the fundamental differences between the con-

ductance quantization and shell effects: the former
stems from individual spectral singularities, while
the latter is due to the inhomogeneous distribution
of the features in the spectrum (caused by geomet-
rical symmetries), which results in their periodic
grouping, or bunching. At this point we cannot say
anything about the periodicities of the bunching as
a function of radius. While it is easy to calculate
them numerically for not too large &, R, an exact
analytical approach using the double Poisson sum-
mation formula [32] is complicated and a much
more transparent derivation based on the semi-clas-
sical Bohr—Sommerfeld quantization condition is
used instead. Even if we plot the density of states
(or any other quantity dependent on it) numerically
on a large scale, the periodicities are not yet seen
with a naked eye (Fig. 14,a). So naturally we
would like to take a Fourier transform of exactly
calculated thermodynamic quantities (5) to see
whether the periodicities are indeed there, and we
follow the same procedure as we used above for
experimental data processing. Thus, we simply sub-
tract the smoothed background by hand (see the
smooth curves in Figs. 14,4 and ¢) and perform the
Fourier transformation. Both frequency spectra
(Figs. 14,b and d) give us three prominent peaks”
at 0.63, 0.83 and 0.90. The latter two are very close
to each other, and, taking into account the reduced
amplitude of the third peak and its proximity to the
second one, we can say that the oscillating part of
the density of states as well as the force is mainly
composed of two major frequencies, 0.62 and 0.87.
These correspond to the two peaks in the experi-
mental Fourier spectra at 0.64 and 0.89 (Fig. 6).
This is a very important result, which shows that
quantum oscillations in each of the quantities of
Eq. (5) possess the principal periodicities of the
energy spectrum, and that this seemingly irregular
spectrum of electron energies in a cylindrical
nanowire can be decomposed into a few basic har-
monics.

Semiclassical approximation. Much more infor-
mation about bunching of energy levels, leading to
periodicities in the spectrum, can be obtained from
the semiclassical approach [30,34—36]. In this ap-
proach we consider an electron as a wave packet
constructed from many quantum mechanical eigen-

* The features at about 1.3, 1.6 and higher are the higher-order harmonics of the main frequencies; their presence will be explained
later. The minor peak at 0.3 is probably a sub-harmonic due to the size of the interval of transformation. This <extra» feature is an
artifact of our crude method — it is absent if one treats the problem exactly [35].
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states. The wave packet has wave vectors k concen-
trated in the range satisfying the uncertainty prin-
ciple in the space region, where we would like to
localize our particle. For a circular cross section of
the nanowire, the condition for validity of the
semiclassical approximation reads kR >> 1. Instead
of finding the discrete quantum mechanical eigen-
values, one uses the approximate Bohr—Sommerfeld
semi-classical quantization condition:

L dac—\)+l
2Trﬁ_(fp 27

where v is a positive integer, p is the momentum
and the integration is performed over one period of
classical motion of the particle in the plane perpen-
dicular to the wire axis.

For an axially symmetric circular cylinder, this
condition transforms into a one-dimensional quanti-
zation condition along the radius variable, of the
form [37]:

R

W@Z—m2772 dr=mn+¢/4), (6)
m/k

where k=V2m, E /R, E is the kinetic energy,
m=..2,-1,0,1, 2, ... is the azimuthal quantum
number, 7 is a positive integer, €/4 < 1, and 7 is the
wire radius, which has two turning points: m,k and
R, respectively. Integrating Eq. (6), we obtain the
quantization condition for k:

kR(sin ¢ — ¢ cos ) = (n + £/4)1, ¢h)
cos & =m/(kR) .

This is an implicit dependence of & on n and m from
which the semiclassical spectrum can be derived.

