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We consider the interplay between superconducting coupling and dopant impurity scattering of

charge carriers in planar square lattice systems and examine the physical conditions (doping level,
temperature, local symmetry of coupling and scattering potentials) necessary in this model system to
obtain a d-wave superconducting order, like that observed in real doped cuprate HTSC materials. Using

the Lifshitz model for the disorder introduced into system by dopants, we analyze also the nonuniform

structure of such a d-wave parameter, including both its magnitude and phase variation. The results

indicate that d-wave superconductivity becomes possible in a doped metal until it is destroyed at too

high doping levels.

PACS: 71.535.—i, 74.20.—z, 74.20.Fg, 74.62.Dh, 74.72.-h

1. Introduction

Studies of the effect of impurities and defects on
superconducting (SC) properties of metals (includ-
ing SC alloys) began practically as early as the BCS
theory had been constructed. In particular, the
classical papers by Anderson [1] and by Abrikosov
and Gor’kov [2] indicated a substantial difference
between magnetic and nonmagnetic impurities in
superconductors. While the addition of nonmag-
netic impurities has practically no effect on the
value of transition critical temperature T, the
presence of spin on the impurity atom (leading to
the Kondo effect in a normal metal) results in
pair-breaking, that is, it transforms a singlet Cooper
pair into an unstable triplet and rapidly suppresses
T, . All of the known studies have considered the
s-type, or isotropic, SC order (apart from heavy-fer-
mion systems, where it is the p-type order and T, is
extremely low) and, correspondingly, an isotropic
gap near the Fermi level.

The discovery of high-T, superconductivity
(HTSC) in copper oxides confronted physicists
with a number of problems which still remain a
challenge for the theory. Undoubtedly, this in-
cludes the issue of the HTSC mechanism, the strong
dependences of many (both SC and normal) proper-
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ties of copper oxides on the charge-carrier concen-
tration, the specifics of weakly doped systems (first
of all, the existence of a pseudogap at temperatures
above TC), the formation of stripe structures, etc.
(see, e.g., the review articles [3—-6]). Such a prob-
lem is also presented by the impurity effect on the
SC properties of HTSC systems. These differ from
the <«old» or «conventional» superconductors not
only in higher T, and d-wave anisotropy of the
order parameter but also in the fact that here
magnetic and nonmagnetic impurities change their
roles: the former are weak suppressors for T, [7,8],
while the latter (in particular, Zn substituting for
Cu in cuprate layers) lead to a fast decay of HTSC
[7,10,11]. Many aspects of impurity effects in su-
perconductors with anisotropic (including d-wave)
pairing have already been studied theoretically in
Refs. 12—17, using a range of models and approxi-
mations. However, these (and many other) papers
did not include one of the most essential features of
HTSC systems, the fact that they cannot be non-im-
pure.

In other words, most of theoretical approaches to
HTSC are based on the concept, formulated and
applied in the pioneering works [1,2]: one starts
from an ideal (2D or quasi-2D) metal with given
Fermi energy €, , defined by the density of free



carriers, and then considers the perturbation of an
independently existing SC condensate by some ex-
trinsic (magnetic or nonmagnetic) impurities. Their
action, local or global, affects the preformed and
condensed singlet pairs. Of course, this formulation
is reasonable but it lacks an essential element for
the conductance in copper oxides: almost all HTSCs
are doped metals, where (like the doped semicon-
ductors) each carrier is provided by insertion of a
donor or acceptor into the system. In turn, this
implies that HTSCs are intrinsically impure systems
with an inherent disorder’, and the number of
impurity («foreign» included) atoms can not be less
than at least the number of charge carriers. While
in normal metals one has the condition k, [ >> 1
(kF is the Fermi momentum, and [/ is the carrier
mean free path between collisions with impurity
atoms) [18], it turns to kj I 01 in HTSCs, and
they belong to the family of «bad» metals with
both k;; and [ defined by the doping.

Perhaps the first attempt to consider in a self-
consistent way the characteristic tendencies for
HTSC, pairing of the carriers and their localization
on impurity atoms, was made in the authors’
work [19]. It discussed the phase diagram of doped
2D metal in presence of s-wave pairing and showed
that SC is possible neither at low impurity concen-
trations ¢ < ¢, DSO/ W (when all the carriers are
localized near impurities with localization energies
€y much less of the bandwidth W, so that ¢y is
typically few percent) nor at too high ¢ (when the
pair inverse lifetime times 7% exceeds the SC gap).
There, in general, the self-consistency is related
either to the SC order parameter (like the common
Bardeen—Cooper—Schrieffer ~ or Bogolyubov—
de Gennes treatments) and to the chemical poten-
tial.

