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The radiation decay of excitons in a slightly disordered molecule chain is considered. The de-
gree of disordering dictates the excitonic state length that determines the enhancement of the de-
cay rate I' (superradiance). I' was calculated versus disordering degree and temperature and com-
pared with the case of a regular chain where the length of excitonic state is determined by the
chain length, N. For every degree of disordering, the value of N was found that provides practi-
cally the same decay rate as a function of temperature.

PACS: 73.20.Dx, 78.55.—m, 78.66.—w

A term «J-aggregate» denotes an almost periodic
chain of organic impurity molecules in an organic ma-
trix (J-aggregates are called after the name of one of
their discoverers E. Jelley (1937) [1] ). Since seven-
ties, J-aggregates attracted attention of researchers in
several aspects. Of great physical interest is a phenom-
enon of superradiance that consists in a shortening of
the luminescence decay time of J-aggregates as com-
pared with that of the corresponding monomer. The
degree of shortening (considered below) depends on
the chain regularity degree and can be used for the di-
agnostics of the chain structure and for studying the
molecule — matrix interaction responsible for a slight
disordering of the chain [2—-11].

The study of J-aggregates is perspective also for bi-
ological applications; in particular, electronic relaxa-
tion processes in a molecule chain reveal some si-
milarity with the mechanisms of light energy
transformation in biological photosynthesis systems
[12,13]. In 1991 , it was proposed to use the excitonic
luminescence of some J-aggregates as a probe for the
living state of biological cells [14]. J-aggregates are
formed on the cell membrane if they are attracted to it
by the membrane potential that exists only in an alive
cell and disappears if the cell is dead (the formation of
J-aggregates is revealed through their luminescence).
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For all aspects of the study and applications of
J-aggregates, of importance is the correspondence be-
tween the degree of their disordering and the shorten-
ing of the luminescence decay time t that can be mea-
sured experimentally and used for the diagnostics of
the structure. Up to now, this correspondence was es-
tablished within the model of a regular (strictly peri-
odic) chain of a finite length N (length is expressed in
units of the chain period a) [2-9,15,16].

The essence of this model is physically clear and
consists in what follows. Consider an one-dimensional
excitonic band corresponding to the lowest excited
electronic state y of a separate molecule. This
excitonic state can be presented as a linear combina-
tion of the orthonormalized molecular states centered
at the chain sites n:
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(subscript o. numbers excitonic states which for a re-
gular chain correspond to the wave vectors k ). At a
low temperature, when only the lowest excitonic
state is occupied, the rate T of the radiative transition
to the ground state is proportional to the squared ma-
trix element of dipole moment between the excited
and ground states. For the lowest excitonic state,
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since all the coefficients ¢, have the same sign and the
corresponding matrix element for a separate molecule
is independent of 7, the matrix element between the
state (1) and the ground state is proportional to N'/2;
thus, T is proportional to the chain length N. The co-
efficient of proportionality can be found at N = 1 as
the radiative decay rate, T, of a separate excited mo-
lecule. Thus, the radiative decay rate of the lowest
excitonic state I' exceeds that of a separate molecule
about N times:

'~NT,. (2)

Relation (2) is valid only for the lowest excitonic
state. For a higher excitonic state, the coefficients c,
in (1) have alternate signs and I is much less than the
quantity (2). It follows that T has a decreasing tem-
perature dependence. For a regular chain, the depend-
ence of I' on N and temperature is well known; below
it will be inferred to compare with the case of a disor-
dered chains of an infinite length.

The model of a regular (periodic) chain of a finite
length N qualitatively describes the behavior of exci-
tons in an infinite slightly disordered chain where the
lowest excitonic state is always localized; the localiza-
tion radius determines an effective value of N. This
model is broadly used in view of its simplicity and
illustrativity. However, up to now the model had
qualitative meaning for two reasons. First, no quanti-
tative dependence was established between N and the
disordering degree of an infinite chain (this was con-
nected with difficulties of modeling an infinite disor-
dered chain). Second, it was not known with what ac-
curacy the model (even with an optimally chosen N)
describes the temperature dependence of the super-
radiance rate of excitons in a disordered chain.