In the case of a complicated geometry, this ap-
proach is preferred to solving the Schrédinger equa-
tion exactly, but in our simple symmetric case we
can obtain the spectrum exactly (see above) and
therefore we shall rather use this relation to analyze
the behavior of k. Following Balian and Bloch [38],
we shall look for the bunching of the eigenvalues —
those intervals of & where the energy levels are very
close to each other. In order to find them,
we should consider the variations d&m and dn and
find the conditions at which the corresponding
O0(kR) << 1 for some fixed R. As we are looking at
the semiclassical approximation, we should consider
only the part of the spectrum for large k and n
where we can ignore €. Combining both equations
in (7) and varying m and n we obtain:
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O(kR) sin ¢ =mdn + $dm ; on, dm O Z . (8)

In order to have d8(kR) = 0 for nonzero &m and
on, the value of ¢ should be a rational fraction of
T ¢,/T=1t/p. Of course ¢ has to satisfy Egs. (7),
which  have solutions of the form [38]
¢ = (t/p)t+ O(1,/kR), where p and ¢ are two inte-
gers, satisfying the condition p =2¢. Since they
enter only in a form of a fraction ¢/p, we can
assume that they are co-prime.

We can now fix the values of ¢, p Z 0 and look
for the corresponding periodicity in RR. Substitu-
ting ¢ = ¢1/p into the same variation (8), we obtain

A(RR) sin ¢ = ;?T (pAn + thm) .

In order to determine the period of this dependence,
we have to find the smallest possible value of
A(RR) £ 0. Following Bezout’s theorem, for the in-
tegers p and t prime to each other there exist
integers Ar and Am such that pAn + tAm = 1. There-
fore, we obtain the periodicity of bunches:
Ak = 21/(2pR sin ¢). On the other hand, it is easy
to see that L(p, t) = 2pR sin ¢, ¢ = ¢t11/p, is just the
perimeter of a polygon inscribed into a circle of a
radius R having p vertices and making ¢ revolutions
around the center. Therefore we see that our spec-
trum will contain multiple sets of periodical
bunches of levels determined by the choice of p and
t (or, alternatively, An and Am), and each set can
be described as a closed semiclassical trajectory
inside a circular cross section of a cylinder. Some of
them are shown in Table. This is a very general
result: it allows one to take a full set of eigenfunc-
tions of the system determined by varying two
quantum numbers m and n, and using the above
mentioned relations to «create» particles in the
form of wave packets moving along certain trajecto-
ries (polygons inscribed in a circle).

Now let us compare the frequencies, which we
obtain in exact quantum mechanical treatment
(Fig. 14,6 and d), with the ones, determined
by semiclassical trajectories. As the number of ver-
tices of a polygon with winding number ¢ =1
inscribed in a circle grows, its perimeter approaches
the circle itself. Thus, the minimum period
ARR) =21mR/L(p, t) = 1 would be for a trajectory
which is the circle itself, setting the maximum
frequency in the spectrum. The positions of the first
few periods are calculated and the corresponding
trajectories are shown in Table.

It is important to note that the values that we
obtain for the frequencies of the first few orbits
coincide perfectly well with the positions of the
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peaks on the Fourier spectrum of the calculated
electronic density of states (or force) in a perfect
cylinder (Fig. 14,b and d). We can therefore make
an important conclusion, namely, that the peaks in
the Fourier spectrum of the oscillating part of the
force in the nanowire, located at the frequencies of
Table, each correspond to a single semiclassical
trajectory. Every trajectory is characterized by two
parameters (¢, p) and is composed of all eigenstates
with quantum numbers (m, n) chosen such that
Am =p, An =t. In other words, by grouping to-
gether the wave functions W, based on this princi-
ple (Am = p, An = t, where p and ¢ are fixed), one
can construct a wave packet or a <«particle» travel-
ing along a classical trajectory of a polygon with p
vertices inscribed in a circle and making ¢ turns
around the center.

There is an important difference between cluster
physics and that of nanowires. In spherical clusters
weight in the spectrum due to the diametric orbit
(¢, p) = (1, 2) is much smaller than that of triangu-
lar and square orbits”. Then, in order to observe the
beating between the latter two, one has to register
a large number of oscillations, since the first mini-
mum occurs at about 11-12 maxima due to the
closeness of the frequencies. This is not a simple
task because of the strongly decaying amplitudes,
but one can make use of an additional feature,
because the nearly identical intensities of triangular
and square orbits give rise to the missing of one half
of the oscillation period at the minimum [39]. In
the nanowire, due to a less symmetric configura-
tion, the intensity of the diametric orbit is approxi-
mately similar to that of the triangular and square
ones (see Fig. 14). Thus, the beating between them
is observed at much higher frequency, which can be
easily seen in experimental histograms. The missing
half-period is not observed in nanowire, because of
the small number of oscillations between the nodes
in the beating pattern.

