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Translational-rotational interaction in dynamics and
thermodynamics of 2D atomic crystal
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T.N. Antsygina, M.l. Poltavskaya, and K.A. Chishko

B. Verkin Institute for Low Temperature Physics and Engineering
of the National Academy of Sciences of Ukraine, 47 Lenin Ave., Kharkov 61103, Ukraine
E-mail: chishko@ilt.kharkov.ua

The interaction between the rotational degrees of freedom of a diatomic molecular impurity and
the phonon excitations of a two-dimensional atomic matrix commensurate with a substrate is in-
vestigated theoretically. It is shown, that the translational-rotational interaction changes the form
of the rotational kinetic energy operator as compared to the corresponding expression for a free ro-
tator, and also renormalizes the parameters of the crystal field without change in its initial form.
The contribution of the impurity rotational degrees of freedom to the low-temperature heat capac-
ity for a dilute solution of diatomic molecules in an atomic two-dimensional matrix is calculated.
The possibility of experimental observation of the effects obtained is discussed.
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1. Introduction

Two-dimensional (2D) cryocrystals on substrates
of different kind are of great theoretical and experi-
mental interest due to the wide variety of physical
phenomena (in thermodynamics, excitation spectra,
and magnetism) they demonstrate. For 2D mono-
atomic crystals containing molecular impurities the
interaction between rotational degrees of freedom and
matrix phonon excitations, so-called translational-ro-
tational interaction (TRI) [1], is an important factor
controlling the dynamics of the impurity molecules.
Since an impurity in a 2D solution moves in the low
symmetry potential, its dynamics appears to be sub-
stantially more complex than that in a 3D system [2].
This can appreciably affect all physical characteris-
tics, in particular, low-temperature heat capacity, and
also can lead to some effects not found in the 3D case.
Theoretically, the problem of TRI in the 2D
cryosolutions has not been sufficiently studied.

The aim of the present paper is to investigate theo-
retically the effect of the phonon excitations on rota-
tional dynamics of a diatomic impurity in a 2D
close-packed atomic matrix and the impurity heat ca-
pacity at low temperatures.
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2. Hamiltonian

Let us consider a diatomic homonuclear substi-
tutional impurity with mass M and internuclear dis-
tance 2d in the two-dimensional close-packed mo-
noatomic matrix (the coordination number in the
layer zy =6), placed on a rigid substrate. The matrix
and the substrate structures are supposed to be com-
mensurate, so that a monolayer atom has z nearest
neighbors in the substrate. The substrate forms either
triangular (z5 = 3) or honeycomb (z, = 6) lattice. For
definiteness we assume, that the impurity is located at
the origin, the OZ axis is chosen normal to the layer
and is directed from the substrate, and the OX and OY
axes are oriented in the matrix plane. We restrict our
consideration to the case of the isotopic impurity.

Assuming that the displacement u; of the impurity
center of inertia from its equilibrium position is small
in comparison with the distances to the nearest neigh-
bors both in the layer, Ry, and in the substrate, Ry,
and taking into account smallness of d/R; (i =1, 2),
the total Hamiltonian of the system can be written as

H:—BAeyQ+HPh +H, + Hyy 1)

where the first term is the kinetic energy of the impu-
rity molecule, B = 12 /(2I) is the rotational constant
of the molecule, I = Md? is its moment of inertia,
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Ag ¢ is the angular part of the Laplacian, 6 and ¢ are
azimuth and polar angle specifying the molecule axis
orientation.

The Hamiltonian of the phonon subsystem H,,, has
the form

1 |n |2
Hyy =22U+mszs|av|2 :

v
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where e,, and Q,, are the unit polarization vectors and
frequencies of a pure monolayer phonon excitations,
respectively, v =(k,a), k is a two-dimensional wave
vector, a =1tz [t specify the longitudinal and
transverse modes polarized in the layer plane
(in-plane modes), and z is the index for the mode po-
larized normally to the layer (out-of-plane mode), &,
are coefficients in a series expansion of u¢ in the unit
polarization vectors e, n, =—i%0,/3€,,, m is the mass
of a matrix atom, € = (m — M) /m is the mass defect,
N is the number of sites in the layer. For a pure crys-
tal in the commensurate regime all the phonon spec-
trum branches have gaps: equal A for the in-plane
modes and A , for the out-of-plane mode with A, > A.
As a rule, the z-mode is practically dispersionless [3].
Explicit forms of Q, for the system under consider-
ation can be found in [3,4].

