Электропроводность керамических ВТСП YBa₂Cu₃O_{7-δ} с различным содержанием кислорода при низких температурах

В. А. Финкель

Национальный научный центр «Харьковский физико-технический институт» ул. Академическая, 1, г. Харьков, 61108, Украина E-mail: finkel@kipt.kharkov.ua

Статья поступила в редакцию 1 февраля 2002 г., после переработки 7 мая 2002 г.

Измерено электросопротивление керамических ВТСП $YBa_2Cu_3O_{7-\delta}$ с различным содержанием кислорода (6,28 $\leq 7-\delta \leq 6,95$) в интервале температур ~ 20–273 К. Показано, что при всех концентрациях кислорода температурная зависимость сопротивления может быть описана соотношением $\rho = \alpha_0(1+\beta T + e^{\gamma/T})$. Установлено, что в рамках теории резонансного туннелирования возможно получение информации об анизотропии электросопротивления ВТСП на основе результатов экспериментов, проведенных на поликристаллических образцах.

Виміряно електроопір керамічних ВТНП УВа₂Си₃O_{7-δ} із різним вмістом кисню (6,28 \leq 7- δ \leq 6,95) у інтервалі температур ~ 20–273 К. Показано, що при усіх концентраціях кисню температурну залежність опору може бути описано співвідношенням $\rho = \alpha_0(1+\beta T + e^{\gamma/T})$. Встановлено, що в рамках теорії резонансного тунелювання можливо отримання інформації щодо анізотропії електрооору ВТНП на підставі результатів експериментів, проведених на полікристалічних зразках.

PACS: 74.25.Fy, 74.72.Bk

Исследования кинетических свойств высокотемпературного сверхпроводника (ВТСП) $YBa_2Cu_3O_{7-\delta}$ начались сразу же после открытия 90-градусной сверхпроводимости этого оксидного соединения [1]. За истекшие 15 лет выполнены десятки, если не сотни, работ, посвященных измерениям электросопротивления монокристаллов, пленок и керамических образцов $YBa_2Cu_3O_{7-\delta}$. Эти исследования проводятся в основном в двух направлениях.

1. Изучение влияния так называемого слабосвязанного кислорода в позициях O4 и O5 орторомбической (в фазах O-I и O-II) или тетрагональной (в *T*-фазе) кристаллической решетки $YBa_2Cu_3O_{7-\delta}$ на процессы переноса заряда в нормальном состоянии. Исследования такого рода выполнялись, как правило, на керамических образцах (см., например, [2–5]).

2. Изучение анизотропии кинетических свойств YBa₂Cu₃O_{7-δ}. Эти исследования выпол-

нялись исключительно на монокристаллах ВТСП (см., например, [6–10]).

Результаты исследований в этих двух направлениях принципиально различны.

1. Данные, полученные на керамических образцах, привели к установлению лишь общего характера влияния кислорода в позициях О4 и О5 на электрофизические свойства YBa₂Cu₃O₇₋₈: возрастание удельного электросопротивления р и снижение критической температуры сверхпроводящего перехода Т_с по мере уменьшения кислородного индекса 7-б, изменения вида зависимости $\rho(T)$ от линейного роста сопротивления с температурой ($\rho = A + BT$) в фазе O-I с 7- $\delta \rightarrow 7$ до «полупроводникового» ($\rho \sim e^{C/T}$) в несверхпроводящей *T*-фазе с $7-\delta \rightarrow 6$; температурная зависимость сопротивления промежуточной фазы O-II носит переходной характер от $\rho = A + BT$ к $\rho \sim e^{C/T}$. T_c ВТСП УВа₂Си₃О_{7- δ} понижается при уменьшении кислородного индекса в фазе O-I, слабо зависит от 7-6 в фазе О-II, обращаясь в нуль на границе между О-II- и *Т*-фазами.