The intensities of the spectral contributions of
each trajectory are determined by their weight in
the semiclassical expansion. From Figs. 14,b, d one
can see that for all p > 4 and ¢ > 1 the contribu-
tions become negligibly small. This can be ex-
plained if one recalls that p = Am, t = An, so the
smaller these are, the more individual energy levels
(or wave eigenfunctions) for a given limiting Fermi
energy €, will be present in the spectrum and

contribute to a particular trajectory, increasing its
weight in the spectrum. An exact derivation of this
fact can be found in Ref. 38.

4.2, Atomic shells

Structure of alkali nanowires: 6-fold symmetry.
Recently several papers have appeared that consider
unconventional structures for nanowires [40—42].
In Ref. 40 a 5-fold cluster-like structure was ob-
served for a sodium nanowire through computer
simulation. For gold, Kondo and Takayanagi
claimed to observed spiral-like shell structures with
an incremental number of 7 atoms in cross sec-
tion [42]. Molecular dynamic simulations for the
s—p metals Al and Pb were reported in Ref. 41,
where a «weird» spiral-like structure was predicted
for nanowires with conductances smaller than
10G,, . Some of these weird wires resemble the
structures observed in Ref. 42. Note that for thicker
nanowire the calculations predict a close packed
hexagonal structure.

When searching for an explanation for the struc-
ture in our experiment that we named <atomic» we
are again led by the research on metal clusters. For
alkali metal clusters produced in vacuum a clear
transition has been observed between the series of
magic numbers given by the closing of electronic
shells, and the other series of magic numbers deter-
mined by the closing of geometric shells of
atoms [8—10]. The latter series result from the fact
that the clusters have a highly symmetric crystalline
shape and the surface energy of a cluster attains a
minimum when a new layer of atoms completely
covers the surface. Let us assume that nanowires
have a similar tendency to the crystalline order, and
form facets. Such faceting has indeed been observed
recently in transmission electron microscope images
of gold nanobridges under thinning of the bridges
by the electron beam current [43]. If many hun-
dreds of wires are drawn, the facets should be
expressed due to a well-defined minimum in the
surface energy. Since the periodic pattern extends
to large wire diameters, we first start with the
assumption that the lattice structure in the wire is
that of the bulk metal. The bulk lattice structure of
potassium is bee and the lowest energy surfaces are
the [110] surfaces. A wire with only [110] facets
can be formed with the wire axis along [100] and
[111]. The cross section of the former would be

*  Any polygon inscribed in a diametric cross-section of a sphere has an additional degree of freedom, being the rotation around an
axis lying in the plane of the polygon. Only the diametric orbit does not have this feature, hence its contribution in the spectrum

is reduced.
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square while that of the latter is a hexagon. The
hexagonal wire clearly has a smaller surface area
and would be preferred.

In order to calculate the slope of g!/? versus the
peak index i, we approximate the relation between
the conductance and wire cross section A by the
lowest order term, g = k% A/4m, which is appropri-
ate for k,; R >> 1. The distance between the [110]
atomic layers is & = a,/V2, where a; is the size of
the cubic unit cell. We thus obtain,

a,. .
9 oym T 0

For a bec lattice kj, a, = (6T)1/3 and for the slope
we obtain a value o = 1.447, which is shown in the
inset in Fig. 9 as a line labeled «full atomic shells.
This is clearly a much higher slope than the one we
observe, and even higher than the slope for the
electronic shell structure.

Sodium has a low-temperature martensitic phase
transition toward a close packed atomic structure
and it is possible that the surface tension favors
close packing in nanowires. It turns out that one
can construct a similar shape of a nanowire, as
proposed above for the bee structure having closed
packing. Such a wire would have a fcc lattice, with
the wire axis along [011] and six facets, that are
perpendicular to [100], [111], [111], [100], [111],
and [111]. For this arrangement we obtain
a = 3/6rl/6 21312 = 1 427, which is very close to
the value for the bece structure.