The purpose of the present work is to impart a
quantitative character to the model of finite chain. To
that end, first, the quantitative correspondence will
be established between the model chain length N and
the degree of disordering of the true infinite chain.
Second, the temperature dependence of the super-
radiance rate of excitons in a disordered chain will be
calculated and compared with the case of the regular
chain of the best fitting length. It is assumed that
superradiance occurs under condition of the complete
thermodynamic equilibrium.

This consideration will be carried on the base of
general relations for the excitonic states and super-
radiance rate of a molecule chain with an arbitrary
length M and an arbitrary degree of disordering. The
chain is placed into an inorganic crystalline matrix;
the discrepancy between the periods of the chain and
matrix lattice is the origin of a slight aperiodicity of
the chain potential. The excitonic band is assumed to
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correspond to the lowest excited electronic state of a
separate molecule of the chain (the higher states of the
molecule are not taken into account). In the absence
of disordering at M = N, this general case turns to the
model of the regular chain of a finite length N; in the
presence of disordering at a large enough M, the case
of a true infinite disordered chain is realized.

The Hamiltonian of the electronic system of the
chain can be written down as

H=2XH, - V. 3)

Here H, is the Hamiltonian of a separate molecule in-
cluding the Hamiltonian of the free molecule and the
crystalline field acting on the nth molecule in the
chain; term V describes interaction between elec-
tronic subsystems of different molecules. According
to (1), excitonic states ¥, i.e., eigenfunctions of the
Hamiltonian (3), are expanded in the orthonorma-
lized states, y, , of the chain containing excited mole-
cule in the nth site (n =1, ..., M). By definition, v,
is an eigenfunction of the Hamiltonian H, that,
hence, has no off-diagonal matrix elements, whereas
V has no diagonal elements (the diagonal part of V is
carried over to the first term in (3) ):

HOn Wn - Sn Wn’ HOnm - 8n6nm ’ Vnn =0. (4)

The interaction potential V is assumed to be of ex-
change character which permits one to neglect all the
matrix elements V, —except those between adjacent
sites, V, .y and V, ;. The latter take random va-
lues around their average V, and site levels ¢, take
random values around their average position that is
put equal to zero. In the absence of disordering, the
excitonic band has the width W = 4V extending from
-2V to 2V.

The Shréedinger equation with Hamiltonian (3)
can be written down in the site representation in a
usual way. Making allowance for (1) and (4), one ob-
tains finally a system of linear homogeneous equations
relative to the expansion coefficients ¢, :

€nCno Tt Vn,n+1cn+1y(x + Vn,n—1 Cnia =ECpq (5)

(o, n=1,..., M)
(subscript o numbers excitonic states with energy
E ). Equation (5) should be complemented by the
boundary condition that runs for a linear chain of the
length M:

¢g=0,¢y, =0 (6)
The chain can be also closed into a ring of the length
M with periodic boundary conditions
=c ,V

Cn+M ~n

n+M’ n+M+1: Vn,n+1' (7)
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The exciton energy levels E, can be found via
equating to zero the determinant of the equation sys-
tem (5). Then the orthonormalized set of solutions
{¢,0) is obtained from equation (5) after substituting
for every a the corresponding value of E,.

The rate, Iy, of the radiation decay from the ath
excited state to the ground state is expressed in an
usual way through the solution of Eq. (5):

‘ M
Iy = rolzcna

n=1 |

2

(8)

The total decay rate T under thermodynamic equilib-
rium is:

M
ZF“ exp (-E, /T)

F(M,7) ==L ©

Zexp (-E, /T)

a=1

(T stands for temperature in energy units). It is the
lowest excited state with o = 1 that makes the pre-
dominant contribution to the decay rate (9) due to a
constant sign of ¢, ,; hence a decreasing temperature
of T follows .

In a regular chain, g, and V,, ,,;4 = V are independ-
ent of n, and Eq. (5) has a simple solution

o _exp (ikan)
nk m ’ (10)
Ej, =2V cos ka, k=2no/Ma, a=1,..., M .

