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We discuss the scattering of high-energy magnons off a single magnetic skyrmion within the field-polarized 
ground state of a two-dimensional chiral magnet. For wavevectors larger than the inverse skyrmion radius, 

1skr   the magnon scattering is dominated by an emerging magnetic field whose flux density is essentially de-
termined by the topological charge density of the skyrmion texture. This leads to skew and rainbow scattering 
characterized by an asymmetric and oscillating differential cross section. We demonstrate that the transversal 
momentum transfer to the skyrmion is universal due to the quantization of the total emerging flux while the lon-
gitudinal momentum transfer is negligible in the high-energy limit. This results in a magnon-driven skyrmion 
motion approximately antiparallel to the incoming magnon current and a universal relation between current and 
skyrmion-velocity. 

PACS: 75.10.-b General theory and models of magnetic ordering; 
05.45.Yv Solitons. 

Keywords: magnetic skyrmion, chiral magnet. 
 

 
1. Introduction  

The experimental discovery of skyrmions in chiral 
magnets [1–7] and in magnetic monolayers [8–10] has 
triggered an increasing interest in the interaction of spin 
currents with topological magnetic textures [11–30]. It has 
been demonstrated [13,16] that skyrmions can be manipu-
lated by ultralow electronic current densities of 106 A/m2, 
which is five orders of magnitudes smaller than in conven-
tional spintronic applications using domain walls. The adi-
abatic spin-alignment of electrons moving across a 
skyrmion texture results in an emergent electrodynamics 
implying a topological [11,12,30] as well as a skyrmion-
flow Hall effect [17]. In insulators, the interplay of thermal 
magnon currents and skyrmions is marked by a topological 
magnon Hall effect and a magnon-driven skyrmion motion 
[23–25]. The topological nature of the magnetic skyrmions 
is responsible for a peculiar dynamics [31–35] that is also 
at the origin of these novel spintronic and caloritronic phe-
nomena, which are at the focus of the fledgling field of  
skyrmionics [22]. 

In two spatial dimensions, skyrmions are identified by 
the topological charge density  

.  top
1 ˆ ˆ ˆ= ( ),

4 x yn n nρ ∂ ×∂
π

 (1) 

where n̂  is the orientation of the magnetization vector. For 
a magnetization homogeneously polarized at the boundary, 

the spatial integral top
2 =d r Wρ∫  is quantized, W Z∈ , 

and thus allows to count skyrmions within the sample. In 
turn, a finite winding number W  translates to a 

Fig. 1. (Color online) (a) A chiral magnetic skyrmion texture of 
linear size rs. (b) Illustration of a classical magnon trajectory 
within the xy plane scattering off a skyrmion positioned at R  
with impact parameter b  and classical deflection angle Θ . 
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gyrocoupling vector G in the Thiele equation of motion of 
the skyrmion [36], and the resulting gyrotropic spin-
Magnus force governs its dynamics [37]. As a conse-
quence, in the presence of an applied electronic spin cur-
rent, the skyrmions will acquire a velocity [14,15,17] that 
remains finite in the limit of adiabatic spin-transfer torques 
and small Gilbert damping α, giving rise to a universal 
current-velocity relation [18]. 

In order to address the interaction of magnon currents 
with magnetic textures, a corresponding adiabatic approx-
imation has been recently invoked on the level of the Lan-
dau–Lifshitz–Gilbert equation by Kovalev and Tserkov-
nyak [38]. This approximation has been used in Refs. 23, 
24 to derive an effective Thiele equation of motion for the 
skyrmion coordinate R  in the presence of a magnon cur-
rent density J,   

 eff eff= ,× − × +β +G R G v v

  (2) 

with = 0β  in the adiabatic limit. The effective velocity 

eff 0= /( )Bg mµv J   is related to the current density via 
the g-factor ,g  the Bohr magneton > 0Bµ  and the local 
magnetization 0m . The gyrocoupling vector is given by 

0ˆ= 4 /( )Bz m g− π µG   with units of spin density corre-

sponding to a flux of 2− π  per area of a spin – 1
2

 in a two-

dimensional system with the unit normal vector ˆ.z  The 
dots in Eq. (2) represent further terms omitted for the pur-
pose of the following discussion, that is, in particular, a 
damping force proportional to the Gilbert constant α . Ne-
glecting these additional terms, Eq. (2) predicts for = 0,β  
similar to the skyrmion-driven motion by electronic cur-
rents, a universal current-velocity relation 

eff 0= = /( )Bg m− − µ JR v 

  with a skyrmion velocity that is 
antiparallel to J. Consequently, a magnon current generat-
ed by a thermal gradient will induce a skyrmion motion 
towards the hot region of the sample, which was indeed 
observed numerically [23,24,27]. Mochizuki et al. [25] 
also used Eq. (2) with = 0β  to account for the experi-
mental observation of a thermally induced rotation of a 
skyrmion crystal. 

However, the question arises as to when the adiabatic 
limit of Eq. (2) is actually applicable and under what con-
ditions. The validity regime of the adiabatic approximation 
for magnon-driven motion of magnetic textures has not 
been explicitly discussed in Ref. 38. In fact, in order to 
account quantitatively for their numerical experiment Lin 
et al. [24] introduced the β  parameter in Eq. (2) on phe-
nomenological grounds calling it a measure for non-
adiabaticity. Subsequently, Kovalev [28] argued that a fi-
nite β  parameter arises due to dissipative processes. 

