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A spin-polarized current in a nanocontact has been shown to induce the formation of a magnetic vortex 
at the nanocontact by the Oersted field, and spin-torque drives the vortex core in an elliptical orbit about 
the nanocontact. For the case of an external in-plane magnetic field in an extended free layer, the magnetization 
will be uniform far from the nanocontact, implying that vortex formation must be accompanied by the formation 
of an antivortex. Using the Thiele approach to describe the vortex-antivortex dynamics it is shown that the fre-
quency of gyrotropic motion of the vortex is a function of the nanocontact current which is linear for large vor-
tex-antivortex separations and it becomes nonlinear as the separation is decreased. The equilibrium vortex-
antivortex separation can be controlled by the nanocontact current as well as the external magnetic field. 

PACS: 75.10.Hk Classical spin models; 
75.75.Jn Dynamics of magnetic nanoparticles; 
73.90.+f Other topics in electronic structure and electrical properties of surfaces, interfaces, thin films, 
and low-dimensional structures. 
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1. Introduction 

Highly nonuniform spin distributions with nontrivial to-
pology, such as magnetic vortices, domain walls, as well as 
other spin structures currently have great perspectives for 
usage in spintronic and magnonic devices. The Landau–
Lifshitz equation [1], which was first introduced 80 years 
ago as a phenomenological equation to describe the dy-
namics of magnetization field, is the best tool for descrip-
tion of such states. The extremely important point is that 
this equation allows significant simplification of the prob-
lem of soliton dynamics through the collective variable 
approach. For the gyroscopic motion of the magnetic vor-
tex this equation was first derived by Thiele [2]. Presently 
the Thiele equation is widely used for description of vortex 
oscillations in magnetic nanoparticles and their ordered 
arrays, see [3–10] and the article of G.M. Wysin in this 
Special Issue [11]. 

Magnetic oscillations in nanocontact systems [12–14] 
can be generated by spin-torque [15,16] effects where 
damping is compensated resulting in self-sustained oscilla-

tions with gyrotropic motion in the sub-GHz range [3,4] of 
the vortex as an example having potential applications. The 
magnetic vortex is a stable structure that can be the actual 
ground state of a ferromagnetic nanodisk owing to the con-
fining nature of a disk; in addition, the vortex has topologi-
cal charge, enhancing the stability of this structure. Recent-
ly gyrotropic oscillations driven by spin-torque have been 
observed [17–19] in nanopillar structures. In a large non-
confined ferromagnetic film the ground state is the uniform 
ferromagnetic state, but the Oersted field about a nano-
contact current can induce vortex formation [20–24] with 
spin-torque driving gyrotropic motion. However, if the 
magnetization far from the nanocontact remains uniform 
this implies the formation of an antivortex if topological 
charge is to be conserved. In this article the motion of a 
vortex formed at a nanocontact driven by spin torque is 
analytically investigated taking into account topological 
charge conservation and the interaction with the antivortex. 

Some of the earliest [20] experimental work on the dy-
namics of nanocontact systems was done with an in-plane 
external field and the time-dependent magnetization driven 
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by a spin-polarized current. A simplified picture of the 
nanocontact is shown in Fig. 1 where the fixed-layer mag-
netization as well as the external field are in-plane and the 
layers extend much further than the nanocontact. In these 
systems the magnetization dynamics were investigated 
through the giant magnetoresistance (GMR) effect where 
the voltage variation across the nanocontact is a measure of 
the time-dependent magnetization at the nanocontact. For 
small field values (up to 4 mT) a high amplitude sub-GHz 
mode was observed as well as additional lower amplitude 
higher harmonics. These modes also exhibit hysteresis 
effects where a critical current of about 10 mA is required 
for the formation of the sub-GHz mode, but the mode per-
sists as the current is decreased to about 4 mA with a weak 
dependence of frequency on current. Later numerical and 
analytical investigations [21] have indicated that the vortex 
forms in the Oersted potential well and spin-torque forces 
the vortex core out of the nanocontact into an elliptical 
orbit about the nanocontact center. Analytical results in 
particular have shown that the orbital frequency is a linear 
function of the current and the orbital radius only depends 
on the device parameters; however, this was done for the case 
of the single rigid vortex. In the numerical simulations [21] 
initial vortex-antivortex (VA) formation was observed with 
the antivortex forced outside of the system possibly due to 
the limiting system size, and in most previous analytical 
work the antivortex was ignored because of complications 
to the Landau–Lifshitz equation. Clearly, the orbital mo-
tion of the vortex about the nanocontact will result in a time-
dependent magnetization at the nanocontact and a cor-
responding oscillating voltage owing to the GMR effect, 
but the effect of an antivortex on the observed GMR volt-
age is not understood. Indeed, for the case of the well-
separated VA pair the antivortex will have negligible effect 
on the GMR voltage. In order for the antivortex to have an 
observable effect it is necessary to have a large enough VA 
interaction, and it will be shown that the interaction de-
pends on both the nanocontact current as well as the mag-
nitude of an in-plane magnetic field. 