2. Исследования, проведенные на монокристаллах ${\rm YBa_2Cu_3O_{7-\delta}}$ с составом, близким к ${\rm YBa_2Cu_3O_7}$, показали, что сопротивление в базисной плоскости ab (001) орторомбической решетки рав почти линейно уменьшается при понижении температуры, а сопротивление вдоль главной оси *с* (<001>) ρ_c увеличивается. Сразу же отметим, что из-за особенностей морфологии роста кристаллов YBa2Cu3O7-6 (тонкие пластинки, ограненные плоскостями ab) проведение измерений вдоль оси с крайне сложно, все данные получены с помощью в известной степени косвенного метода Монтгомери [11], и результаты относительно характера зависимостей $\rho_c(T)$ отчасти противоречивы. Результаты немногочисленных исследований на монокристаллах YBa2Cu3O7-8 с пониженным содержанием кислорода [7,9] указывают на возрастание анизотропии электросопротивления при понижении кислородного индекса. Результаты подобных исследований крайне важны для установления природы высокотемпературной сверхпроводимости [12], поскольку анализ данных о характере зависимостей $\rho_c/\rho_{ab}(T,7-\delta)$ в принципе может дать возможность сделать выбор в пользу той или иной модели переноса заряда в ВТСП.

Казалось бы, фундаментальное значение для решения проблемы установления характера переноса заряда в различных направлениях кристаллических решеток ВТСП и природы явления высокотемпературной сверхпроводимости имеют только результаты электрофизических измерений монокристаллов YBa2Cu3O7-8. Цель настоящей работы — показать, что и измерения электросопротивления керамических (поликристаллических) образцов в ряде случаев позволяют получить информацию об анизотропии электропроводности кристаллов ВТСП, на основании которой возможен выбор адекватной модели переноса заряда. В настоящей работе получила дальнейшее развитие идея о возможности изучения анизотропных свойств ВТСП на поликристаллических образцах, ранее использованная для изучения анизотропии нижних критических полей H_{c1} ВТСП YBa₂Cu₃O₇₋₈ [13-15].

В настоящей работе реализована следующая программа исследований:

1) экспериментально изучена электропроводность достаточно представительной серии керамических образцов ВТСП $YBa_2Cu_3O_{7-\delta}$ (6,28 \leq 7- δ \leq 6,95) в интервале температур ~ 20-273 K;

2) развита модель для описания температурных зависимостей электросопротивления $YBa_2Cu_3O_{7-\delta}$ в нормальном состоянии при всех значениях кислородного индекса 7- δ в широком интервале температур;

3) обсуждены полученные данные на основе существующих теоретических представлений о переносе заряда в ВТСП.

Измерения проводили на керамических образцах размерами $2 \times 2 \times 20$ мм, полученных из одной партии порошка $YBa_2Cu_3O_{7-\delta}$. Образцы для измерений изготавливали путем прессования порошка с последующим спеканием на воздухе при 945 °C в течение 24 ч и медленным охлаждением до комнатной температуры. Для получения образцов с различными значениями кислородного индекса 7- δ производили закалку от различных температур в жидкий азот. Содержание кислорода контролировали гравиметрическим и рентгенографическим — по величие параметров кристаллической решетки — методами [16].

Электросопротивление полученных образцов YBa₂Cu₃O_{7-δ} изучали с помощью приборно-программного измерительного комплекса (ППИК) на базе персональной ЭВМ [17]. Установка ППИК для измерения температурной зависимости электрофизических и магнитных свойств в диапазоне 10–300 К создана на основе криогенератора RGD-210 (Leybold). Датчиком температуры служил платиновый термометр сопротивления.

Результаты измерений удельного электросопротивления образцов с различным содержанием кислорода представлены на рис. 1 (приведены не все кривые $\rho(T)$). Характер эволюции кривых $\rho(T)$ при изменении кислородного индекса хоро-

Рис. 1. Температурная зависимость удельного электросопротивления образцов ВТСП УВа₂Cu₃O_{7-δ} с различным содержанием кислорода.