With an accuracy to (d/R,; )4 the crystal field H,
has the form
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dR; \ R; dR;
parameter b is equal to Ry/(v3Ry) and Ry /(3Ry) for
the substrates with triangular and honeycomb lattices
respectively; V; are atom-atom potentials describing
interactions between the impurity and matrix atoms
(i =1) and between the impurity and substrate atoms
i=2).

The first two terms in (2) are determined by both
the matrix and the substrate, whereas the last term
with a lower symmetry (of group Sg) is associated
only with the crystal field of the substrate. The analy-
sis of Gg 4 shows that the substrate field makes the im-
purity lie down in the layer, while the matrix field
tends to orientate it perpendicular to the substrate.
Thus, the equilibrium position of the impurity is de-
termined by a competition between the two factors.

Interaction between the phonon subsystem and the
rotational degrees of freedom of the impurity is de-
scribed by the following Hamiltonian [5,6]:

d2 2: * . Qg + C
H. ., =—_ (fv v T C.C.)y Iv = X o v
int ZW v EJ ) :

(3)
Here Qg =wqwp —Ayg/3 is the dimensionless
quadrupole moment of the impurity molecule,

roP = s (k) el +2n%(k) eP |
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1 Rl
8, A are unit vectors directed to the nearest neigh-
bours in the layer and in the substrate.

3. Impurity dynamics

Let us consider the effect of interaction between
the rotational degrees of freedom of the impurity and
the matrix phonon excitations on the character of the
molecule motion. To do this we use the functional in-
tegration method [7]. Within an insignificant normal-
izing factor the partition function Z of the system un-
der study has the following form

7= j DIe(D)] DIw(v)] exp (S/h) (5)
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where S is the total action

/T
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t is the imaginary time, the Botzmann constant
kg =1. The dots denote differentiation with respect
to 1.

After integration over the phonon variables, the
partition function (5) takes the form of the product
Z =ZyZy. The factor Z, is the phonon partition
function of the 2D crystal, and Z; corresponds to the
rotational motion of the molecule with regard to influ-
ence on it of the phonon subsystem. For real systems
rotational levels of a molecular impurity are, as a rule,
low-energetic, and, hence, specific effects caused by
rotational excitations make themselves evident at ex-
tremely low temperatures. Besides, due to the pres-
ence of an isotopic impurity there appear local o,
and quasi-local frequencies in the phonon spectrum
[8]. For the light impurity (¢ > 0) the local levels lay
above the top edge of the continuous spectrum,
whereas for the heavy impurity (¢ < 0) these levels are
situated below its bottom edge, i.e. in the gap. Our in-
terest here is in the temperature range T < KA, hoj,, -

Within the present approximation TRI gives rise to
additional terms of the order (d/R; )4 in the crystal

field
H,— H.=H,+AH,,
- sz | ©
2mN
and also in the kinetic energy operator
Hyop = Hyop = Hyop + AH g @)

. 2
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To analyze Egs. (6), (7) it is necessary to calculate
sums (4) over the nearest neighbors in the layer. For
lattices with the coordination number large enough an
effective way of the calculation is to replace the sum-
mation by integration over a circle of unit radius
[3,4]. Such a replacement is quite justified since the
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corrections (6), (7) are integral characteristics (ob-
tained by the summation over k in the Brillouin zone).

The interaction between the impurity rotational de-
grees of freedom and phonons does not modify the
general form of the crystal field (2), but renormalizes
its coefficients:

Gi > G; =G; + AG;, AG; =AG} +AG}, i=0,1,2,
where the indices L and S specify contributions

caused mainly by the impurity interaction with the
matrix atoms and substrate atoms, respectively:
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where J,, (x) is the Bessel function. By symmetry rea-
soning the impurity interaction with the neighbors in
the layer results only in the renormalization of the co-
efficients Gy and Gy in (2). It can be shown, that for
short-range potentials the values AGOL and AG1L are
negative, whereas AGOS is positive.

The contributions to the crystal field both from the
monolayer and from the substrate decrease in ampli-
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tude due to TRI. Such a result is physically quite
clear. The rotational motion is mainly affected by
high-frequency phonons creating maximal deforma-
tions in the first coordination sphere around the impu-
rity. The considered situation is close to the known
problem on the motion of a particle in a fast-oscillat-
ing field where after averaging on oscillations the
depth of the initial potential well effectively de-
creases [9].