Possible technological applications involving the dy-
namics of magnetic vortices are microwave oscillators [18] 

constructed from nanopillars or nanocontacts driven by 
spin torque. The frequencies of these oscillators can be 
controlled by a relatively low current density, the emission 
has a narrow linewidth, and they can operate without an 
external magnetic field. It has further been shown that the 
oscillation frequency is stable and can be adjusted [25] 
through the current with a very short (nanosecond) relaxa-
tion time. A recent advance has been the synchronization 
[23,26,27] of these oscillators, and the importance of the 
antivortex is enhanced by the recent development of arrays 
of nanocontact oscillators [23,28,29] that are synchronized 
through intermediate antivortices. The motivation for this 
research is a better understanding of the effect of the 
antivortex on vortex dynamics in the single nanocontact 
system when the VA interaction is significant. 

2. Vortex-antivortex dynamics 

To investigate vortex dynamics through the GMR effect 
we include the complete vortex-antivortex pair having zero 

1-π topological charge by introduction of a small external 
magnetic field. This in-plane field will fix the magnetiza-
tion direction far from the nanocontact and a large enough 
Oersted field then results in a VA pair, stable against small 
perturbations. For the static VA configuration as illustrated 
in Fig. 2, the vortex is at the nanocontact center defined to 
be the origin, the antivortex is on the y-axis, and the exter-
nal field defines the x-direction. The coordinate system 
used to describe VA positions if shown in Fig. 3, where the 
two origins are at the static equilibrium positions of the 
vortex and antivortex. The vortex is in a potential well at 
the nanocontact resulting mainly from the current, and as 
in previous models the restoring force results in sub-GHz 

Free layer 

Fixed layer 

Fig. 1. Nanocontact setup with gray representing nonmagnetic 
conductors, crosshatch represents magnetic layers and white rep-
resents an insulator. The current is along the nanocontact axis and 
an external field as well as the magnetization are in the layers 
perpendicular to the axis. 

Fig. 2. The vortex-antivortex structure with the vortex centered 
on the nanocontact. The external field is in the x-direction and the 
antivortex is at an energy minimum on the y-axis. 

y 

x 

1002 Low Temperature Physics/Fizika Nizkikh Temperatur, 2015, v. 41, No. 10 



Vortex-antivortex dynamics driven by spin-torque in a nanocontact 

vortex motion about the nanocontact center. The antivor-
tex, on the other hand, is in a potential well defined by 
both the nanocontact current and Zeeman field. Therefore, 
vortex and antivortex motion is determined by these two 
conservative potentials as well as spin-torque and dissip-
ation. 

To describe the dynamics we begin with the Landau–
Lifshitz equation with Gilbert dissipative term and includ-
ing spin-torque, STΓ  

 
0

ST
s

W d
t M dt

∂ γ δ
= + α × + Γ

∂ µ δ
m mm

m
. (1) 

Here (sin cos , sin sin , cos ) / sM= θ φ θ φ θm  is the normal-
ized free-layer magnetization in terms of polar and azimu-
thal angles, sM  is the saturation magnetization, and α is 
the Gilbert damping parameter. The torque for a nanocon-
tact current, I and fixed layer polarization, p̂ is given by 