When we assume that a stable configuration is
obtained each time when a single facet of the
nanowire is completed, in analogy to what is ob-
served for some metal clusters (e.g., for alumi-
num [10,44]), then the slope becomes a factor of 6
lower, equal to 0.241, in close agreement with the
experimental data. Further support for this inter-
pretation comes from considering the conductance
values for closing of a full shell. We can write

g% = a( i), (9)

where j is the index of a full shell of atoms, with all
facets covered, and Jo = 0.5 is an offset value, which
depends somewhat on the boundary conditions for
the electrons. From this expression, and using the
experimental value o =6 x 0.224 = 1.34, we find
that the beginning of the atomic-shell structure in
Fig. 9 is described by the shell numbers j =4, 3,

and 6, which are closed at g1/2 =6.02, 7.36, and
8.70, respectively. Apart from the small shift,
which may be absorbed in a new choice of the offset
Jo = 0.66, these values correspond to the higher
intensity peaks with indices 7, 13 and 19, and five
smaller peaks between them. By analogy to the
observation on Ca clusters [10], this suggests an
enhanced stability for nanowires with all six facets
covered. Alternatively, one can check the self-con-
sistency of the linear relation (9) by assuming that
the first fully covered layer with 6-fold symmetry
should contain at least 6 alkali atoms in the cross
section, taking into account that 1 monovalent atom
approximately corresponds to a single conductance
channel and, correspondingly, the reduced conduc-
tance g = 6. Thus, following formula (9), for the
slope o we obtain V6 ,/(1 + 0.66) = 1.47, very close
to the theoretical value 1.447 and the experimental
slope 1.34.

Furthermore, proceeding this way, we obtain the
explanation of the step structure shown in Fig. 13.
When we remove subsequently 6 hexagonal facets
with the same number (on the average) of atoms
(see the inset in Fig. 13), they should give 6 succes-
sive stability peaks, which increase the conductance
g by the same average increment, depending on the
size of the hexagon. While receding the electrodes,
the next full atomic shell should give us the next 6
stability facets with an increment decreasing ap-
proximately by one atom, that is by one conduc-
tance quantum, etc. This is just what is observed in
Fig. 13, where the edges of «plateaus» coincide
with the maximal peaks with indices 7, 13, 19, and

the increment between successive <«plateaus»
amounts to about 1 quantum unit.
One-atomic-layer slab model for stretching

nanowire. In this Section we show that the hexago-
nal close packed structure of a nanowire is compat-
ible with the often-discussed model of plastic flow
of a metallic nanowire during pulling off of the
electrodes.

Molecular dynamics simulations performed by
Landman et al. [1] suggest that plastic flow of a
nanometer-sized contact involves a series of sub-
sequent structural transformations of a small num-
ber of atomic layers adjacent to the narrowest part
of the constriction. In each transformation the neck
shrinks as one atomic layer is added. Let us consider
for simplicity the circular symmetric model de-
scribed in Refs. 20, 21. The narrowest part of a
wire is responsible for its electrical conductance.

* This form is a generalization of the expression A = const which was adopted in Ref. 28 and corresponds to n = 0.
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Fig. 15. Dependence of the conductance versus elongation for
an averaged scan obtained by plotting positions of the atomic
shell peaks in the range 30 < g < 250 versus the elongation,
which is calculated as i x &, where i is a successive integer and
h is the interlayer distance. The fit (curve) of the experimental
data points (squares) by Eq. (11) gives an exponent n = 0.51
and a transformation length at g = 250 of Aj = 13.3 nm.

Untiedt et al. propose that the part of the cylindri-
cal constriction of the junction, which they call
the transformation length A, depends on the mini-
mal cross section area A as A = a, A" where a, is a
constant and z is an exponent”. Depending on the
indentation procedure and other parameters of the
experiment (temperature, elongation rate, presence
of adsorbates, etc.), a, and n may have various
values.