In contrast, we have recently shown by considering the 
magnon–skyrmion scattering problem [29] that a mono-
chromatic magnon current with energy ε  will give rise to 
a reactive momentum-transfer force in the Thiele equation 
which reads in linear response 

 ||ˆ= ( )( ) ( ) ,k z k⊥ ε ε× σ ε × + σ ε +G R J J

  (3) 

where the magnon dispersion is 2
gap mag= ( ) /(2 )k Mε ε +   

with the magnon gap gapε  and the magnon mass magM . 
This force on the right-hand side of Eq. (3) is determined 
by the two-dimensional transport scattering cross sections  

 || ( ) 1 cos
=

sin( )
dd
d

π

⊥ −π

σ ε  − χ  σ
χ     − χ χσ ε   

∫  (4) 

where /d dσ χ  is the energy-dependent differential scatter-
ing cross section of the skyrmion. In the limit of low-
energies 1skr  , where rs is the skyrmion radius, s-wave 
scattering is found to dominate so that ( ) 0⊥σ ε →  and, as 
shown in Ref. 23, the force becomes longitudinal to εJ . 
This, in turn, implies a skyrmion motion approximately 

perpendicular to the magnon current, || ( )
ˆ ,

| |
k

z ε
σ ε

→ ×R J
G

  

thus maximally violating the predictions of the adiabatic 
limit of Eq. (2). This implies that Eq. (2) is not valid for 
low-energy magnons whose wavevector is comparable or 
smaller than the inverse size of the texture. 

It is one of the aims of this work to demonstrate explic-
itly that in the high-energy limit, 1skr  , on the other 
hand, the momentum-transfer force of Eq. (3) due to a 
monochromatic magnon wave indeed reduces to the form 
of Eq. (2). The effective velocity in this case, however, is 
to be identified with 2

eff mag(| )| /A M=v k   where A  is 
the amplitude of the incoming magnon wave. In the high-
energy limit the magnon-skyrmion interaction is dominat-
ed by a scattering vector potential, i.e., an emerging orbital 
magnetic field whose flux is quantized and related to the 
skyrmion topology. As a result, the transversal momentum 
transfer assumes a universal value in the high-energy limit 

( ) 4k ⊥σ ε → π  as anticipated in Ref. 25. Moreover, the lon-
gitudinal momentum transfer yields a reactive contribution, 
εβ , to the β  parameter that, in this limit, is determined by 

the square of the classical deflection function ( )bΘ  inte-
grated over the impact parameter b , see Fig. 1(b),  

 2| |= ( ( )) .
8
G k db b

∞

ε
−∞

β Θ
π ∫  (5) 

As the scattering is in forward direction at high energies, 
( ) 1/b kΘ  , the parameter vanishes as 1/kεβ ∝  so that it is 

indeed small for large 1srκ >> . 
The outline of the paper is as follows. In Sec. 2 we 

shortly review the definition of the magnon–skyrmion scat-
tering problem and some of the main results of Ref. 29. In 
Sec. 3 we examine the scattering properties of high-energy 
magnons including the skew and rainbow effects, the total 
and transport scattering cross sections, and the magnon 
pressure on the skyrmion leading to Eq. (2). We finish with 
a short discussion in Sec. 4. 
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2. Skyrmionic soliton and its spin-wave excitations 

This section closely follows Ref. 29 and reviews the 
magnon–skyrmion scattering problem in a two-
dimensional chiral magnet. We start with the standard 
model for a cubic chiral magnet restricted to a two-
dimensional plane that is described by the energy function-
al [39,40] 

 2 2 ˆˆ ˆ ˆ ˆ= [( ) 2 2 ]
2
s

j i j i jn Q n n nBα α α
ρ

∂ + ε ∂ − κ  (6) 

with spatial index {1,2} = { , }x yα∈  and , {1,2,3}i j∈ , 
i jα∈  is the totally antisymmetric tensor with 123= 1∈ , and 
sρ  is the stiffness. The two length scales are given by the 

wavevectors Q  and κ . The former determines the 
strength of the spin-orbit Dzyaloshinskii–Moriya interac-
tion, that we chose to be positive, > 0Q . The latter, 

> 0,κ  measures the strength of the applied magnetic field, 
that is applied perpendicular to the two-dimensional plane, 
ˆ ˆ=B z . We neglect cubic anisotropies, dipolar interactions 

as well as magnetic anisotropies for simplicity. The latter 
can be easily included resulting in an additional length 
scale. 

2.1. Skyrmionic saddle-point solution 

The theory (6) possesses a topological soliton solution, 
i.e., a skyrmion, as first pointed out by Bogdanov and Hu-
bert [41,42]. With the standard parametrization of the unit 
vector ˆ = (sin cos , sin sin , cos )T

sn θ ϕ θ ϕ θ , the skyrmion 
obeys  

 = ( ), = ,
2
π

θ θ ρ ϕ χ +  (7) 

where ρ  and χ  are polar coordinates of the two-
dimensional spatial vector = (cos ,sin ).ρ χ χr  The polar 
angle θ  obeys the differential equation  

 
2

2
2

sin cos 2 sin sin = 0,Q′θ θ θ θ′′θ + − + − κ θ
ρ ρρ

 (8) 

with the boundary conditions (0) =θ π  and 
( ) = 0limρ→∞θ ρ . At large distances 1ρκ >> , the polar 

angle obeys the asymptotics ( ) /e−κρθ ρ ρ . The result-
ing skyrmion texture is illustrated in Fig. 1(a). The associ-
ated topolpgical charge density 

 top
1 1 sinˆ ˆ ˆ= ( ) =

4 4
s

s x s y sn n n
′θ θ

ρ ∂ ×∂
π π ρ

 (9) 

integrates to 2
top = 1d ρ −∫ r  identifying the solution as a 

skyrmion. The skyrmion radius rs can be defined with the 
help of the area 

2 2ˆ(1 )/2 ,z sd r n r− = π∫  

and it is found to approximately obey rs∼ 1/κ2. 