 ( )ˆ ˆST I p mΓ = −σ × ×  m , (2) 

where the constant, 2
0 0/ ( 4 )sP e M r Lσ = γ µ π  is determined 

by nanocontact parameters such as the nanocontact radius, 
0r , the free-layer thickness, L and 1P ≤  is a polarization 

efficiency. 
In the following the collective coordinates for the posi-

tions of the vortex and antivortex cores, ,V AR  (as defined 
in Fig. 3) will be used as dependent variables rather than 
the normalized magnetization. This is accomplished through 
conversion of Eq. (1) to a Thiele form [2] to give a non-

Newtonian equation of motion including conservative and 
nonconservative forces on the vortex and antivortex, 

 , ,

,
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where 0 ˆ2 sM qz= πµ γG  is the gyrovector for a vortex 
having core polarization, 1q = ± , and W is the energy from 
which the conservative forces are derived. The first non-
conservative force on the right hand side is the Gilbert 
damping force with 

 ( )2 20 sM
D d r

µ
= ∇

γ ∫ m . (4) 

The spin-polarized current force is obtained from STΓ  in 
terms of an integral involving the magnetization polar and 
azimuthal angles, 

 2 2sin
2ST

NC

GF I d r= −σ θ∇φ
π ∫ , (5) 

where the integration is over the nanocontact area and I is 
the nanocontact current. Note that despite the fact that the 
general formula for the force contains 1q = ± , the sign of 
the gyroconstant for the vortex and antivortex is the same, 
because their winding numbers are opposite. 

The conservative force on the left hand side of Eq. (3) 
is obtained from the energy, ex MS Oe ZW W W W W= + + +  
including the sum of exchange, magnetostatic, and Zeeman 
terms. There are two Zeeman contributions to the energy 
with OeW  representing the energy from the Oersted–Ampere 
field (referred to as the Oersted energy), and ZW  is the en-
ergy from a uniform external field (referred to as the Zee-
man energy). To evaluate each of these terms the vortex-
antivortex ansatz 

 ( ) 1 1

0
, tan tanV A

V A

x X x Xr
y Y y Y Y

− −   − −
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,  (6) 

is used, where , ,( , )V A V AX Y  are the positions of the vortex 
and antivortex cores relative to their respective static equi-
librium positions in Fig. 3 and 0Y  is the static equilibrium 
position of the antivortex on the y-axis. This is part of the 
well-known Belavin–Polyakov soliton [30] in the isotropic 
ferromagnet resulting the structure shown in Fig. 2 with 
the magnetization in the x̂-direction far from the vortex-
antivortex pair. Note that the complete solution also in-
cludes an expression for the polar angle, but owing to 
magnetostatic effects in the ferromagnetic film it is as-
sumed that the polar angle, ( ), 2rθ χ = π  except at the vor-
tex and antivortex cores where 0θ→  within a very small 
area of radius the order of the exchange length, 0l . Also 
because of the symmetry of this ansatz the integral giving 
the magnetostatic energy from the magnetostatic volume 
charge (∇⋅m) is zero, and there is a small contribution 
from effective surface magnetostatic charge at the vortex 

Fig. 3. Coordinate system for the individual vortex and anti-
vortex, where the vortex system is centered at the nanocontact 
(origin of the x, y system) and the antivortex is centered on 
the y-axis. 
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core. Moreover, the exchange energy has a log-dependence 
on the VA separation resulting in a negligible force on the 
vortex or antivortex for typical VA separations. Thus, the 
Zeeman and Oersted energies give the dominant contribu-
tions to the conservative forces in the Thiele equation. 

3. Vortex-antivortex energy 

Next, contributions to the Oersted and Zeeman energies 
are calculated. Referring to the nanocontact current struc-
ture of Fig. 1, the Oersted field is approximated by the field 
produced by an infinite cylindrical conductor of radius 0r , 
with 2

0 02B Ir r= µ π  inside the cylinder and 0 2B I r= µ π  
outside of the cylinder. 