The present work is aimed at extending the
approach of Ref. 19 to the case of d-wave SC
coupling and to trace the formation of the corre-
sponding order parameter. It is motivated, not
least, by an apparent controversy between the ex-
perimental evidence for d-symmetry of the order
parameter in HTSCs [20-22] and the theoretical
claim that anisotropic pairing should not survive in
the presence of chaotically distributed isotropic
scatterers [23]. For the sake of simplicity, we re-
strict consideration to the doping range ¢ > ¢,

where the self-consistency is only relevant for the
SC order parameter, while the chemical potential
can be put in the form™ p = gp = 3cW/4. Then we
distinguish between two types of impurity effects
by doping. The first, the so-called homogeneous
effects, are displayed by translationally invariant
single-particle Green functions (SPGF). They have
been studied earlier by various means [24] but, as a
rule, by introducing the disorder through a single
parameter V, of Anderson’s model [24]. In con-
trast, we employ the Lifshitz” model of disor-
der [25], characterized by two independent parame-
ters: ¢ and the impurity potential V, . They
produce an equivalent V, UVe(T=¢)V, , but not
vice versa. Within this model, more adequate for
doped HTSC systems, we conclude the persistence
of the d-wave order parameter under homogeneous
impurity effects. Also we explicitly consider the
other type of effects, inhomogeneous, due to local
variations of the order parameter near impurity
centers. This involves two-particle Green functions
(TPGF) besides the usual SPGF, and yields a
possible limitation on SC at high enough dopant
concentrations.

At least, we would like to acknowledge the great
honor and pleasant opportunity for us to publish
this work in the Low Temperature Physics issue
dedicated to the memory of the outstanding physi-
cist L. V. Shubnikov, whose contribution to low-
temperature physics in general and to superconduc-
tivity in particular cannot be overestimated.

2. Hamiltonian and Green functions

We start from the model electronic Hamiltonian
in the band representation

—_— + —_—
H=% § %k %k,0 k0

kDO

1 + +
N Z @’Vk R R R S
kv

_ i(k'-k)p + 0
VL Z e oo Ck,cﬁD’ (1)
p.o [l

where ¢, ;and ¢ ; the Fermi operators for a charge
carrier with wave vector k and spin 0. The simplest

* Here we don’t consider the possible formation of stripe structures, where an ordered or disordered distribution of dopants cannot

yet be confirmed by any reliable data.

** However, it is known that p can differ substantially from the Fermi energy €, in the limit of very low doping (see, e.g., [4,6]).
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band energy g, =4t — 2t(cos ak, + cos aky), with
full bandwidth W = 8¢, is expressed through the
amplitude ¢ of carrier hopping between nearest-
neighbor sites” (of the total N in the lattice, with
a lattice constant ¢). The parameter V models the
attraction between two carriers with opposite spins
on such sites, the factor y, = (cos ak, = cos ak )x
X G(SD Ek) has the d-wave symmetry and is effec-
tive only for quasiparticle energies &, =g, — &g
smaller than the «Debye energy» €,, . The latter is
understood as a characteristic energy of the interme-
diate (Froelich) boson, and in what follows we
suppose the condition €, < to hold and a BCS
shell to exist (the alternative g <¢,, , possible for
underdoped HTSC systems, will be considered else-
where). The impurity perturbation V, expresses the
shift of the on-site electronic energy at a random
dopant site p, where the negative sign takes explicit
account of the carrier attraction to the ionized
dopant, and, for simplicity, we consider this pertur-
bation localized on a single site. With the usual
BCS ansatz: ¢y | ¢, =0 | ¢ Ot ¢y, and in
neglect of terms quadratlc in the pair fluctuations

oy » Eq. (1) leads to a bilinear form H' = H — uN:
H'_ZSZEI{ ko ko~ By Oy Oy T Ree) -
k
14 0
L (k' =
B D A PL P R )
pk',o %

Here the gap function is defined by the self-consis-
tency relation

D= 2 Ve By e O, (3

extending the common BCS gap equation to the
d-wave case. A nonuniform system can be treated
within the formalism used formerly for impurity
problems in SC [14,19] by passing to the Nambu
spinors lle = (ck o Oy, ,) and , and defining the
Fourier-transformed matrix Green function (GF)

0

Gy (8 = My | Y] = I !0y, (1), Wy0dt

(4)

*  So, we do not take into account next-neighbor hoppings.
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Here A denotes a 2 x 2 matrix in Nambu indices,
[..0 is the quantum statistical average, and
{a(t), b(0)} is the anticommutator of Heisenberg
operators. In the GFs below we omit their explicit
dependence on energy € but distinguish between
their diagonal and nondiagonal forms in the Nambu
(N) and momentum (M) indices. Then, applying
the Heisenberg equation of motion oy, /0t =
= [H', ] in Eq. (4), we arrive at an equation of
motion of the Dyson type for the SPGFs:

~ = a0
G = Gk 6k,k'

— Oy i(k-K")p
kk GV Z € Gk”,k’ )

p.k

where the unperturbed SPGF éf(O) (S—Ek T3—

-0y %1 +i0)7!, and the scattermg matrix V = v, TS

includes the Pauli matrices Tl- .

For a disordered system, the relevant (observ-
able) characteristics are described by the so-called
self-averaging GFs, whose values for all particular
realizations of disorder turn practically nonrandom,
equal to those averaged over disorder [26]. The
most important example of such a function is the
M-diagonal SPGF, G, = Gkk The general solu-
tion for Eq. (5) in this case can be written (see
Appendix E) as

~ ~ 1
=GP -%,8 (6)

where the self-energy matrix %, is given by the

so-called fully renormalized group
(GE) [14,19,27,28]

expansion

~

Z = cV[1+ GV

Go-ikm o,y _a a7t
X B1+ ¢ Z [AOne + AOnAnO][1 AOnAnO]
0 nz0

oOoo

(

Here the integrated SPGF matrix G= N_1Zk Gy
and the matrices Agn of indirect interaction between
scatterers at sites 0 and n are

~J
N’

A o1 K'm AR
Ay ==V Z CRGIT+GVIT . (8)
k#k
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The restriction to k' # k in the single summation in
Ay, should be complemented by k" # k, k' for dou-
ble summation in the product A, A ;. but such
restrictions can be already ignored in A, A, A4,
and the higher-degree terms [27] resulting from
expansion of the right-hand side of Eq. (7).