The skyrmion is a large-amplitude excitation of the fully 
polarized ground state as long as its energy is positive, 
which is the case for cr>κ κ  where 2 2

c 0.8 ,r Qκ ≈  which is 
the regime we focus on. For smaller values of κ , 
skyrmions proliferate resulting in the formation of a 
skyrmion crystal ground state. 

2.2. Magnon-skyrmion scattering problem 

Magnon wavefunction. The magnons correspond to 
spin-wave excitations around the skyrmion solution ˆsn  
that can be analyzed in the spirit of previous work by 
Ivanov and collaborators. [43–46] We introduce the local 
orthogonal frame ˆ ˆ =i j ije e δ  with 1 2 3ˆ ˆ ˆ=e e e× , where 

3ˆ ˆ( ) = ( )se nr r  tracks the skyrmion profile. For the two 
orthogonal vectors we use 

1̂ = ( sin , cos , 0)Te − ϕ ϕ  and 

 2ˆ = ( cos cos , sin sin , cos )Te − θ ϕ θ ϕ θ .  

The excitations are parametrized in the standard fashion  

 
2 *

3ˆ ˆ ˆ ˆ= 1 2 | | ,n e e e+ −− ψ + ψ + ψ  (10) 

where ψ  is the magnon wavefunction and 

1 2
1ˆ ˆ ˆ= ( ).
2

e e ie± ±  For large distances, srρ >> , this 

parametrization assumes the form  

 2 1ˆ ˆ ˆˆ 1 2 | | ( )( e ) c.c. .
2

in z x iy − χ 
≈ − ψ + + − ψ + 

 
 (11) 

It is important to note that the local frame îe  corresponds 
to a rotating frame even at large distances reflected in the 
phase factor e i− χ−  in the second term. For the discussion 
of magnon scattering, it will be convenient to introduce a 
wavefunction labψ  with respect to a frame that reduces to 
the laboratory frame at large distances, that is simply ob-
tained by the gauge transformation  

 lab ( , ) = e ( , ).it t− χψ − ψr r  (12) 

Magnon Hamiltonian. In order to derive an effective 
Hamiltonian for ψ , we consider the Landau–Lifshitz 
equation  

 effˆ ˆ= ,t n n∂ −γ ×B  (13) 

with = / ,Bgγ µ   where the effective magnetic field 

eff
0

1( , ) =
ˆ( , )

Et
m n t

δ
−

δ
B r

r
 is determined by the functional 

derivative of the integrated energy density =E dtd∫ r . 

Expanding (13) in lowest order in ψ , one finds that the 

spinor *= ( , )T ψ ψΨ  is governed by a bosonic Bogoliu-
bov–deGennes (BdG) equation  

 = ,z
ti τ ∂  Ψ Ψ  (14) 
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with the Hamiltonian 

 
2 2

0
mag

( )=
2

z
x

x
i
M

− − τ
+ + τ

a
  

 ∇1
1  (15) 

where = ( , )T
x y∂ ∂∇ , and xτ  and zτ  are Pauli matrices. 

The potentials are given by  

 
2gap

0 2 2
sin(2 )sin( ) =

22
Qε  θ θ

ρ − − − ρκ ρ
  (16) 

 
2

2 22 cossin
2

Q Q
′θ′− θ + κ θ− θ − 


,  

 
22gap

2 2
sin(2 )sin( ) = .

2 22
x

Q Q
 ε ′θ θ θ′ρ + − θ −  ρκ ρ 

  (17) 

The magnon energy gap is defined by  

 
2 2 2

gap
0 mag

= = ,
2

B sg
m M

µ ρ κ κ
ε



 (18) 

which also identifies the magnon mass magM . The vector 

potential reads ˆ= ( )aχ ρ χa  with ˆ = ( sin ,cos )Tχ − χ χ  and  

 

cos= sin .a Qχ θ
− θ

ρ  (19) 

It obeys the Coulomb gauge = 0∇a . The polar angle in all 
potentials is the soliton solution, = ( )θ θ ρ , and depends on 
the distance ρ . 

Effective magnetic flux. Far away from the skyrmion the 
Hamiltonian simplifies 0→   for ρ→∞  with  

 

2 2

0 gap
mag

1 ˆ( )
= .

2

zi

M

− − τ χ
ρ + ε

 ∇1
1  (20) 

The remaining vector potential is attributed to the choice of 
the rotating orthogonal frame in the definition of the 
magnon wavefunction, see Eq. (11). It can be easily elimi-
nated by the gauge transformation (12),  

 ( )
lab =

zie− τ χ+π→Ψ Ψ Ψ , (21) 

 lab
1 cos 1= = sin .a a a Qχχ χ θ −

→ − − θ
ρ ρ

 (22) 

With respect to this laboratory orthogonal frame, the vector 
scattering potential lab lab ˆ= aχ χa  vanishes exponentially for 
large distances, srρ >> . 