For calculation of the energy in the symmetry of the Oerst-
ed field it is convenient to express the vortex and antivortex 
positions in polar coordinates centered at their respective 
static equilibrium positions , , , ,( cos , sin )V A V A V A V AR Rϕ ϕ  
where the vortex polar coordinates are centered at the 
origin and the antivortex polar coordinates are centered at 

0(r Y= , 2χ = π ) as shown in Fig. 3. Then the energy is 
expressed as 

 0
2
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and the integration is over a polar ( ,r χ) coordinate system 
with its origin at the nanocontact center. Here 

sin cos cos sinmχ = φ χ − φ χ is the tangential component of 
the normalized magnetization and R  is an upper limit of 
the radial integration to be determined later. 

At this point it is convenient to write the dependence of 
the energy on deviations of the vortex and antivortex from 
their equilibrium positions, with mχ and cosφ expanded in 
series of VR  and AR  referring to the coordinates defined in 
Fig. 3. This results in series of the form, 

2 2
0 1 2 11 22 12V A V A V Am a a R a R a R a R a R Rχ = + + + + + + (8) 

2 2
0 1 2 11 22 12cos V A V A V Ab b R b R b R b R b R Rφ = + + + + + +, (9) 

where the coefficients are integrals over ( , )r χ  which are 
functions of 0Y , I, and B as well as Aφ  and Vφ . The forms 
of these coefficients are presented in Appendix A. For eva-
luation of these coefficients it is first necessary to obtain 
values for 0Y  as a function of both current and external 
field. This can be done by minimization of the energy us-
ing the lowest order terms, 0a  and 0b  with the vortex fixed 
at the nanocontact center and the antivortex on the y-axis. 
However, it is remarked that this minimization shows that 
the antivortex tends to form where the Zeeman and Oersted 
fields cancel on the y-axis, the position of which is 

0 0 2Y I B= µ π . This simple result is accurate to 1 nm when 
compared with the more accurate numerical minimization. 
Moreover, as expected, the linear terms evaluated at the 
vortex and antivortex equilibrium positions will not contri-
bute to the energy since this is indeed an energy minimum. 

Next the upper limit is estimated by considering how an 
external magnetic field has an effect on the value of 
R. Notice that the ansatz of Eq. (6) only gives a magnetiza-
tion along the field ( x̂-direction) as R →∞. However, in a 
nonzero field it is expected that the magnetization will 
align with the field at a finite value of R, so the integration 
limit is defined to be where this alignment occurs when the 
external field is taken into consideration. This value is de-
termined by treating the Zeeman energy as a perturbation 
from which the change in azimuthal angle relative to the 
ansatz, ′φ  is obtained. Next Eq. (6) is approximated for 

0r Y>>  to find an approximate small angle for the ansatz, 
∆φ. Finally the condition, 0′∆φ + φ =  is used to estimate R. 
The details of this upper-limit determination are in Appen-
dix B, and Fig. 4 shows the linear dependence of R on the 
nanocontact current for fields of 1 mT and 3 mT. 

All terms in Eqs. (8), (9) that include the antivortex co-
ordinate will converge according to the small parameter, 

, 0A VR Y  but the terms in the series including only the vor-
tex coordinate, VR  converge too slowly for expression as a 
series; therefore, it is necessary to numerically evaluate the 
energy as a function of VR  with 0AR = . These results are 
shown is Fig. 5 for a nanocontact current of 12 mA in an 
external field of 3 mT with a nanocontact radius of 50 nm. 
Notice that this energy is approximately quadratic inside 
the nanocontact and it is a linear function of VR  outside of 
the nanocontact as was established [21] previously. For all 
other terms the expansions of mχ and cosφ converge and 
they are useful to obtain analytical results regarding the 
asymmetry ( Vφ  and Aφ  dependence) of the VA interaction. 
Using the forms of the coefficients in Appendix A and 
numerical evaluation of the integrals yields the general 
form of the energy to second order in displacements, 

Fig. 4. The upper limit, R versus current for external fields of 
1 mT and 3 mT. 
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where the main contribution to anisotropy is from the VA 
interaction. The coefficient 1k  is obtained from the slope of 
the linear region of Fig. 5 and this coefficient also exhibits 
the most significant current variation with a slight depend-
ence on the external field. The dependence of 1k  on current 
for fields of 1 mT and 3 mT is shown in Fig. 6 where 
a very weak dependence on B is noticed. All of the quad-
ratic parameters in Eq. (10) are calculated by integration 
of the coefficients in the series of Eqs. (8), (9) given in 
Appendix A. Notice that these coefficients have a weak 
dependence on current compared to 1k  as noticed in Fig. 7. 
The only significant dependence occurs for the case 
of small current ( mA8I < ) and large field ( mT3B = ) 
when the VA separation is smallest. 