Many observable characteristics of the SC state
follow from the GFs, in the spectral theorem repre-
sentation

_de 1,(9)

where the chemical potential p is defined by the
overall electron concentration

1 de Ao
c=5S [-——ImTr, G . (10)
N %Ieﬁ@—mﬂ 3k

On the other hand, ¢ is just the concentration of
dopant centers which give rise to carrier scattering:
¢=N"1% 1 and the carrier concentration only
gets close to (but never exceeds) ¢ in the regime of
the doped metal, for ¢ above a certain metallization
threshold ¢, (for a quasi-2D dispersed g it is
¢, Uexp (- MW /4V,) << 1 [19]). Under this con-
dition, the self-consistency implied by Eq. (10) is
not necessary, and a good approximation™ for the
chemical potential is 4 = 3cW /4 (see Appendix A).
Then the gap equation (3) takes the form

00

vy, )

de -
Ak—Wzyk,J.mlmTrt1Gk, (11)
k —00

and its solution, discussed in Appendix C for the
uniform case (V; = 0), is simply A = Ay, , with the
ratio r = 20k, T, being e!/3 times the s-wave BCS
value rp.¢ = 3.52.

Another important self-averaging quantity is the
integrated SPGF matrix G itself, since the density
of states p(g) is just

1 ~
pE) = ImTr G (12)

* This approximation is actually justified by the fact that for ¢ > ¢

For an unperturbed system V, - 0, G . GO =
=N"1 2 (A}f(o) , and calculation of the imaginary

part of GO within the nodal point approximation
(Appendix B) leads to the standard d-wave density
of states:

pe) - pe) =

. 2ep

1

== Im Tr G = 2 aresin %nin %, é%, (13)
m A 0 O &

where p, = 4,/(TtW) is the normal Fermi density of
states of a doped (quasi-2D) metal with g, < W,/2.
Respectively, the real part of G is

- w i AL

Re GO =¢ O - — B(A - €) arccosh —.
po (W—l_,[) A ( ) SE

(14)

Then Egs. (13) and (14) can be unified into a single
analytic form:

. w m 0 A .l
GO =¢p B - — frecosh = - i S,
R aBT e T 20

(15)

since at €> A one has arccos (A/€) =i|m/2 -
- arcsin (A/€)], thus restoring Eq. (13). But it is
just the growth of the (real) arccosh term at € <A
that permits the existence of a low-energy
(€6 << 4) resonance feature in Re (1 + GV)™! and
hence in p(€). Such a resonance was discussed pre-
viously for a d-wave SC with low enough concen-
tration ¢ (so that G = G0) of «foreign» impurities
producing strong enough perturbation V; [14], and
it is similar to the known low-frequency resonance
by heavy impurities in acoustic phonon spec-
tra [29]. However, in the situation of interest here,
when both V, and ¢ are not small, G can be
substantially modified compared to G, and this is
expressed in a very complicated way by Eq. (7). To
simplify the task, certain self-consistent procedures,
like the CPA method, quite useful in the theory of
normal metals [30], can be employed. A similar
approach was previonsly proposed for an s-wave SC
doped system [19], and here we begin with the
analysis of a self-consistent solution for Eq. (5) in
the d-wave case.

o the Fermi level €, of metallic phase is well higher than the

conduction band edge, and one can hardly suppose the existence of local pairs and the related inequality p<¢€, at these
concentrations. Therefore, in what follows we do not distinguish between p and ¢, .
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3. Uniform doping effects in the
self-consistent approach

If the GE series (7) is restricted to its first term,
the self-energy matrix 2, in fact becomes inde-
pendent of k:

5, - E=-cV[1+GVIT, (16)
and substitution of Eq. (16) into Eq. (6) defines

the self-consistent approximation Gf{sc) for the M-
diagonal SPGF:

~ ~ ~ -1
GEY =GN - 569 (17
0 O
569 =~ ¢V [1+ GOV (18)
(19)

~ 1 ~
(s9 — = (sc)
G¥Y = N % Gk

To solve this system, we first parametrize the self-
energy matrix (18):

S(s¢) _ 2 2
T =F AT T 4T, (20)

where the Z, are some complex-valued functions of

energy. Then the integration in Eq. (19) within the
nodal-point approximation (Appendix D) results in

250 . .
G —G0+G1 T1+G3T3 1)

with the coefficients

Gy = (€~ )P, *

. A+3 A-3,

X P — %rccosh + arccosh — T+
20 E-2Z E-Z
0 0 0

0 (22)

HW - W)

G—zpD 2iT
O x| N S ——— s ——— =
0 VE-2) - @+2)* +V(E-2)*- (-3 )