The expression (8) , with allowance for (10), takes
the form

_ 4sin® [(M + Dka/2] sin? (Mka/?2) ctan (ka/2)
k= M sin (ka) — cos [(M + 1ka] sin (Mka)

(11)

Let us consider now an infinite slightly disordered
chain. Two possible types of disordering will be con-
sidered: (1) diagonal disordering, i.e., the random,
straggling of site levels ¢, around their average
<e>=0 and (2) off-diagonal disordering, i.e., the
straggling of the matrix elements of interaction,
V. nt1, near their average< V,, .4 > =V =0.25W (W
is the band width of a long regular chain). The strag-
gling is described by the Gaussian distribution with
the dispersion oy;, or o in the former or latter case,
respectively.

The cases of diagonal and off-diagonal disordering
were considered separately. For a given oy, or oy,
1000 realizations of the chain with random sets of ¢, or
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Vi n+1 were constructed. For every realization, the
equation system (5) was solved numerically. The
boundary condition (7), related to the chain closed to
a ring, was used in order to avoid edge effects; such
ring of the length M >>N practically exactly models
an infinite chain (N is the length of the equivalent
regular chain). It was numerically verified that a ring
with the length M = 100 practically exactly models an
infinite chain with the equivalent length N < 35.

The range of dispersion ¢ was taken from 0.05W to
0.3W for diagonal disorder, and from 0.01W to 0.1W
for off-diagonal disorder. For every oy, or o, one
can indicate the equivalent regular chain length N (o)
which provides the same decay rate at zero tempera-
ture. Figure 1 shows the dependence of N on oy;, or
ooif - It can be seen from Fig. 1 that the off-diagonal
disordering with dispersion o, is approximately equi-
valent to the diagonal disordering with dispersion
30,¢f - For estimation, considering diagonal and off-di-
agonal disordering as independent random processes,
one can reduce the simultaneous diagonal disordering
with dispersion oy;, and off-diagonal disordering with
dispersion o4 to the diagonal disordering with disper-

. 2 2\1,/2
sion (Gdia + 9ot ) .

It was found that the temperature dependence of
the decay rate I'(T) for an infinite disordered chain is
well approximated by that of the regular chain of the
corresponding equivalent length without restriction of
the temperature range. Figures 2 and 3 show the ex-
amples of such approximation.
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Fig. 1. The dependence of the equivalent length N of the
regular chain on the disordering degree, o, of the infinite
chain. Solid curve — N(oy, ) at oy = 0, dotted curve —
N(oy) at o4, = 0. Dashed line shows the dependence
N(Goff/g) at Odia = 0
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Fig. 2. Temperature dependence of radiative decay rate T'
for a chain with diagonal disorder in units of that of the
monomer. Thick solid line relates to the infinite disordered
chain with o4, = 0.3 (@) and 0.05 (b). Thin solid line re-
lates to the regular chain with the length N = 8 (a) and
N = 31 (b) that best models the disordered chain. Dotted
line shows the dispersion of T over random realizations of
the disordered chain.

It should be taken into account that Figs. 2 and 3
show the decay rate averaged over a large number of
random realizations of the disordered chain. Such av-
eraging takes place at a single excitation pulse, if it is
strong enough to excite a large number of chains. If
every pulse excites only one molecule (single molecule
spectroscopy), observed T has a significant straggling,
whose dispersion is shown in Figs. 2 and 3 by dotted
lines.
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Fig. 3. Temperature dependence of radiative decay rate T
for a chain with off-diagonal disorder in units of that of
the monomer. Thick solid line relates to the infinite disor-
dered chain with .4 = 0.1 (@) and 0.01 (b). Thin solid
line relates to the regular chain with the length N = 8 (a)
and N = 35 (b) that best models the disordered chain.
Dotted line shows the dispersion of I’ over random realiza-
tions of the disordered chain.

In the indicated meaning, an infinite irregular
chain can be modeled by a regular chain of a finite
length. However, this correspondence is restricted to
the superradiance rate and cannot be extended to ab-
sorption spectrum (consisting of discrete lines for a
regular chain and smeared to a band for a disordered
chain).
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