4. Solution of Thiele equations 

An effect of spin-torque is generation of magnetization 
oscillations balancing the Gilbert damping in the free layer. 
In the case of the vortex only model, the vortex orbit has a 
frequency that is linearly dependent on the nanocontact 
current and the vortex orbit radius only depends on the 
nanocontact parameters independent of the current. To 
investigate the effect of an antivortex on vortex dynamics 
in this system, the set of four equations given by Eq. (3) 
for the vortex and antivortex positions is written in compo-
nent form, 

 V V V
V

WGR DR
R
∂

φ + = −α
∂

   , (11) 
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∂
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A A A

A A

WGR DR
R

∂
+ = −α φ

∂φ
  . (14) 

The simple expression for the spin-torque force in 
Eq. (12) is the direct result of substitution of Eq. (6) into 
Eq. (15) and evaluation of the integral. These equations are 
solved numerically to obtain the vortex and antivortex or-
bital frequencies as well as orbit radii. It is remarked that 
the spin-torque term only occurs in the equations describ-
ing the vortex motion. This is because there is a large in-
crease in the Oersted energy as the antivortex moves off 
of the y-axis and the spin-torque force will be balanced 
by the Oersted force if the antivortex center moves only 
a degree or two off the equilibrium position on the axis. 
Thus, the force on the antivortex from the VA interaction 
is the dominant force driving the antivortex. Finally, it is 
noticed that Eqs. (11), (12) with the linear potential for 

Fig. 5. The energy versus vortex displacement, VR  with a cur-
rent of 12 mA and an external field of 3 mT. 

Fig. 6. The parameter 1k  versus current, I for external fields of 
1 mT (dashed) and 3 mT (solid). 

Fig. 7. The antivortex VA interaction parameters, 2k , 12k , and 

13k  versus current for an external field of 3 mT. 
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the vortex simply result in a linear dependence of frequen-
cy on current reported in Ref. 21. 

The parameters used in the numerical solution of 
Eqs. (11)–(14) are 2 30 GHz,sM γ =  58·10 A/m,sM =  

0.01α = , 0 nm50r =  with the combination of nm5L =  and 
0.3P =  is used as an adjustable parameter that results in a 

vortex orbit radius of about 100 nm. For a small value of 
the external field ( mT1B = ) solution of the Thiele equa-
tions shows that both the vortex and antivortex frequencies 
are equal, but with a phase difference of about 180 degrees 
with the vortex leading the antivortex by a few degrees 
because of dissipation. This is the result expected for the 
antivortex in a quadratic potential driven by the vortex 
orbital motion and locked into the driving frequency of the 
vortex. The frequency versus current is illustrated in Fig. 8, 
which is clearly linear at higher current values with a slope 
of 50–60 MHz/mA as predicted by the vortex only models. 
When the external field is increased to 3 mT the value of 

0Y  decreases, thereby increasing the VA interaction, the 
effect of which is also shown in Fig. 8. At lower values of 
the current the current-dependent frequency is definitely 
nonlinear with a slope of about 26 MHz/mA for low values 
of the current. 

Next consider how the vortex and antivortex radii are 
affected by the antivortex bearing in mind that an increas-
ing field or decreasing current will move the antivortex 
closer to the nanocontact center increasing the vortex-
antivortex interaction. The vortex orbit is almost circular 
and the typical antivortex orbit exhibits a larger eccentrici-
ty than the vortex orbit. For an external field of 3 mT the 
vortex orbit radii and the mean antivortex radii are com-
pared in Fig. 9. Here notice the small change in the vortex 
orbit radius as the current is decreased to 4 mA with a cor-
responding increase in the antivortex mean orbit radius as 
expected since the VA interaction increases with decreas-
ing current. For comparison, the mean antivortex orbit ra-
dii for a field of 1 mT are also in Fig. 9 showing the de-

pendence of the antivortex radii on external field. Using 
these orbit radii it is possible to understand why the sub-
GHz mode was not observed [20] for in-plane fields larger 
than 4 mT when the π phase shift between the vortex and 
antivortex motion is also taken into consideration. For 
small values of the field the sum of the vortex and 
antivortex radii will always be much less than the static 
VA separation so the VA pair will always be well-
separated. However, for an external field of 3 mT and 
nanocontact current of 4 mA with a VA separation of 