The associated flux lab ˆ= ( ) = z∇× a   will play an 
important role in the following discussion, where 

lab( ) = ( ( )).aχρ∂ ρ ρ
ρ

r 

  According to Stokes’ theorem the 

total flux 2 ( ) = 0d∫ r r  vanishes as laba  is exponentially 

confined to the skyrmion radius. However, there is an in-
teresting spatial flux distribution,  
 reg( ) = 4 ( ) (| |),− π δ +r r r   (23) 

 reg top( ) = 4 ( sin ) .
4

s Q
ρ

 
ρ π −ρ − ∂ ρ θ πρ 

   (24) 

Since for small distances lab ( ) 2/ ,aχ ρ → − ρ  there is a singu-
lar flux contribution at the skyrmion origin with quantized 
strength 4− π . As it is quantized, this singular flux will 
not contribute to the magnon scattering. The regular part of 
the effective magnetic flux, reg , only depends on the 
radius ρ  and is spatially confined to the skyrmion area. Its 
spatial distribution can be related with the help of Eq. (9) 
to the topological charge density top

sρ  of the skyrmion in 
addition to a term proportional to Q . While top

s−ρ  is al-
ways positive, the latter term can also be negative so that 

reg  as a function of distance ρ  even changes sign for 
lower values of 2κ , see Fig. 2. The spatial integral over 
the second term of Eq. (24) however vanishes so that the 
total regular flux 

2 2
reg top( ) = 4 = 4sd dρ − π ρ π∫ ∫r r    

is quantized and determined by the topological charge of 
the skyrmion [25,47]. 

2.3. Magnon spectrum 

In order to solve Eq. (14) for the magnon eigenvalues 
and eigenfunctions, one uses the angular momentum basis 

( , ) = exp ( / ) ( )mt i t im− ε + χ ρr Ψ η  with positive energy 
0ε ≥ . The angular momentum m  turns out to be a good 

quantum number and the wave equation (14) reduces to a 
radial eigenvalue problem for ( )m ρη  that can be solved 

Fig. 2. (Color online) Regular part of the effective magnetic flux 
density (24) for various values of 2 2/Qκ . For lower values of 

2 2/Qκ  the flux density close to the skyrmion center is sup-
pressed and even becomes negative for 2 2/ 1.3Qκ  . As a result, 
the effective local Lorentz force evaluated along a classical 
magnon trajectory with = 0b  changes sign resulting in a sup-
pression of the deflection angle. 
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with the help of the shooting method [29]. In order to ob-
tain positive expectation values of the Hamiltonian, one 
has to look for eigenfunctions with a positive norm,  

 †

0

( ) ( ) > 0.z
m md

∞

ρρ ρ τ ρ∫ η η  (25) 

The resulting spectrum is shown in Fig. 3 as a function of 
the parameter 2 2/Qκ  that measures the strength of the 
magnetic field. The magnon continuum with the scattering 
states are confined to energies larger than the magnon gap 

2
gapε ∝ κ , which increases linearly with the field (black 

solid line). In the field range shown, there are three subgap 
states that correspond to bound magnon–skyrmion modes. 
While the breathing mode with angular momentum = 0m  
exists over the full field range, a quadrupolar mode with 

= 2m −  emerges for lower fields just before the field-
polarized state becomes globally unstable at 2 2

cr 0.8Qκ ≈  
(dashed-dotted line). The eigenenergy of the latter finally 
vanishes at 2 2

bimeron 0.56Qκ ≈ , indicating a local instability 
of the theory with respect to quadrupolar deformations of the 
skyrmion, i.e., the formation of a bimeron [48]. Further-
more, a sextupolar mode with = 3m −  only exists within the 
metastable regime. The corresponding eigenfunctions of 
these modes do not possess any nodes. We have not yet 
found bound modes with a single or more nodes, which 
might however emerge for = 1m −  at larger fields. 

Apart from the modes shown in Fig. 3, the spectrum of 
  also contains a zero mode with angular momentum 

= 1m −  given by  

 zm
1

sin
1= .

sin8−

θ ′− θ ρ 
 θ ′+ θ ρ 

η  (26) 

This zero mode is related to the translational invariance of 
the theory (6) that is explicitly broken by the skyrmion 
solution. The real and imaginary part of the amplitude of 
the eigenfunction (26) correspond to translations of the 
skyrmion within the two-dimensional plane. 

3. High-energy scattering of magnons 

The properties of the magnon scattering states for arbi-
trary energies, gap ,ε ≥ ε  have been discussed in Ref. 29. In 
the present work, we elaborate on the scattering of 
magnons in the high-energy limit, gapε >> ε , which corre-
sponds to magnon wavevectors much larger than the in-
verse skyrmion radius, 1.skr   In this limit, the treatment 
of the scattering simplifies considerably allowing for a 
transparent discussion of characteristic features. 