Рис. 2. Зависимость T_c ВТСП $YBa_2Cu_3O_{7-\delta}$ от кислородного индекса (7- δ).

шо согласуется с известной $T-(7-\delta)$ -диаграммой системы YBa₂Cu₃O_{7- δ} [18]: при 6,7 \leq 7- δ \leq 6,95 (фаза O-I) зависимости $\rho(T)$ носят практически линейный характер; при 6,28 \leq 7- δ \leq 6,37 (T-фаза) сопротивление растет при понижении температуры; при 6,44 \leq 7- δ \leq 6,59 (фаза O-II) наблюдается сочетание обеих тенденций. Зависимость T_c от кислородного индекса (рис. 2) также согласуется с характером $T-(7-\delta)$ -диаграммы — наблюдается резкое падение T_c при уменьшении 7- δ в области существования фазы O-II и тенденция к появлению «плато» в фазе O-II, в диэлектрической T-фазе сверхпроводимость, естественно, отсутствует.

В целом полученные температурные зависимости электросопротивления и критических температур ВТСП $YBa_2Cu_3O_{7-\delta}$ качественно согласуются с результатами ранее проведенных исследований [2–5].

При построении модели для описания температурных зависимостей электросопротивления $YBa_2Cu_3O_{7-\delta}$ в нормальном состоянии, очевидно, следует исходить из того, что процесс переноса заряда при всех значениях кислородного индекса происходит по двум различным каналам: в плоскости *ab*, когда металлическая проводимость возникает из-за допирования плоскостей CuO₂ дырками, и вдоль оси *c* (по активационному механизму, см. ниже). Аппроксимируя реальную трехмерную микроструктуру керамического образца одномерной цепью из последовательно соединенных монокристаллов с $\mathbf{E} \perp \mathbf{c}$ (металлическая проводимость) и $\mathbf{E} \parallel \mathbf{c}$ (активационная проводимость), для описания зависимостей $\rho(T)$ ВТСП YBa₂Cu₃O_{7- δ} с различным содержанием слабосвязанного кислорода в широком интервале температур (за исключением области флуктуационной проводимости вблизи T_c) можно предложить модельное выражение

$$\rho = \alpha_0 (1 + \beta T + e^{\gamma/T}), \qquad (1)$$

содержащее как линейный член, ответственный за «металлическую» проводимость в плоскости ab, так и экспоненциальный член, ответственный за «активационную» проводимость вдоль оси c^* . Реальное описание микроструктуры, т.е. соотношение по-разному ориентированных кристаллитов в керамике, очевидно, «заложено» в сомножитель α_0 .

Заведомо приближенное уравнение (1), не учитывающее, в частности, наличия эффекта усиления антиферромагнитных флуктуаций при понижении кислородного индекса [19], удовлетворительно описывает температурные зависимости удельного сопротивления исследуемых керамических образцов ВТСП $YBa_2Cu_3O_{7-\delta}$ (сплошные линии на рис. 1): вне флуктуационной области экспериментальные точки хорошо ложатся на расчетные кривые. Результаты обработки полученных данных приведены в таблице.

Таким образом, в широком диапазоне концентраций кислорода температурная зависимость электросопротивления ВТСП $YBa_2Cu_3O_{7-\delta}$ может быть описана единым соотношением (1), включающим оба механизма переноса заряда — «металлический» и «активационный». Сразу же отметим, что в области устойчивости фазы O-I ($6,7 \le 7-\delta \le 6,95$) «активационный» параметр у в соотношении (1) приобретает явно «нефизичное» значение: $\gamma < 0$. Это связано с тем, что, по-видимому, флуктуационные эффекты не учитывали.

$$\rho = \alpha_0 (1 + \beta T) + \alpha'_0 e^{\gamma / T}$$

Полученные массивы данных $\rho(T)$ были аппроксимированы минимальной (трехпараметрической) формой с $\alpha = \alpha'_0$, т.е. соотношением (1).