0 267Y =  nm, solution of the Thiele equations gives mean 
vortex and antivortex orbit radii of 95 nm and 35 nm, re-
spectively so the phase shift will give a closest VA dis-
tance of about 140 nm. Therefore, for smaller currents and 
larger fields the separation will be further decreased and 
the VA attracting forces such as exchange and the dipolar 
forces between cores can result in VA annihilation. This 
process is beyond the scope of the current work, but it is 
obvious that larger fields and smaller currents will allow 
small VA separations. 

5. Further considerations and conclusion 

Hysteresis effects can be considered by looking at the 
energy required to form a vortex-antivortex pair in the 
form of a Belavin–Polyakov soliton, which is 4BPE A= π  
independent of the VA separation, where 111.3·10 J/mA −=  
is the inhomogeneous exchange constant. The critical cur-
rent for formation is defined to be where the increase, BPE  
is balanced by the decrease in energy from the Oersted 
field, which for small 0 0Y r  is 

 ( )0 0 0 02 logOe sW M I Y Y R r ≈ −µ +  .  

For VA formation it is assumed that the cores are separated 
by more than 02l  so 0Y  is chosen to be in the range 10–20 
nm, and for typical values of the upper integration limit, R  

Fig. 8. Frequency versus current for external fields of 1 mT 
(dashed) and 3 mT (solid). 

Fig. 9. Mean orbit radii versus current. Solid curves correspond 
to the vortex orbit and dashed curves correspond to antivortex 
orbits. 
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the critical current for VA formation is 10–15 mA. After 
formation of the pair spin-torque drives the cores out of the 
nanocontact to a stable orbit radius where the pair remains 
stable to lower values of the current. However, for larger 
values of the in-plane field the value of 0Y  decreases until 
the vortex and antivortex orbits become close and annihila-
tion of the pair occurs. This was observed at a field of 
4 mT in [20] and at this field with 12I =  mA it is noticed 
that the orbits will overlap qualitatively explaining the 
origin of the hysteresis effects. 

In summary, numerical solution of the Thiele equations 
for both the vortex and antivortex indicate that effects can 
observed in nanocontact systems that result from the inter-
action of the vortex and antivortex. For example, a GMR 
devise can only detect time-dependent changes in the mag-
netization at the nanocontact, which is mainly influenced 
by orbital motion of the vortex leading to the linear depen-
dence of the frequency on current for large VA separations. 
However, as the external field is increased, the increasing 
VA interaction allows the development of nonlinearity in 
the frequency versus current. 

Appendix A 

Expansion of mχ and cosφ in series of VR  and AR  re-
sults in the coefficients of Eqs. (8) and (9), 
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where 2 2
0 02 sinr r Y rY− = + − χ . 

The first term in the Eq. (10) is calculated by numerical 
integration of 
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µ∫ ∫ ∫ ∫ ∫ ∫

  (A.9) 

using sin cos cos sinmχ = φ χ − φ χ and the ansatz (6) for the 
magnetization azimuthal angle, φ. The remaining coeffi-
cients are calculated by numerical integration of 

0

0

2 2 22

2
000 0 0 0 0

2
r R R

ij ij ij ij
r

rk I a drd I a drd B b rdrd
r

π π ππ
= χ + χ + χ

µ∫ ∫ ∫ ∫ ∫ ∫   

  (A.10) 

Appendix B 

The correction to the angle φ from the external magnetic 
field is found from a variation of both the exchange and 
Zeeman energy resulting in the nonlinear partial differen-
tial equation 