Rather different situation takes place for the ki-
netic energy. The TRI results in essential change of
H,, form. After appropriate transformations the ef-
fective kinetic energy (7) can be represented as a gen-
eralized quadratic form of the angular velocity
components @; with coefficients dependent on the
molecular orientation:

1 . . .
AHrot ZE(AIJ_WZL + Alzwg + AZQ,SMijwiwj) ,

W =(w,,@,,0). (8
The additives Al | , to the impurity moment of inertia
are

AT, =AIT, +AIT,,
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2 1) 2
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Besides, for the substrates with a triangular lattice

(zy = 3) there are also nondiagonal on @;@; terms in
(8) with

244 dwyw, 2ww,  2ww,
z

m 2 2
2ww, wy -w, 0

By virtue of positive definiteness of the form (8)
the coefficients AT} , > 0. As a result, TRI leads to an
increase in impurity main moments of inertia, that is
the molecule becomes effectively heavier.

We have calculated the renormalized parameters
for a number of atomic-molecular systems using for
the impurity-matrix as well as for the impurity-sub-
strate interactions the Lennard-Jones model with the
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parameters corresponding to the gaseous phase [10]. It
has been found that at real values of d /R; the maxi-
mal relative change in moment of inertia is about 30%,
and the renormalization of the crystal field amplitude
may be as much as 50-60 %. Certainly, the estima-
tions are quite rough because the Lennard-Jones po-
tential is known to be extremely sensitive to a choice
of its parameters. On the other hand, the real values of
these parameters for a 2D system can differ signifi-
cantly from those in the gaseous phase [3]. Neverthe-
less, it is clear that the properties of the system under
consideration can be substantially affected by TRI, so
that the renormalization effects due to TRI should be
properly taken into account when discussing the phys-
ical phenomena in real systems.

4. Rotational heat capacity

Now we consider the rotational heat capacity of the
dilute solution of diatomic molecules in a 2D atomic
matrix. We restrict ourselves to the case of strong
binding, when the molecules make small librations
near their equilibrium positions normal to the layer
plane. The impurity contribution to the free energy
(per one impurity molecule) from the rotational de-
grees of freedom and the molecular in-plane
translational motion has the form:

o0
AF = h lim | do coth o arctan
T 80 2T

P(w,8)
R )

Here

P(,8) =208[1 - ep(©) 20’ —w3)] -

- ()0’ (o® - w%) +al,

R(w) = (0* - 03(2))[1 —e0’p(w)] - ap(w) ,

. 1 1
() + o) = ,
PETIRY TON k;,t(w )2~ 02 (k)

g is the librational frequency of the rotator with
nonrenormalized parameters (in the absence of TRI),
a :22§d4K§B/(mh2) is a parameter describing the
TRI intensity.

For most real systems the librational frequency o
is small as compared to the top edge Q . of the con-
tinuous spectrum of the pure 2D crystal, so that o is
either in the gap (wy < A) or in the continuous spec-
trum near its bottom. On the other hand, the less o
and the lower temperature the easier to extract the ro-
tational part from the total heat capacity containing
also contributions from translational excitations (both
from the continuous spectrum, and the local and
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quasi-local states). Hereafter we consider the case of
small o.

We start with w®g < A. For the light impurity
(¢ > 0) the local and quasilocal translational levels are
close to Q .., and their influence on low-temperature
thermodynamics is negligible. Thus, the main contri-
bution to the thermodynamic functions is from the ro-
tational degrees of freedom. The rotational free energy
and the heat capacity (per one particle) have the form:

AF,ot =2T In [2 sinh 7’120;?) ,

o | g )
AC =2| L sinh 1 20|
[2T o 2Tj (9)

o =m(2)[1—aQL] —as

)

(€))
1

where @, is the librational frequency renormalized
due to TRI. The result (9) corresponds to the heat ca-
pacity of a two-dimensional Einstein oscillator with
the frequency ®;. As it should be, renormalization of
the rotator motion parameters leads to an effective
decrease of m and, hence, to an increase of a relative
contribution from the rotational degrees of freedom to
the low-temperature heat capacity.