^{*} В предположении одновременного действия двух механизмов переноса заряда — так называемого «металлического» в плоскостях CuO₂ и «активационного» вдоль оси *с* — электросопротивление нетекстурированного поликристаллического объекта должно представлять собой нормированную сумму сопротивлений, обусловленных этими двумя механизмами:

Таблица

Коэффициенты уравнения $\rho = \alpha_0 (1 + \beta T + e^{\gamma/T})$) для температурных зависимостей удельного электросопротивления
образцов ВТСП УВа ₂ Си ₃ О _{7-б}	

... /**T**

7–δ	<i>Т_с</i> , К	α0, Ом.см	β, Κ ⁻¹	γ, Κ
6,95±0,02	92,22±0,05	$0,00007\pm0,0000068$	0,01958±0,00215	-105,35±26,35
$6,95{\pm}0,02$	$92,16{\pm}0,05$	$0,00009 \pm 0,0000069$	$0,02165 \pm 0,00203$	-99,81±21,95
$6,93{\pm}0,02$	91,9±0,05	$0,00009 \pm 0,00002$	$0,02057 \pm 0,00508$	$-116,88\pm65,26$
$6,9{\pm}0,02$	$91,66{\pm}0,05$	$0,00009 \pm 0,00004$	$0,01685 \pm 0,00874$	-126,55±144,12
$6,88{\pm}0,02$	$86,62{\pm}0,05$	$0,00033 \pm 0,00024$	$0,0099 \pm 0,00932$	-130,25±243,56
$6,79{\pm}0,02$	$68,28{\pm}0,05$	$0,00033 \pm 0,00024$	$0,0099 \pm 0,00932$	-130,25±243,56
$6,7{\pm}0,02$	$58,2\pm0,05$	$0,00049\pm0,00008$	0,00825±0,00181	$-138,94\pm59,42$
$6,59{\pm}0,02$	$52,49{\pm}0,05$	$0,00051 \pm 0,00002$	$0,01389 \pm 0,00063$	$-19,142\pm5,838$
$6,51{\pm}0,02$	$46,02{\pm}0,05$	$0,00033 \pm 0,0000021$	$0,02768 \pm 0,00023$	111,80±0,753
$6,44{\pm}0,02$	$25,95{\pm}0,05$	$0,00037 \pm 0,000006$	$0,03669 \pm 0,00076$	171,66±1,76
$6,37{\pm}0,02$	Н/сп	$0,0009 \pm 0,00002$	$0,02661 \pm 0,00077$	161,39±2,05
$6,33 \pm 0,02$	Н/сп	0,00421±0,00005	0,00762±0,00022	100,74±0,95
6,28±0,02	Н∕сп	$0,03734 \pm 0,00047$	$-0,00459\pm0,00012$	59,21±0,38

Приведенные выше результаты могут быть описаны в рамках представлений о резонансном туннелировании как механизме переноса заряда вдоль оси с в ВТСП [12]. Суть этих представлений сводится к следующему: в образцах ВТСП YBa₂Cu₃O_{7−δ} с 7−δ < 7 цепочки ...−Cu−O−Cu −... вдоль оси b разорваны, однако оставшиеся атомы кислорода могут создавать локализованные состояния для электронов и вытягивать их из плоскостей CuO₂, что и приводит к переносу дырок между плоскостями вдоль оси с. Для того чтобы подобный механизм был эффективным («резонансное туннелирование»), необходимо, чтобы внутри потенциального барьера существовала потенциальная яма с локализованным состоянием, находящаяся точно в середине барьера, и энергия электрона должна равняться энергии связанного состояния в яме. Оба условия автоматически выполняются в случае YBa2Cu3O7-6, а зависимость $\rho_c(T)$ носит экспоненциальный характер [12].