 2 2
0 sin 0l h∇ φ− φ = , (B.1) 

where 0 sh B M= µ , 2
0 02 sl A M= µ  is the exchange length 

( 111.3·10 NA −=  and 0 5.7 nml = ). This equation is linear-
ized by 0 ( )siny rφ = φ + χ  with 2

0 0∇ φ =  and 0φ  repre-
sents the ansatz of Eq. (6). The right hand side is linearized 
by expansion of 0b  for small 0Y r results in the nonhomo-
geneous linear equation, 

 2 2 0

0
( ) ( ) (1 ) ( )

Y
z y z zy z z y z h z

l
′′ ′+ − + = , (B.2) 

with the variable change, 0( ).z h r l=  
This equation is solved using variation of parameters 

subject to the conditions, 0( )y z = ε and ( ) 0my z =  where 
0 0 0( )z h Y l+=  and 0( )m mz h R l= . Here 0Y +  is slight-

ly larger than the equilibrium value and 50mz ≈  which is 
well outside of the VA region. The general solution is 

 1 1 2 1 0( ) ( ) ( ) ( , )y z c K z c I z M z z= + + , (B.3) 

where 1( )K z  and 1( )I z  are modified Bessel functions and 
the remaining functions are, 

( ) ( ) ( ) ( ) ( )
0

0
0 1 1 1 1

0
,

z

z
Y

M z z h K t I z I t K z dt
l

= −  ∫ , (B.4) 

 ( ) ( ) ( )
( ) ( ) ( ) ( )
1 0 1 0

1
1 0 1 1 1 0

,m m

m m

I z M z z I z
c

K z I z K z I z
ε +

=
−

  (B.5) 

 

( ) ( ) ( )
( ) ( ) ( ) ( )
1 0 1 0

2
1 0 1 1 1 0

,m m

m m

K z M z z K z
c

K z I z K z I z
ε +

= −
− . (B.6) 

For small values of 0Y r , the deviation of the ansatz 
from the x-axis is 0Y r∆φ =  and the correction from the 
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external field is ( )y r′φ = . Therefore, the magnetization 
will be aligned with the x-axis when 

 0( )
Y

y R
R

= , (B.7) 

which is solved numerically to obtain as estimate of 
the integration upper limit, R. 

 
1. L.D. Landau and E.M. Lifshitz, Phys. Z. Sow. 8, 153 (1935); 

see also: L.D. Landau and E.M. Lifshitz, Course of Theoreti-
cal Physics, Vol. 8: Electrodynamics of Continuous Media, 
Nauka, Moscow (1992); Butterworth–Heinemann, Oxford 
(1993). 

2. A.A. Thiele, Phys. Rev. Lett. 30, 230 (1973); A.A. Thiele, 
J. Appl. Phys. 45, 377 (1974). 

3. K. Yu. Guslienko, B.A. Ivanov, V. Novosad, Y. Otani, H. 
Shima, and K. Fukamichi, J. Appl. Phys. 91, 8037 (2002). 

4. K. Yu. Guslienko, W. Scholz, R.W. Chantrell, and V. Novosad, 
Phys. Rev. B 71, 144407 (2005). 

5. B.A. Ivanov and V.A. Stephanovich, Phys. Lett. A 141, 89 
(1989). 

6. J.P. Park and P.A. Crowell, Phys. Rev. Lett. 95, 167201 
(2005). 

7. S.-B. Choe, Y. Acremann, A. Scholl, A. Bauer, A. Doran, 
J. Stöhr, and H.A. Padmore, Science 304, 420 (2004). 

8. J. Shibata and Y. Otani, Phys. Rev. B 70, 012404 (2004). 
9. A.A. Awad, G.R. Aranda, D. Dieleman, K.Y. Guslienko, 

G.N. Kakazei, B.A. Ivanov, and F.G. Aliev, Appl. Phys. Lett. 
97, 132501 (2010). 

10. S.S. Cherepov, B.C. Koop, A.Y. Galkin, R.S. Khymyn, B.A. 
Ivanov, D.C. Worledge, and V. Korenivski, Phys. Rev. Lett. 
109, 097204 (2012). 