According to [21], the process of pulling the
nanowire can be represented schematically as shown
in the inset of Fig. 15. Starting with a relatively
thick bridge of cross section 4, (see (a)), the length
A, first transforms elastically, which is schemati-
cally shown in (b). The elastic elongation corre-
sponds to a plateau in the conductance versus elon-
gation curve. Next, it goes through a yielding stage,
which corresponds to a jump-like shrinking of the
diameter. Following Refs. 1, 20, 28, we assume that
the wire relaxes by creating one more atomic layer
(see Figs. 15,b - ¢ of the inset). We take into
account the discreteness of the atomic structure,
which consists of close packed atomic layers with
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thickness %. Then, due to volume conservation, the
atoms from a fraction x of the surface layer with a
transformation length A and a wire radius R,
21IRxA(A)A, should be transferred to the new atomic
layer along the wire axis TR?A (see Fig. 15). Equ-
ating these two quantities we obtain

AMRANA)h = TR*h , or MA) =R/ 2x . (10)

In this model a proportionality between A and R
exists regardless of the presence of the atomic shell
effect, as was shown in Ref. 21. Taking into ac-
count that at elevated temperatures the proportion-
ality between piezo voltage and elongation may be
violated, we use instead a model to extract a scale
for the elongation. We assume that the distance
between the conductance peaks of the atomic-shell
structure corresponds to an elongation £ = V8/3 o
equal to the distance between the close packed
layers of atoms (7, is the atomic radius). In this
way we obtain the conductance-versus-elongation
curve shown in Fig. 15. Fitting this curve to the
model dependence [21]

nlDV"
90 = G, 0x a 30 (11)
0 "oQ

where [ is the elongation, g . =g(l=0) and
Ay = A(l = 0), we obtain A/R = 3.1. Here we start
the elongation at the conductance g . =250,
which  corresponds to R_, =4.26 nm and
Ag=13.3 nm. From A = 3R it follows that x = 1,6
which perfectly correlates with hexagonal symme-
try of closed packed atoms in the nanowire. This is
important, because while stretching the nanowire,
the crystal facets do not evaporate like in mass-
spectroscopy, but should be built into the thinning
wire, if we neglect their escape to the electrodes.

5. Summary

Thus, we present the evidence for two sets of
magic numbers in metallic nanowires: electronic
and atomic, in complete analogy with cluster phys-
ics. These two sets of oscillations in the conduc-
tance histogram compete with each other, as in
cluster physics, where the transition from the elec-
tronic shell structure to the atomic shell structure is
also observed for larger diameters [9]. One shell-
closing effect is related to the energy of the total
volume of electrons, for which the amplitude of the
oscillations in the thermodynamic potential de-
creases as 1,/R. The other is due to the surface
energy, for which the amplitude of the oscillations
is roughly constant as a function of R. The transi-
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tion between them depends on the parameters of
experiment. The atomic-shell oscillations are ob-
served at larger diameters (conductances) than the
electronic ones, but they may overlap substantially.
For Li, and in many cases for Na, the electronic-
shell structure oscillations completely dominate the
spectrum.

The periodic peak structure in the histograms is
only observed at temperatures well above helium
temperature. Thermal energy is required in order to
have sufficient mobility of the atoms allowing the
structure to accommodate to the lowest free energy.
Potassium has the lowest melting temperature
among three alkali metals (Li, Na, K) studied by
us. This means that at a given temperature its atoms
have the highest mobility and for this metal we
obtain the largest number of oscillations in the
conductance histogram. From our data we cannot
exclude other atomic wire arrangements, since they
strongly depend on the material studied [41,42].
However, in the latter studies beyond a critical
radius of the order of three atomic distances, the
bulk lattice structure is recovered. Therefore, it is
likely that the nanowires with diameters in the
range of the atomic-shell structure oscillations ob-
served here have a regular atomic stacking struc-
ture. On the other hand, the alkali metals Li and Na
have low temperature martensitic phase transitions
toward a close packing atomic structure and it is
likely that the surface tension favors close packing
in the nanowires.

Since we have studied conductance histogram for
alkaline metals up to high conductances, we can
claim that almost all the structure observed origi-
nates from favorable atomic configurations and not
from conductance quantization, unlike the initial
few peaks (1, 3, 6) at low temperatures, where
transmission measurements convincingly show de-
generate quantized conductance modes [18]. How-
ever, the favorable atomic configurations are influ-
enced by the quantization of the electronic levels,
and only the atomic shell structure is a purely
classical effect, but still on the atomic scale.
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