Теория резонансного туннелирования дает следующее выражение для анизотропии электросопротивления:

$$\frac{\rho_c}{\rho_{ab}} = AT \operatorname{ch}^2 \frac{T_0}{T} , \qquad (2)$$

где A — константа, зависящая от параметров электронного взаимодействия ($A \sim v^2$, где v скорость на границе Ферми) и величины 7- δ , а T_0 — характерная энергия активации, определяемая энергетическим положением уровней, через которые идет процесс резонансного туннелирования.

С учетом известного уравнения кристаллофизики для усредненного значения свойства (описываемого тензором второго ранга) кристаллов средних сингоний, например электросопротивления,

$$\rho = \frac{2}{3}\rho_{ab} + \frac{1}{3}\rho_c \quad , \tag{3}$$

из соотношений (1) и (3) следует

$$\rho_{ab} = \frac{3}{2} \alpha_0 (1 + \beta T) , \ \rho_c = 3\alpha_0 e^{\gamma/T}.$$
 (4)

Тогда

$$\frac{\rho_c}{\rho_{ab}} = 2 \frac{\mathrm{e}^{\gamma/\mathrm{T}}}{1 + \beta T} , \qquad (5)$$

и соотношение (2) можно переписать в виде

$$2\frac{\mathrm{e}^{\gamma/\mathrm{T}}}{1+\beta T} = AT \,\mathrm{ch}^2 \,\frac{T_0}{T} \,. \tag{6}$$

На рис. З приведены результаты обработки полученных данных по формуле (6) для ВТСП YBa₂Cu₃O_{7- δ} различного состава. Как видно, результаты измерений неплохо аппроксимируются уравнением теории резонансного туннелирования. Более того, температурная зависимость анизотропии электросопротивления $\rho_c/\rho_{ab}(T)$, полученная из измерений на керамических образцах YBa₂Cu₃O_{7- δ}, близка к результатам прямых измерений на монокристаллах [9,12].

На основании обработки экспериментальных данных построены концентрационные зависимости параметров теории A и T_0 (рис. 4). Полученные зависимости $A(7-\delta)$ (рис. 4,a) и $T_0(7-\delta)$ (рис. 4, δ) носят в целом разумный характер: константа A, связанная в основном с переносом зарядов (дырок) в цепочках ...-Сu-O-Cu-..., заметно возрастает при понижении кислородного индекса (и это согласуется с данными об уменьшении концентрации носителей при понижении кислородного индекса [20,21]), в то время как изменения энергии активации T_0 туннельного переноса дырок между плоскостями цепочки CuO₂ сравнительно невелики.

Таким образом, в настоящей работе на основании измерений температурных зависимостей электросопротивления керамических образцов ВТСП $YBa_2Cu_3O_{7-\delta}$ с различным содержанием кислорода в интервале температур ~ 20–273 К установлено:

— зависимости $\rho(T)$ при любом содержании слабосвязанного кислорода могут быть описаны

Рис. 3. Температурная зависимость анизотропии удельного электросопротивления (ρ_c / ρ_{ab}) ВТСП УВа₂Cu₃O_{7-δ}. «Экспериментальные» точки на графике соответствуют левой части уравнения (6), сплошные линии — результат аппроксимации этих данных в соответствии с правой частью уравнения.

Рис. 4. Концентрационные зависимости параметров *A* (*a*) и T_0 (*б*) уравнения $\rho_c / \rho_{ab} = AT \operatorname{ch}^2(T_0/T)$.

выражением, содержащим термы, ответственные за оба механизма переноса заряда;

— на основании результатов измерений на поликристаллах можно оценить величину анизотропии электросопротивления ВТСП $\rho_c/\rho_{ab}(T)$.

Отметим в заключение, что продемонстрированная В настоящей работе на примере YBa2Cu3O7-6 с различным содержанием кислорода возможность изучения анизотропии кинетических свойств ВТСП на поликристаллических образцах отнюдь не претендует на универсальный характер такого подхода и тем более на подмену измерений на ориентированных монокристаллах. Однако в ряде случаев подобный способ оценки величины анизотропии электросопротивления ВТСП может оказаться единственно возможным.