11. G.M. Wysin, Fiz. Nizk. Temp. 41, 1009 (2015) [Low Temp. 
Phys. 41, No. 10 (2015)]. 

12. W.H. Rippard, M.R. Pufall, S. Kaka, S.E. Russek, and T.J. 
Silva, Phys. Rev. Lett. 92, 027201 (2004). 

13. W.H. Rippard, M.R. Pufall, S. Kaka, T.J. Silva, S.E. Russek, 
and J.A. Katine, Phys. Rev. Lett. 95, 067203 (2005). 

14. S. Kaka, M.R. Pufall, W.H. Rippard, T.J. Silva, S.E. Russek, 
and J.A. Katine, Nature (London) 437, 389 (2005). 

15. J.C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996). 
16. L. Berger, Phys. Rev. B 54, 9353 (1996). 
17. S. Kasai, Y. Nakatani, K. Kobayashi, H. Kohno, and T. Ono, 

Phys. Rev. Lett. 97, 107204 (2006). 
18. V.S. Pribiag, I.N. Krivorotov, G.D. Fuchs, P.M. Braganca, 

O. Ozatay, J.C. Sankey, D.C. Ralph, and R.A. Buhrman, 
Nature Phys. 3, 498 (2007). 

19. X.W. Yu, V.S. Pribiag, Y. Acremann, A.A. Tulapurkar, 
T. Tyliszczak, K.W. Chou, B. Bräuer, Z.-P. Li, O.J. Lee, 
P.G. Gowtham, D.C. Ralph, R.A. Buhrman, and J. Stöhr, 
Phys. Rev. Lett. 106, 167202 (2011). 

20. M.R. Pufall, W.H. Rippard, M.L. Schneider, and S.E. Russek, 
Phys. Rev. B 75, 140404 (2007). 

21. Q. Mistral, M. van Kampen, G. Hrkac, J.-V. Kim, T. Devolder, 
P. Crozat, C. Chappert, L. Lagae, and T. Schrefl, Phys. Rev. 
Lett. 100, 257201 (2008). 

22. T. Devolder, J.-V. Kim, P. Crozat, C. Chappert, M. Manfrini, 
M. van Kampen, W.V. Roy, L. Lagae, G. Hrkac, and 
T. Schrefl, Appl. Phys. Lett. 95, 012507 (2009). 

23. A. Ruotolo, V. Cros, B. Georges, A. Dussaux, J. Grollier, 
C. Deranlot, R. Guillemet, K. Bouzehouane, S. Fusil, and 
A. Fert, Nature Nanotech. 4, 528 (2009). 

24. T. Devolder, J.-V. Kim, M. Manfrini, W. Van Roy, L. Lagae, 
and C. Chappert, Appl. Phys. Lett. 97, 072512 (2010). 

25. M. Manfrini, T. Devolder, J.-V. Kim, P. Crozat, N. Zerounian, 
C. Chappert, W. Van Roy, L. Lagae, G. Hrkac, and T. Schrefl, 
Appl. Phys. Lett. 95, 192507 (2009). 

26. F.B. Mancoff, N.D. Rizzo, B.N. Engel, and S. Tehrani, 
Nature 437, 393 (2005). 

27. S.I. Kiselev, J.C. Sankey, I.N. Krivorotov, N.C. Emley, R.J. 
Schoelkopf, R.A. Buhrman, and D.C. Ralph, Nature 425, 
380 (2003). 

28. A. Ruotolo, V. Cros, B. Georges, A. Dussaux, J. Grollier, 
C. Deranlot, R. Guillemet, K. Bouzehouane, S. Fusil, and 
A. Fert, Nature Nanotech. 4, 528 (2009). 

29. C.E. Zaspel, Appl. Phys. Lett. 102, 052403 (2013). 
30. A.A. Belavin and A.M. Polyakov, JETP Lett. 22, 245 (1985).

 

1008 Low Temperature Physics/Fizika Nizkikh Temperatur, 2015, v. 41, No. 10 


	1. Introduction
	2. Vortex-antivortex dynamics
	3. Vortex-antivortex energy
	4. Solution of Thiele equations
	5. Further considerations and conclusion
	Appendix A
	Appendix B