In the case of the heavy impurity (¢ < 0) the local
level falls within the gap (®,.< A), and a contribu-
tion from oj,. to thermodynamic functions can be
comparable with that from the rotational degrees of
freedom. Thus, the main contribution to the free en-
ergy and heat capacity from the impurity subsystem
consists of two terms of the form (9) with frequencies
®¢ and @y, being determined as two least roots of the
equation R(®) =0. Namely,

Co% :m%[1 — af (©g, ®p) ] —as(f) ,

~2 2
B =01+ af (0g, 01,1,
(€)) 2 @
s\t s
L loc™ L
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If the spacing between the frequencies o),. and wg is
large in comparison with the TRI intensity,
a<< (0)12OC —3)?, the considered excitations can be
classified as librational and local ones with
renormalized frequencies. In the opposite case, when
az ((;)120C - w%)z, «mixing» of the frequencies occurs,
and, as a result, molecular librations and local oscil-
lations are no longer well determined eigenstates.
The situation is more complicated, when the
librational frequency is inside the continuous phonon
spectrum near its bottom (wy > A) [2,11]. Since for
the heavy impurity o). < A, the contribution to the
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thermodynamic functions from the local excitations
prevails over the contribution from the rotational de-
grees of freedom. Thus, the solutions with light impu-
rities (¢ > 0) are of main interest here. In this case the
rotational free energy can be written as

Qmax
2T . ho Yo
AF ="~ |doln2sinh| 2| — 0
F - { o In 2 sin (2Tj 3 (10)

(0 —dg)° + 73
where vy =—au(®g)/(20) is a Lorentz peak half-
width and @ is the same as in Eq. (9). It should be
noted, that the validity of Eq. (10) is restricted to
the condition oy — A >> vy, (i.e. @g is not too close to
the bottom of the continuous spectrum). Taking into
account smallness of v, the rotational heat capacity
can be approximately represented in the form (9).
Thus, the rotational heat capacity at low tempera-
tures has an exponential form

~ 2 ~
h(,l)o hCO()
AC =2 | — -—, 11

unlike three-dimensional systems where the power-
type dependence takes place [2]. Such a result is due
to the gap in the phonon spectrum of the 2D mo-
noatomic crystal commensurate with the substrate
[3,12]. In this connection we remind that the matrix
heat capacity also has an exponential form [3,12]

ph T p T )

but its temperature dependence differs by preexpo-
nential factor from Eq. (11). This circumstance can
be useful when extracting the rotational part from a
measured total heat capacity particularly if oy and A
are close in magnitude.

5. Conclusion

The most pronounced effect resulting from the in-
teraction between translational and rotational degrees
of freedom consists in the radical change of the iner-
tial properties of the impurity molecule. This mani-
fests itself in the change in the form of the rotational
kinetic energy operator as compared to the corre-
sponding expression for the free rotator. The inertia
tensor components become functions of molecular ori-
entation, and the molecule, in terms of rotational mo-
tion, transforms into a «parametric rotor> whose ef-
fective kinetic energy is represented as a generalized
quadratic form of the angular velocity components
with a symmetry corresponding to the external crystal
field. For example, if the substrate atoms form honey-
comb structure, then within the present approxima-
tion the tensor of inertia remains diagonal, while it
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has also nondiagonal components for substrates with
triangular lattices.

The TRI also results in the renormalization of the
crystal field parameters. However, although the corre-
sponding corrections are sufficiently large, the poten-
tial form determined by the symmetry of the system
remains unchanged.

We would like to note that the dynamics of a di-
atomic impurity in a 2D monoatomic matrix on a sub-
strate is more complicated than in a 3D matrix of cu-
bic symmetry [2,5]. Indeed, due to the high symmetry
of the surroundings in 3D systems, TRI leads only to
an increase in the molecular momentum of inertia
without changing the form of the kinetic energy oper-
ator.

In view of possible experiments on the rotational
heat capacity of 2D solid solutions of diatomic mole-
cules in monoatomic matrices on commensurate sub-
strates, the 2D solutions with light impurities are ex-
pected to be more preferable, because at low
temperatures the contribution from the rotational de-
grees of freedom dominates over the contribution from
the local translational excitations. Being richer from
the theoretical standpoint, the systems with heavy im-
purities are more complicated for an experimental re-
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search due to the problem of correct separation of con-
tributions from the local and rotational excitations.
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