In the high-energy limit the magnon-skyrmion interac-
tion is governed by the scattering vector potential 

ˆ( ) = ( )aχ ρ χa r  of Eq. (19) so that the scattering has a pure-
ly magnetic character. In particular, in this limit one can 
neglect the anomalous potential x , and the BdG equation 
(14) reduces to a Schrödinger equation for the magnon 
wavefunction  

 
2 2

gap
mag

( )= .
2t

ii
M

 − −
∂ ψ + ε ψ  

 

a



∇  (27) 

Setting ( , ) = exp ( / ) exp ( ) ( )k mt i t imψ − ε χ η ρr 
 with the 

dispersion 
2 2

gap
mag

=
2k

k
M

ε ε +
  and wavevector > 0k , one 

obtains the radial wave equation for ( )mη ρ   

 
2

2 2
2

( ( )) = 0.m
m a k

χ
ρ

ρ
 ∂  −ρ ρ
− ∂ + + − η  

ρ ρ   
 (28) 

For large distances ( ) 1aχρ ρ → , which identifies the angu-
lar momentum of the incoming wave to be = ( 1)zL m − . 

3.1. Eikonal approximation 

As we are interested in the high-energy limit, we can 
treat this wave equation in the eikonal approximation. 
However, in order to make contact with Ref. 29, we first 
give the resulting phase shift within the WKB approxima-
tion that is obtained by following Langer [49,50]  

Fig. 3. (Color online) Magnon spectrum in the presence of 
a single skyrmion excitation as a function of 2 2/Qκ  measuring 
the strength of the magnetic field [29]. The magnon gap 

2 2
gap = /DM Qε ε κ  increases linearly with the field (black solid 

line). The field-polarized state becomes unstable at 2 2
cr 0.8Qκ ≈  

(dashed-dotted line) while the theory (14) becomes locally unsta-
ble at 2 2

bimeron 0.56Qκ ≈ . Apart from the zero mode (not 
shown), there exist three subgap modes with angular momentum 
m = 0, –2, –3. 
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2

2
2

0

( ( ))=WKB
m

m ak k d
∞ χ

ρ

 −ρ ρ δ − − ρ+
 ρ 
∫   

 0| 1 |
2

m kπ
+ − − ρ  (29) 

where 0ρ  is the classical turning point. The eikonal ap-
proximation for the phase shift is then obtained by taking 
the limit k →∞  while keeping the impact parameter 

= /( )zb L k  fixed, ( )WKB
m b∞δ → δ , yielding  

 lab lab
2 2 2

| | 1

( ) ( | |)
( ) = =

1b

a a s b
b b d b ds

b s

∞ χ ∞ χ

∞
ρ

δ ρ
ρ − −

∫ ∫  (30) 

where we used lab ( ) = ( ) 1a aχ χρ ρ ρ ρ − , see Eq. (22), and in 
the last equation we substituted = /| |s bρ . This phase shift 
is odd with respect to b , i.e., ( ) = ( )b b∞ ∞δ −δ − . Note that 
the scattering is non-perturbative even in the high-energy 
limit in the sense that the phase shift ( )b∞δ  covers the 
entire interval ( , )−π π  as a function of b , see Fig. 4. In 
particular, in the limit of small impact parameter 0b → :  

 
2

1

2/( | |)( ) = sgn ( ).
1

s bb b ds b
s

∞

∞
−

δ → −π
−

∫  (31) 

For impact parameters larger than the skyrmion radius, 
,sb r>> , the phase shift vanishes exponentially. 

The deflection angle in the eikonal approximation is 
given by the derivative of ( )b∞δ ,  

  r( ) 2 4( ) = 2 = ( ) = ( ) ( ).eg

z

bb b b b
L k k
∞

∞ ∞ ∞
∂δ π′Θ δ Θ − δ
∂

  (32) 

The step of ( )b∞δ  for head-on collisions, see Eq. (31), 
leads to the delta function ( )bδ . The classical deflection 
function is given by the regular part, which reads  

 regreg
2

1

| | ( | |)2( ) =
1

s b s b
b ds

k s

∞

∞Θ =
−

∫




 (33) 

 2 2
reg

1= ( ) ,b x dx
k

∞

−∞

+∫ 


 (34) 

where in the last equation we substituted 2=| | 1x b s −  
and used that the integrand is an even function of x . It is 
determined by the regular part of the flux density, reg , 
given in Eq. (24), integrated along a straight trajectory 
shifted from the x-axis by the impact parameter b . Its be-
havior as a function of b  is shown in Fig. 5 for various 
values of 2 2/Qκ . The deflection angle is always positive 
implying that, classically, the Lorentz force attributed to 

reg  always skew scatters the magnons to the right-hand 
side from the perspective of the incoming wave even for 
negative impact parameters, see Fig. 1(b). Note that the 
deflection angle possesses a local minimum at = 0b  for 

2 21.6Qκ  , that however gets filled and transitions into a 
maximum for larger values of κ . This change of curvature 
at = 0b  is related to the change of curvature of the flux 
density reg ( )′′ ρ  at the origin = 0ρ , see Fig. 2, that happens 
for a similar value of κ . As the total flux of reg  is quan-
tized, the deflection angle integrated over the impact pa-
rameter is just given by the universal value 

 reg ( ) = 4 /db b k
∞

∞
−∞

Θ π∫ .  

Fig. 4. (Color online) Scattering phase shift for high-energy 
magnons (30) as a function of impact parameter b  for different 
values of 2 2/Qκ . The scattering is nonperturbative as the phase 
shift assumes values within the entire interval ( , )−π π . 