1%

+———H8 (23)

HW -
0 (e -3) - n0%/3-320
GSZpOHn H + 2%, 0 3 1%.
g N
(24)
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Substituting Eq. (21) into Eq. (18), we arrive at

_ cVL [VL(G0 + G1 T1) -1+ VL G3)t3]
- 2 2 2 2
1+ VL G3) - VL(G0 - G1)

559

(25)

Comparing Egs. (25), and (22)—(24) with Eq. (20),
we immediately conclude that ¥, = G, =0, or that
369 is in fact N-diagonal, which is extremely im-
portant. Physically, this means that (within the
self-consistent, linear in ¢ approximation) the scat-
tering by dopants does not influence the d-wave
order parameter, and this can be directly related to
the fact that the s-symmetry of the impurity pertur-
bation V, is orthogonal to the d-symmetry of the
SC pairing V. It also applies to more realistic
models of dopant perturbation in HTSC (e.g., with
plaquette- or dumbbell-like anisotropy [31]), pro-
vided that their symmetries do not coincide with
that of the order parameter. Complications arise
when they do coincide, as was found for an iso-
tropic perturbation on s-wave order with all three
%, being nonzero [19]; hence the apparently
<harder» d-wave system in fact turns <easier»!

Using the fact that ¥, =0 and the relation
cosh (x +im/2) =sin x, Eq. (22) is brought to a
very simple form:

o G 0
=sin @t - B 0, (26)
€-2, o TP &~ 2

with o = WA/[Tu(W - y)] << 1, while the same
comparison for the two nonzero components of
pACIR 7, and 2, gives:

27

2 227 = 12
5, [(1+V, G)* - V2G| =cV2G,

2 72 21 —
S+ V, G) =V, Gil=-cV,(1+V, G,).
(28)

From Eq. (28) we estimate |55 [lcV,; hence,
within the relevant energy region |e| <<¢g,, the
function G, from Eq. (24) is reasonably well ap-
proximated by a (negative) constant g, =p, x
xIn [W/ (W = p)]. Then Eq. (27) turns quadratic
for G, :

2, € _ _
G°+Z_G° =0, (29)
0

el
OO

with V=V, /(1+V, g5 = V; In(1/cy)/In (3c/4cy).
The system of equations (26), (29) fully defines the
self-energy 2, and other uniform physical properties
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of a disordered d-wave system, and its solution can
be found (in principle, numerically) within the
whole relevant energy range. It turns especially
simple if |ZO| << ¢V (this proves to hold at least for
£ << ¢, J); then the proper solution to Eq. (29) is:
G,=3%, /cV? and from Eq. (26) we obtain the
following equation for a single important function
2,

0 az, A

=sin %x - % (30)
€ - ZO 0 €- ZOD
0 0

with a = A/[T[cf/2p0] << 1. It defines the self-con-
sistent density of states

2 Im 20(8)

1 ~
p®e) = — Im Tr G*(e) = ————, (31
T eV

at lowest energies. The results of this approach are
free of the infrared logarithmic divergences that
appear in the integrals of perturbation theory [32]
and thus allows one to avoid applying heavy field-
theoretic methods for a white-noise scattering po-
tential [15], whose adequacy to the case of discrete
random dopants is not clear.

The exact value of the density of states at the
very center of the gap, p(0) = p(e - 0), is also of a
particular interest in view of the known claim about
existence of a nonzero <universal» value
p(0) Ue¢/1n (1/¢) if V, is sufficiently strong
[12,17]. However, we conclude from Eq. (30) that
in the limit € - 0:

ZO - € % +1 %E,
0 In (2A/G|8|)D

and hence the self-consistent density of states at
€ - 0:

400 e)

= (32)
1t in (20 /alel)

p)(e) -

vanishes even faster than the unperturbed function
p(e) of Eq. (13). This produces a certain narrow
«quasi-gap» (not to be confused with the pseudogap
observed at 7> T, in the underdoped regime)
around the center. For comparison, the estimated
p(e) from the two first terms of Eq. (7) tends
to zero linearly in € with corrections Oe2 [14],
while the field-theoretical analysis [15] predicts
p(e) - €¥, with the nonuniversal exponent being

*  Except for the special case 1,V =0, which corresponds to ¢ = 4¢,/3, while the actual consideration is for ¢ >> ¢

1044

p/p,

1.5

1.0

0.5

[)(SC)(g) - :?‘_":'—_________-'-'-_—__:_- :::: - :'*—\'Ir - 1+ VL Re G3

0 0.5 1.0
e/A

Fig. 1. Density of states in a d-wave SC system (heavy solid
line). The thin solid line shows the unperturbed p©(e), and the
arrow indicates the solution for Re [(1 + V, G3)2 - V%G(Z)] =0,
corresponding to the low-energy resonance (the other solution
at €=A is not resonant) for the choice of parameters
W=2ev, VvV, =0.5eV,c=0.1.

(in  our notation)
which is always < 1 and can even be < 0.