Автор признателен А. А. Блинкину, В. В. Деревянко и Ю. Ю. Раздовскому за помощь в проведении экспериментов. Работа выполнена при поддержке Украинского научно-технологического центра (грант STCU № 2266).

- C. W. Chu, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, and Y. Q. Wang, *Phys. Rev. Lett.* 58, 405 (1987).
- J. R. Cooper, S. D. Obertelli, A. Carrington, and J. W. Loram, *Phys. Rev.* B44, 12086 (1991).
- L. Sun, Y. Wang, H. Shen, and X. Cheng, *Phys. Rev.* B38, 5114 (1988).
- S. Zhu, X. Zhang, Z. Xu, H. Wang, and H. Xia, Chinese Phys. Lett. 6, 185 (1989).
- В. М. Аржавитин, А. А. Блинкин, В. В. Деревянко, Ю. Ю. Раздовский, А. Г. Руденко, В. А. Финкель, Ю. Н. Шахов, *СФХТ* 6, 2095 (1993).
- S. W. Tozer, A. W. Kleinsasser, T. Penny, D. Kaiser, and F. Holtzberg, *Phys. Rev. Lett.* 59, 1768 (1987).
- Y. Iye, T. Tamegai, T. Sakakibara, T. Goto, N. Miura, H. Takeya, and H. Takei, *Physica* C153-155, 26 (1988).
- М. А. Оболенский, А. В. Бондаренко, В. И. Белецкий, В. Н. Моргун, В. П. Попов, Н. Н. Чеботаев, А. С. Панфилов, А. И. Смирнов, О. А. Миронов, С. В. Чистяков, И. Ю. Скрылев, *ФНТ* 16, 1103 (1990).
- 9. В. Н. Зверев, Д. Б. Шовкун, *Письма в ЖЭТФ* **72**, 103 (2000).
- T. Ito, K. Takenaka, and S. Uchida, *Phys. Rev.* Lett. **70**, 3995 (1993).
- 11. H. C. Montgomery, J. Appl. Phys. 42, 2971 (1971).
- 12. А. А. Абрикосов, УФН 186, 683 (1998).
- В. А. Финкель, В. В. Торяник, ФНТ 23, 824 (1997).
- 14. В. А. Финкель, ФНТ **25**, 554 (1999).
- В. А. Финкель, В. В. Деревянко, ФНТ 26, 128 (2000).

- V. A. Finkel, V. M. Arzhavitin, A. A. Blinkin, V. V. Derevyanko, and Yu. Yu. Razdovskii, *Physica* C235-240, 303 (1994).
- В. В. Торяник, В. А. Финкель, В. В. Деревянко, Физика и химия обработки материалов № 5, 55 (1995).
- E. Bonetti, E. G. Campari, and S. Mantovari, *Physica* C196, 7 (1992).
- B. P. Stojcovic and D. Pines, *Phys. Rev.* B55, 8576 (1997)
- В. В. Еременко, В. Н. Самоваров, В. Н. Свищев,
 В. Л. Вакула, М. Ю. Либин, С. А. Уютнов, ФНТ
 26, 739 (2000).
- В. В. Еременко, В. Н. Самоваров, В. Л. Вакула, М. Ю. Либин, С. А. Уютнов, ФНТ 26, 1091 (2000).

Electrical conductivity of ceramic HTSC $YBa_2Cu_3O_{7-\delta}$ with different contents of oxygen at low temperatures

V. A. Finkel

The resistance of the ceramic $YBa_2Cu_3O_{7-\delta}$ specimens with different contents of oxygen (6.28 $\leq 7-\delta \leq 6.95$) are measured in temperature range ~ 20–273 K. It is shown that for all oxygen concentrations the temperature dependence of resistance can be described by the equation $\rho = \alpha_0(1+\beta T + e^{\gamma/T})$. It is established that within the framework of the theory of resonant tunneling the information concerning the anisotropy of the HTSC resistance can be obtained from the data for polycrystals.