Fig. 5. (Color online) Classical deflection angle for scattering of 
high-energy magnons (33) as a function of impact parameter b  
for different values of 2 2/Qκ . In the high-energy limit, the scat-
tering is in the forward direction with a deflection angle decreas-
ing with increasing wavevector k  as reg ( ) 1/b k∞Θ  . The inset 
focuses on the change of curvature at = 0b  for 2 21.6Qκ ≈  with 
the same units on the vertical axis. 
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3.2. Differential cross section 

In the following, we consider a magnon scattering setup 
where an on-shell magnon plane wave with wavevector 

ˆ= kxk  along the x-direction and amplitude A  defined 
within the laboratory orthogonal frame, see Eq. (12), is im-
pinging on the skyrmion, see also Fig. 1(b). At large dis-
tances this wavefunction assumes the asymptotic behavior  

 /
lab

e( , ) = e e ( ) ,
ik

i ikrkt A f
ρ

− ε  
ψ + χ  ρ 

r   (35) 

where the scattering amplitude is given by  

 
/4

2( 1)

=

e( ) = e (e 1).
2

i
ii m m

m
f

k

∞− π
δ− χ

−∞
χ −

π
∑  (36) 

Note that the additional phase factor e i− χ  arises from the 
gauge transformation (12). The differential cross section is 

then obtained by 2= | ( ) |f∂σ
χ

∂χ
. 

High-energy limit of the scattering amplitude. In the 
high-energy limit, we can replace the sum over angular 
momentum numbers by an integral over the impact param-
eter, = ( 1) /b m k− , so that the scattering amplitude reads 
approximately  

 
/4

2 ( )e( ) = e (e 1),
2

i
i bibkf k db

k

∞− π
δχ ∞

∞
−∞

χ −
π ∫  (37) 

with ( )b∞δ  defined in Eq. (30). The differential cross sec-
tion in this limit,  

 2
2=| ( ) | = ( / ),kf S k Q

Q
∞

∞
∂σ

χ χ
∂χ

 (38) 

is then determined by the dimensionless function S , which 
is shown in Fig. 6. 

The support of the differential cross section is approxi-
mately limited by the extremal values of the classical de-
flection angle of Eq. (33) and Fig. 5. Note that the angle χ 
is defined in a mathematically positive sense so that a posi-
tive Θ translates to a negative value of χ. It is strongly 
asymmetric with respect to forward scattering reflecting 
the skew scattering arising from the Lorentz force of the 
emerging magnetic field reg . 

Rainbow scattering and Airy approximation. Moreover, 
the differential cross section exhibits oscillations. These 
can be attributed to an effect known as rainbow scattering. 
As the function reg ( )b∞Θ  is even in b , there exist for a given 
classically allowed deflection angle Θ always at least one 
pair clb±  of impact parameters that solve reg

cl( ) =b∞Θ ± Θ. 
For a given angle Θ the magnons might, therefore, either 
pass the skyrmion on its right- or left-hand side; these clas-
sical trajectories interfere leading to the oscillations in 

/d dσ χ. 
First, consider values 2 21.6Qκ   for which reg ( )b∞Θ  

possesses only a single maximum at = 0b . The maximum 
value reg (0)∞Θ  is known as rainbow angle and for values of 
χ close to reg (0)∞−Θ , the interference effect of classical 
trajectories can be illustrated with the help of the Airy ap-
proximation for the scattering amplitude. For such values 
of χ, the 1−  in the integrand of Eq. (37) can be neglected 
as it only contributes to forward scattering. Expanding the 
exponent of the remaining integrand up to third order in b  
one then obtains  

 A( ) | =iryf∞ χ   

 
/4

reg reg 3e= exp[ ( (0)) (0) ]
62

i kk db ibk i b
k

∞− π

∞ ∞
−∞

′′χ +Θ + Θ =
π ∫   

 
reg/4

reg 1/3 reg 1/3
( (0))2 e= Ai ,

[ | (0) | /2] [ | (0) | /2]

i kk
k k

− π
∞

∞ ∞

 χ +Θπ
−  ′′ ′′Θ Θ 

 (39) 

where in the last equation we identified the integral repre-
sentation of the Airy function Ai using that reg (0) < 0∞′′Θ . 

In the inset of Fig. 6, we compare the differential cross 
section at 2 2= 2Qκ  with the Airy approximation resulting 
from Eq. (39). The latter reproduces the exponential de-
crease for large angles reg< (0)∞χ −Θ  corresponding to the 
dark side and also the oscillations on the bright side, 

reg> (0)∞χ −Θ , of the rainbow angle. It of course fails close 
to forward scattering and for positive angles > 0χ  where 
the classical deflection angle has lost its support. 

Close to 2 21.6Qκ ≈  even the derivative reg (0)∞′′Θ  van-
ishes, see inset of Fig. 5, giving rise to a cubic rainbow 
effect [51]. Finally, for smaller values of 2κ  there also ex-
ist two pairs of classical trajectories that interfere in the 
differential cross section. 

Fig. 6. (Color online) Differential cross section of high-energy 
magnons (38) for various values of 2 2/Qκ . It is asymmetric with 
respect to = 0χ  due to skew scattering, and the oscillations are 
attributed to rainbow scattering. The inset compares the curve for 

2 2/ = 2Qκ  with the Airy approximation (39) (green solid line) 
with the same units on the vertical axis; the arrow indicates the 
position of the corresponding rainbow angle reg (0)/k Q∞− Θ . 
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3.3. Total and transport scattering cross section 

We continue with a discussion of the total, 

tot = /d d d
π

−π

σ χ σ χ∫ , and the transport scattering cross sec-

tion defined in Eq. (4). In order to determine their high-
energy limit, one first expresses 2/ =| ( ) |d d fσ χ χ  in terms 
of the exact representation (36) for the scattering amplitude 

( )f χ  and evaluates the integral over χ. Afterwards one 
takes the high-energy limit k →∞  with keeping the impact 
parameter = ( 1) /b m k−  fixed. 