The discrepancy between our results and the
aforementioned <«universal» behavior originates in
the improper use of the unitary limit V, — oo in
neglect of the 1 + V, G term in Eq. (27), leading
to the relation X, = = ¢/G . But the true limiting
relation is inverse: Z,; = cV2G0 , with V finite for
V, — o, and also the unitary limit fails at any’
finite V, when € - 0. Finally, the existing experi-
mental data do not confirm the <«universal»> p(0)
value, but seem to favor the conclusion about exist-
ence of a strong low-energy resonance in p(g) [11],
with a possible quasi-gap at the very center [33],
though experimental observations at such low ener-
gies of course need extremely low temperatures.

Note, however, that the self-consistent treat-
ment of the low-energy resonance, at ¢ _ [
UA In (3c/4c,) /(1 In 2m) for the case of self-impu-
rities (Fig. 1), already requires solution of the full
system of equations (26), (29), and, in view of a
probable underestimate of this hump (like that in
normal systems [28,30]), it should be better de-
scribed by the exact GE (7).

The obtained 29 can be in principle directly
inserted in Eq. (17), in order to use the resulting
G for correction of the gap equation (11). How-
ever, at the quasiparticle energies & Ue,, impor-
tant there, renormalization effects are negligible,

0"
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and thus A remains well approximated by the result
of Appendix C.

4. Nonuniform effects

The SPGFs considered in the previous Section
describe the uniform self-averaging characteristics
of the SC state. The next important question is the
behavior of fluctuations of the order parameter
(both its amplitude and phase) in an inhomogene-
ous system, which should be closely related to the
breakdown of superconductivity in the overdoped
regime. A strong local suppression of d-wave order
close to a single «foreign» impurity has been pre-
dicted theoretically [14] and observed experimen-
tally [11]. In the general case of a finite concentra-
tion of scatterers, the local d-wave order can be
characterized by the operator

2
\%4 ; K -
62 - - Z Z e1(1{1+k2 k3 k4)m
N™ Tk Kk k
172734

Vi Vi 1o oo G
1 2 1 3 2

0, =y X %My g, (9
k k'

such that its mean value (generally complex) de-

fines the uniform gap parameter: NI y @,0=

=N-1 S Vi & =4 [14]. On the other hand, it is
K

natural to characterize local fluctuations of the
order parameter by the variance of Q_ (identified

with the variance of the gap parameter):
1
D _ 2
&=y Y (@0 @ ). (34)
n
Using Eq. (33), we write

,TD_ (8 1 %K ,TDE—k 0%k ,TE] (35
4 1 3 2 4

or, summing over n to close the sum of 4 momenta, and using the spectral representation (9) for T = 0:

[

1’k2’q

Here, besides the previonsly used SPGFs, the
TPGF m—k1,¢ ckzm |c_k +q.1 ck1—q,T|ID appears. An
explicit calculatidn of this funétion for the unper-
turbed (V, = 0) SC system (see Appendix E) gives
the following result

(d

| ¢ =

c c
k1,¢ kZ,T k2+q,L k1—q,T

ety By + o

=9 .
0.9 (g2 - El -E2) - 4EL E}
1 2 1 2

(37)

Here Eﬁ = Eﬁ +AZ | and three other terms in the

numerator are not mutually odd in y, and y, and
1 2

thus do not contribute to &. Then it is easy to see
that the resulting contribution to Eq. (36) from the

M-diagonal (q =0) and N-nondiagonal TPGFs by
Eq. (37) exactly cancels with that from the SPGFs,
which confirms the uniformity of d-wave order in

this case. The most important contribution to & at

Fizika Nizkikh Temperatur, 2001, v. 27, Nos. 9/10

0

2 _ —

&=7 3 %k g' dem My 6, 1€y pq, G o T J' de Im [ | |ck27TDDJ. delm ey o ley
9 0 0

[ee] [ee]

DD%DD

(36)

V; # 0 comes from two consecutive scattering processes
in the left-hand sides of an N- and M-nondiagonal
(q # 0) TPGF, first C—k1,l Ckzm > C—k1+q,i Ci and

2’T

flr \\~\
A
7’
/
f % ,,
g N S
kz } ﬁ “\\’
/'—k2+q ,/l
k X ~o &
L
7
’
’
, 4
oK

Fig. 2. Schematic of consecutive scattering processes (see Ap-
pendix E), bringing an M-nondiagonal TPGE f, through inter-
mediate, partly M-diagonal f1' and fz' to fully M-diagonal f":
the solid vectors standing for the operators of the left-hand side
get fully nested with the dashed vectors for the right-hand side.
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then C—k1+q,l Ckz,r N C—k1+q,i ckz_(LT (or vice versa,

Fig. 2), on the same scattering center p. It is linear
in ¢, while the contribution from SPGFs in this

order, - 20V i de Im Tr %é, is zero, accordingly to
0

the N-diagonal form of S established in the previous
Section. Hence we generally estimate the variance

of the gap to grow with ¢ as [§ = AVc/c;, where

¢, O(V/ VL)2 defines the upper critical concentra-

tion for SC at T = 0.

A more detailed analysis, resolving amplitude
and phase fluctuations, can be done in a similar
way, but considering separately the two operators:

Q,-q,
and Q =—f1—
n, 2

Q +Q
Qn, R
such that their mean values [@_,Olead to real and
imaginary parts of the order parameter and con-
structing the corresponding variances:

+

6% :% Z (IZQi,J_rD— mn:ﬁ) :
n

This approach should be particularly important
upon extension of the theory to finite temperatures,
in order to establish the dominant type of fluctua-
tions due to the static disorder, responsible for
breakdown of SC order at T =T, , and its possible
role in the persistence of a pseudogap in the density
of statespat 7> T, .