The total scattering cross section of the skyrmion then 
reduces to  

 2
tot = 4 (sin ( )) .db b

∞
∞

∞
−∞

σ δ∫  (40) 

It saturates to a finite value in the high-energy limit, and its 
dependence on κ  is shown in Fig. 7. It decreases with in-
creasing κ  and thus decreasing skyrmion radius rs as ex-
pected. One might expect that tot ~ sr

∞σ  which however 
only holds approximately. 

Using that ( )b∞δ  is an odd function of b , we obtain for 
the transport scattering cross section ( )⊥σ ε  in the high-
energy limit  

 2

0

8( ) = ( )(sin ( )) =db b b
k

∞
∞
⊥ ∞ ∞′σ ε δ δ∫  (41) 

 
0sin(2 )8 4= = .

2 4k k
∞ ∞

−π

δ δ π − 
 

 (42) 

In the last line, we further used the boundary values of the 
function ( )b∞δ . It vanishes ( ) 1/k∞

⊥σ ε  , but with a univer-
sal prefactor that is independent of κ . 

Finally, for the longitudinal transport scattering cross 
section we obtain for 1skr >>  

 2 2
|| 2

0

4( ) = (2( ) (sin ) sin cos ).db
k

∞
∞

∞ ∞ ∞ ∞ ∞′ ′′σ ε δ δ − δ δ δ∫   

  (43) 

After integrating by parts this simplifies to  

 2 reg 2
|| 2

0

4 1( ) = ( ( )) = ( ( )) .
2

db b db b
k

∞ ∞
∞

∞ ∞
−∞

′σ ε δ Θ∫ ∫  (44) 

It is given by the square of the classical deflection angle 
(33) integrated over the impact parameter b . It vanishes as 

2
|| 1/k∞σ ∼  in the high-energy limit with a prefactor whose 
κ  dependence is shown in Fig. 8. On dimensional grounds 
one might expect 2 ~ 1/ sk r∞σ



 which again only holds ap-
proximately. 

3.4. Magnon pressure in the high-energy limit 

We have shown in Ref. 29 by considering the energy-
momentum tensor of the field theory that the monochro-
matic plane wave of (35) with wavevector ˆ= kxk  leads to 
a momentum-transfer force in the Thiele equation of mo-
tion of the form given in Eq. (3) with the magnon current  

 2 0
eff

mag

| |ˆ= | | = .
4B

m kx A
g Mε µ π

GJ v


  (45) 

In the second equation, we have introduced the effective 

velocity 2
eff

mag
ˆ= | | kx A

M
v   and 0| |= 4 /( )Bm gπ µG   

with the purpose of comparing with Eq. (2). 
This momentum transfer is illustrated in Fig. 9. In the 

high-energy limit, the transversal and longitudinal forces 
are given by  

 effˆ ˆ= ( )( ) = 4 ( ) = ,k z z∞
⊥ ⊥ ε εσ ε × π × − ×F J J G v  (46) 

Fig. 7. Total scattering cross section of the skyrmion in the high-
energy limit, Eq. (40), as a function of 2 2/Qκ . It decreases for 
increasing external magnetic field strength, 2κ . 

Fig. 8. The longitudinal transport scattering cross section, Eq. 
(44), vanishes as 2

|| 1/k∞σ ∼  in the high-energy limit. The panel 
shows the κ-dependence of the prefactor. 
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 reg 2
|| || eff

| |= ( ) = ( ( )) ,
8

k k db b
∞

∞
ε ∞

−∞

σ ε Θ
π ∫

GF J v  (47) 

where we used Eqs. (41) and (44) as well as ˆ= | | z−G G . 
They are indeed of the form given in Eq. (2). The transver-
sal momentum-transfer force, ⊥F , is universal, and ||F  is 
determined by the β parameter of Eq. (5) after identifying 

( )bΘ  with the classical deflection angle reg ( )b∞Θ . 
Is there an intuitive classical interpretation of these 

momentum-transfer forces? From the classical limit of the 
Schrödinger equation (27) follows the equation of motion 
for the coordinate ( )tr  of a classical magnon particle [25]  

 mag regˆ= ( (| |)),M z×r r r   (48) 

with the regular part of the effective magnetic flux distribu-
tion reg  of Eq. (24). Note that we have chosen in Eq. (27) 
the charge to be +1. Consider the change of momentum, δp, 
of this magnon particle after scattering off the static 
skyrmion by integrating the left-hand side of Eq. (48), 

 mag m( ) = ( ) = ( ( ) ( ))agb dtM t M
∞

−∞

δ ∞ − −∞ =∫p r r r     

 
cos ( ) 1

= .
sin ( )

b
p

b
Θ − 

 − Θ 
 (49) 

In the last equation, we have exploited that at large dis-
tances the magnitude of momentum mag | ( ) |=M p±∞r  
remains unchanged due to energy conservation, while the 
orientation of velocity is determined by the scattering an-

gle ( )bΘ , see Fig. 1(b), that depends on the impact parame-
ter b  of the trajectory. 

This momentum ( )bδp  is transferred to the skyrmion. 
The momentum-transfer force on the skyrmion due to a 
current of classical magnon particles along x̂  with density 

0 /( )Bm gµ  and velocity eff eff= | |v v  is then given by  

 || 0
eff= = ( ),

B

F m
v db b

gF

∞

⊥ −∞

 
− δ   µ 

∫F p  (50) 

with ||/ ||/= | |F ⊥ ⊥F . In the high-energy limit, the scattering 
is in forward direction so that we can expand Eq. (49) in 
the deflection angle ( )bΘ  and the force becomes with 

=p k   

 
2

0
eff

1 ( ( ))
= .2

( )B

bm
v k db

g b

∞

−∞

 Θ 
 µ  Θ 

∫F   (51) 

Finally using that the integral ( ) = 4 /db b k
∞

−∞

Θ π∫  is quan-

tized in the high-energy limit, that we already know from 
the discussion in the context of Eq. (33), we recover 
Eqs. (46) and (47). 

For the understanding of the universality of F⊥ , it is al-
so instructive to consider alternatively the right-hand side 
of the classical equations of motion (48). By integrating 
the right-hand side, one obtains for the transversal momen-
tum change  

 2 2
reg reg= ( ) (| |) ( ).yp dt x dx b x

∞ ∞

−∞ −∞

δ − ≈ − +∫ ∫r  (52) 

In the last equation we employed the high-energy approx-
imation by straightening the magnon trajectory. It follows 
then for the transversal force  

 2 20
eff reg= ( )

B

m
F v db dx b x

g

∞ ∞

⊥
−∞ −∞

+ =
µ ∫ ∫   (53) 

 0
eff= 4 ,

B

m
v

g
π

µ
  (54) 

where its universality is now directly related to the quan-
tized total flux of reg . 

4. Summary 

The scattering of high-energy magnons with 
wavevectors 1skr >>  off a magnetic skyrmion of linear size 
rs is governed by a vector scattering potential. The associ-
ated effective magnetic field is related to the topological 
charge density of the skyrmion and is exponentially con-
fined to the skyrmion area. The total flux is determined by 
the topological skyrmion number and is quantized. 

Fig. 9. (Color online) An incoming monochromatic magnon cur-
rent εJ  leads to a momentum-transfer force F  that is deter-
mined by the transport scattering cross sections, see Eq. (3). The 
image shows the magnon wavefunction in the WKB approxima-
tion with the skyrmion being represented by the circle with radius 
rs [29]. For high-energy magnons with wavevector 1skr >> , the 
transversal force dominates, || / 1/F F k⊥ ∼ , resulting in a skyrmion 
motion t∂ R  approximately antiparallel to εJ  with a small 
skyrmion Hall angle 1/kΦ  . 
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When a magnon traverses the skyrmion, classically 
speaking, it experiences the resulting Lorentz force and is 
deflected to a preferred direction determined by the sign of 
the emergent magnetic flux. This results in skew scattering 
with a differential cross section that is asymmetric with 
respect to forward scattering, see Fig. 6. As the flux distri-
bution is rotationally symmetric, the classical deflection 
angle ( )bΘ  as a function of the impact parameter b  is even 
in the high-energy limit, ( ) = ( )b bΘ Θ − . As a consequence, 
for a given deflection angle Θ there exist corresponding 
classical trajectories with positive as well as negative b , 
i.e., that pass the skyrmion on the left-hand as well as on 
the right-hand side. These trajectories interfere which leads 
to oscillations in the differential cross section, an effect 
known as rainbow scattering. 

Magnons hitting the skyrmion also transfer momentum 
giving rise to a force in the Thiele equation of motion, see 
Eq. (3). In the high-energy limit, this force can be inter-
preted classically and assumes the form of Eq. (2). While 
the transversal momentum-transfer force, F⊥  is universal 
and determined by the total emergent magnetic flux, the 
longitudinal momentum-transfer force, ||F  is obtained by 
integrating 2( ( ))bΘ  over the impact parameter b  leading to 
the parameter εβ  of Eq. (5). Since for large energies the 
classical deflection angle is small, ( ) 1/b kΘ  , the momen-
tum transfer is mainly transversal, || / 1/F F k⊥  . This leads 
to a skyrmion motion t∂ R  approximately antiparallel to the 
magnon current εJ  with a small skyrmion Hall angle 

= / | |εΦ β G  defined in Fig. 9, 

 

2

2
( ( ))

1 1= = ( ( )) ,
2 8

( )

b db
k b db

k
b db

∞

∞
−∞
∞

−∞

−∞

Θ

Φ Θ ∝
π

Θ

∫
∫

∫
 (55) 

where the integral ( ) = 4 /b db k
∞

−∞

Θ π∫  is universal in the 

high-energy limit. Interestingly, the Hall angle Φ  at high 
energies increases with decreasing skyrmion radius rs, 
which is shown in Fig. 8 identifying ||= ( )/4k ∞Φ σ ε π. 

While the skyrmion Hall angle Φ  is small at high ener-
gies 1skr >> , we note that it increases with decreasing en-
ergy and assumes the maximum value[29] = /2Φ π  in the 
low-energy limit 1skr   where s-wave scattering prevails 
and Eq. (2) ceases to be valid. 

We acknowledge helpful discussions with M. Mostovoy 
and A. Rosch. 
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