3. Conclusions

The analysis presented above shows that the
disordered structure of doped HTSC systems is
crucial for many of their characteristic properties
and for the existence of SC order itself. The inter-
play between doping and disorder effects can be
briefly summarized as follows. Superconductivity
sets in with the metallization of the system, at a
critical concentration ¢ [J ¢, resulting from the com-
petition between the kinetic energy of the charge
carriers in the regular lattice and their attraction to
random dopant centers. The uniform d-wave order
parameter A increases with increasing number of
charge carriers as A [Vc [6] and saturates at a
certain optimum doping ¢ /W, when the
relation p > €, comes to ﬁold With further in-
crease in ¢, the increasing local fluctuations of A
bring it to collapse at some upper critical concentra-
tion ¢, L(V/ VL)Z, resulting from the competition
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between the pairing and scattering potentials. This
picture is quantitatively satisfied with a very natu-
ral choice of parameters W U2 eV, V, 1J0.5 eV,
vV 1J0.22 eV, g, [J0.2 eV, giving plausible esti-
mates: ¢, DSA, oy U15%, T, max 0100 K,
¢ 1J20%. Our forthcomrng work should also spe-
cify such important aspects, left beyond the scope of
this paper, as the disorder effects on the cusp of
density of states p(g) at € = A, the matching condi-
tions between the self-consistent and GE descrip-
tions of SPGF, the exact numerical coefficient for
the critical value ¢, , ete. And, of course, it is of
fundamental interest to extend the present self-con-
sistent treatment to the case of finite temperatures
up to T, , in order to obtain a quantitative estimate
for the bell-like T (c) shape, and further to 7 > T,
to study the role of doping disorder versus d-wave
SC coupling in the formation and subsequent merg-
ing (at ¢ Uc, t) of the pseudogap in the normal
density of states
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Appendix A

For the normal phase, we consider the dispersion
relation g =4t — 2t(cos ak, + cosak ) and relate
the dopant concentration ¢ to the number (per unit
cell) of occupied states below W

(2n).[k_

k
4 0
arccos%l—%lé arccos% Wu—cos akxE
2 2
:L dk dk -
™ * y
0 0
1 1
2 du do CipO
= — — — :_F N
us 1 - J. V1 -2 s %?D
1‘%“; 2——p—u
w
(A1)

Here the dependence of the integral
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Fla) = J-arccos(Z -x—-u)du

1—u

is very well approximated by a simple linear func-
tion F(x) = 5x,/3 in the whole physically important
range 0<x=4u/Ws<x  (where x . =0.6)
corresponds to p . =0.15 W at the maximum
physical doping ¢, = 0.2). Then we readily arrive
at the estimate cited above:

310 3cW
H=TJ5 W=7
Appendix B

For the uniform SC system with d-wave gap, we
perform integration over the Brillouin zone with the
parametrization: k -k, = a_1(p0 ge; + A‘1r]e1- xe,),

=@ 1/V2, £1/42,0),e,=(0,0, 1), near 4 no-
dal points k, = arccos (1 - u/ W)e, of the gap func-
tion 4y = Ayk This integration for G becomes

8

G(O)_N%é :pogj'dnj.dig(ﬁ g, n)+

. W
+J'dz (e, &, 0) +J'dz g, &, O)H, (B.1)

where we have defined the matrix function

(cp. G in (5))

. . ~ a+Et3+r]t1
€ &n=6€-¢&,-Nt) =—F—
9 3 1 &8 P

The integration in & (normal to the Fermi surface)
in Eq. (B.1) treats the BCS shell, [-¢, , €], sepa-
rately from the out-of-shell segments, [-1, —€,] and
le;, » W-H], where the gap parameter A becomes
zero (together with y,) and no integration over
N = Ay, is needed. Equation (B.1) permits one to
define explicitly the coefficient functions g; in the
general form G(O) =g, % 94 T + g3 T3 . Let us de-
note z2 = €2 = n?, and then the shell contribution to
g, results from the integral:
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J.% %rctanh —+ leD~ — 2LT[ ,
24 =& €,

€ z
%, D D
(B.2)
which is followed for its last term by:
A
dfﬂ = 2 arccos A ) (B.3)
VEZ' __ r]2 €
-A
The out-of-shell contributions are:
—€
D
J.% l % rctanh E_ arctanh igz l - i
J e - € 0 M SDD g,
! (B.4)
and
W-p
€ __t U (B.5)
£-8 W-p g,
€

To find g, and g5 , we use the obvious equations

J'r]dr] 0

8

J'EdE

and
e, Weu
Ede ¢ EdE _
J.SZ—EZ J.SZ—EZ_
“u e,
2 _ 2
= l In L =In H (B.6)

2 Wowt-g o Wop
Summing up Egs. (B.2)-(B.6) we obtain
1Tt

0
@rccosh— ——0F;
O

_n
(W-p & e 2

in accordance with Eq. (15), g, = 0 and g5 = p,, X
xIn [/ (W -]
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Appendix C

The gap equation (11) for a uniform (V, =0)
d-wave system at T = 0 transforms into:

o

with coupling constant A =Vp,. The quantity
sought is the gap amplitude A. On the right-hand
side of Eq. (C.1) we perform the elementary inte-

—r] -0’

(C.1

gration over €, using the relation
Im (x - i0)™' = ™(x):
A sD )
6 de
—TIm [ n?dn [ @ =
T J. g2 - EZ - r]2 -0
0 0 0
A )
:8J'n2 dnj'% (C.2)
) ; .\/EZ_+ r]2

Then, integrating out in & and passing from n to
y =T, /N, we present Eq. (C.2) as

[ee]

3
U
s 020 J- arcsinh y dy
U
€

o]

A

-

A

D

The equation for critical temperature T, corre-
sponding to A = 0, in this case reads

[ee]

r de _
g2 -82-40

€
D

1 :E Im | d& tanh

A 3m

Od O5o
X
o |
-~
g0

SN
™
o

n
w|oo
5
&
ﬂ

o

O
I

with the Euler constant y, = 1.781. Hence for the
d-wave case the effective coupling constant is
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X = 8\/3, which is 83 times the «Hamiltonian»
value A, which can serve as one more explanation
for high T, itself. Also, the ratio » = 2A/k; T, here
turns out to be exp (1,/3) times the common s-wave
BCS value ry¢ = 2/y, = 3.52, reaching values as
high as r; =4.92. In turn, this means that, for other
conditions (say, p, and V') equal, the s-condensate
turns out more stable to thermal fluctuations and
requires a higher 7', to destroy it than the d-conden-
sate. Of course, this is directly related to the
absence of a gap in the latter case, permitting
quasi-particles to exist at any 7' < T, .

Appendix D

Calculation of the self-consistent SPGF G0 =
=Gy + Gy 1y + G4 14 generalizes the scheme of Ap-
pendix B:

~ 1 ~
(sc) — (sc) —
Gt =5 % G =

€
D

A
! .
=p, Idnjdag(s—zo,&zg n+T)+
A
g—A —sD

—€
D

+Idz§(s—zo,z+zs,z1>+

W=
+Id§é(s—zo,z+zs,z1>%
0

€
D

(D.1)

Next we set 22 = (€ — 20)2 -(n+ 21)2 and z =7 + ip,
and pass from & to x =& + %5, where X, can be
taken real (as seen, e.g., from the final result (28)).
Then the analog to Eq. (B.2) is:

)

—€ +X
D 73

a1 Ly v E P+ PPl e, — 2y + 1)+ PR

x = In -
R U, -~z -+ P L, + 5, - 2 + PR
0 E T2, t7 e+, —r
— { [rctan D + arctan b 3 +

O pP
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- ZS +7 - Z -y
+ arctan + arctan 7DD~
P m
T+ 2p/¢
L2 (D.2)
€ zZ
D

where the small term 2p,€;, can be safely dropped.
The next integration, over y =n + Z, , is done only
on the im/z term accordingly to

A+Y

A+Z1 A-3,

= arccos + arccos

J.\/___Z_) - -2, €=

—A+
(D.3)

which is relevant for G, , supplemented with

A+Y

[ i

—A+Z

(D.4)

for G, . The out-of-shell integration of the compo-
nents mentioned is much easier, giving:

A
.[(s—zo)z—x2

£ -2
D 3
£E—-2 € - ZO
— arctanh =
z0 H M= 23 €p T 23
SN (D.5)
M= 23 €, 23
and
VV—p—23

J- dx N 1 1

2 2 wr_n_s o _
e-2) -2 W-p-1, g -3,
D 3

(D.6)
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Here %4 can also be disregarded besides W, |, €p
and then the two - 1/¢,, terms cancel with that

from Eq. (D.2). Now, combining Egs. (D.2)-
(D.6), we obtain
0 w
G, =(€-Z)p -
° OO LW -
n [l A+ 21 A - 21 i
-— %rccosh + arccosh - iT[DD,
20 €- ZO € - ZO i
[l 1N
(D.7)
and
w
G =% p g -
(W -
24Tt D

3
2 2
x dx 11 () - 2" -2
J.ZZ—xz 2 (g, +2)t -2
—-€ +X
3
W-p+2

H+2)" -z
sD+Z3
—€ +2
p)
x dx 1 | (e z3)
| et
-+
A+E
! d iy + 22
2A .7/ y= 3
-A+E
in the form
0 -2 -A%/3-5%0
G3:p0 E;lln H +223 0 3 1%.
o W-u € O
0 D 0
(D.8)
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Appendix E

Search for solutions of Eq. (5) in the form of GE
consists in consecutive iterations of its right-hand
side, separating systematically the GFs already pre-
sent in previous iterations [27]. Let us start from
the M-diagonal SPGF G, , and then the iteration
sequence begins with singling out the scattering
term with G itself from those with G, | , k' #k:

~ ~ ~ 1 A A
= ;o (0) i(k-k)p —
G, =G+ G er VGk',k_
K.p
=G0 + GOVG, + G(O)V y el k)E*G
k¢kp
(E.1)

Then for each G . We again write down Eq. (5)
and separate the scattermg terms with G, and
Gk g In their right-hand sides:
~ ik'—k")p - -
Gk > € Gk =
k'p

~ ~ 1
_ 20)
Y

_ SO A0 L ik-lp
= ch, VGk',k + Gk’ Vv N e Gk +

+ G(O)V Z el(k k)ﬁi G +
p¢p
~ 1 P
Oy i(k'-k")p
+ GV N Z e Gk”,k (E.2)
k"# kk';p'

Note that the p’' =p term which gives the phase
factor e!®-K® i the right-hand side of Eq. (E.2),
coherent to that already figured in the last sum in
Eq. (E.1), is explicitly separated from incoherent
ones, e/ ® 0P o 2 (but there will be no such
separation when doing 1st iteration of Eq. (5) for
the M-nondiagonal SPGF G K.k itself). Continuing
the sequence, we shall explicitly collect the terms
with the initial function G, , resulting from: i) all
multiple scatterings on the same site p and ii) on
the same pair of sites p and p’ #p. Then the
summing of i) in p produces the first term of GE,
and, if the pair processes are neglected, it will
coincide with the well-known CPA result [30]. The
second term of the GE, obtained by summing of ii)
in p, p’'#p, contains interaction matrices Ap P
generated by multiply scattered functions Gy,
k' # k etc. (including their own renormahzatlon)
For instance, the iteration for a function Gy. k with
k" # k, k' in the last term in Eq. (E.2) will give:

1050

N Ava ] RTINS
= GO ik k")p _
Gy =0V g 3 e G i =

K" p
etk k)@(} +G(0)V

Oy, ol (k"K'
G V= N G+

+ terms with é

+ terms with G K k

Kk and Gk

k" zk, k', k") . (E.3)

Consequently, the GE for Gk obtains the form given
by Eq. (6).
Now turn to TPGF

(M m,

k L CkZ,T |C—k2+q,1 Cki—q,T
beginning from the equations of motion in the
absence of scattering, which develop into a 4 x 4
matrix form:

BE, & .0, 0)f =8 d,  (EA)
§_E1 - & 4, A, 0 E
:E A1 s+E1—E2 0 A2 %
E A, 0 e-§ + &, A E
g o A A e+&, +&,0
u 2 1 17 %25
with 4-vectors:
0J
D[[I& k., 1 %, ¢|C—k2+q,1 Ck;q,ﬂ%
DDJH Ck,T |C—k2+q,¢ Ck;qmmg
=3 | o
gﬂ—k Il —k R et Cki—q,T 0
[[E’r | c [IIH
[l —k -k +q,1 'k —q,
0 T A
2
A
d=p1t g
04, O
OJ 2 OJ
OJ OJ
and & =¢§, , E2—Ek iV —Ak , 2EAk2. The

solution to Eq. (E.4):*

f: 607(] B_1(E1 ’ 22 ’ A1 ’ A2)d )

gives just the result of Eq. (37) for the 1st compo-
nent of f.

Fizika Nizkikh Temperatur, 2001, v. 27, Nos. 9/10



In the presence of scattering, we consider only
the M-nondiagonal (q # 0) case, and then Eq. (E.4)
turns into

BE, &, 0, , A)f=

1 -
:_N2§lqlﬁA f + olaB 4 fZD’ (E.5)
p

where the vectors of «single scattered»> TPGFs are

Eﬂ—k1+q,i k1 IC—k2+q,¢ Ck;qmmj%
DD]K' | DDD
f, E k-q,1 k 1 Ck ,*q, Ck1—qm E
1~ 0
%ﬂa—k e —k ! e -k, +q, ‘k —q,TDIE
S]ak St —k ! K ‘k L1, ‘k 4t DIE
Em—k1,1 Ckz—q,T | C—k2+q,¢ Ck1—q,1ma
alivy | M

c c c
f' O k 1 kz—qm —k2+q,L k1—q,T @
- T Ty

c c c
E —k1,¢ —k2+q,l —k2+q,L k1—q,T 5

+ +

Dmk 1 ok +q,1 | Cok+q k —q,TDIH
0 1 2 2 1 0

and the 4 x 4 matrices:

o

N DA/()D N % |
A:%) v AZ:%OS 2
0 H 3H

Next, the equations of motion for |, :

r ! ! L 1 =i s "
B(E1yz2yA1yA2)f1 —_—elqlﬁAd[ y
: (E.6)
BE, &, A, K) fy == e PA
with
E1 = Ek1_q bl EZ = Ekz_q ? A1 = Aki_q b AZ = Akz_q bl

«double
| c

contain the
= [I¢

scattered» TPGF f'" =

k+q,t Chymq,r | Ok gt Ck1—q,1[m which is al-

ready M-diagonal and hence can be taken just in the
form of Eq. (37). Finally, the solution

cC ~ ~_4 ., ~
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A A

+AB7E L E, A

I\ H-1/c ] ] PN

(E.7)
defines the contribution DC(VLA/ V)? to &7,
Eq. (36), the factor A% being due to A, Ay-odd

terms from l}*(z'1 , &5 Ay, D) and 1/V% due

to the dominanting, zeroth order in 4, , A, , terms
Ay) BTE, &, A}, Ay)  and
A)BTIE), &, A, A,

from IA}_1(E'1, &, A

BlE,, &, A
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