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The wave solutions of the Landau–Lifshitz equation (spin waves) are characterized by some of the most 
complex and peculiar dispersion relations among all waves. For example, the spin-wave (“magnonic”) dispersion 
can range from the parabolic law (typical for a quantum-mechanical electron) at short wavelengths to the 
nonanalytical linear type (typical for light and acoustic phonons) at long wavelengths. Moreover, the long-
wavelength magnonic dispersion has a gap and is inherently anisotropic, being naturally negative for a range of 
relative orientations between the effective field and the spin-wave wave vector. Nonuniformities in the effective 
field and magnetization configurations enable the guiding and steering of spin waves in a deliberate manner and 
therefore represent landscapes of graded refractive index (graded magnonic index). By analogy to the fields of 
graded-index photonics and transformation optics, the studies of spin waves in graded magnonic landscapes can 
be united under the umbrella of the graded-index magnonics theme and are reviewed here with focus on the chal-
lenges and opportunities ahead of this exciting research direction. 

PACS: 75.30.Ds Spin waves; 
75.75.–c Magnetic properties of nanostructures; 
75.78.–n Magnetization dynamics. 

Keywords: magnon, spin waves, graded-index, magnetization. 

1. Introduction

It can be somewhat surprising to recognize that the entire 
field of magnonics [1] — the study of spin waves [2,3] — is 
built upon the foundation of the Landau–Lifshitz equation 
[4]. In an ordered ensemble of spins, immediate (and some-
times also somewhat more distant) neighbours are coupled 
via the quantum-mechanical exchange interaction, while the 
interaction between spins at further distances from each oth-
er is dominated by the magneto-dipole field, described by 
the Maxwell equations. By perturbing the static configura-
tion of spins locally, propagating spin waves can be excited. 
The Landau–Lifshitz and Maxwell equations operate with 
the classical magnetization vector (M) defined as the aver-
age magnetic moment (associated with the spins) per unit 
volume. In this approximation, the spin waves take the form 
of propagating waves of precessing magnetization, and the 
Landau–Lifshitz equation relates the precession of the mag-
netization to the effective magnetic field, which can also be 
a function of the magnetization distribution in the sample. 

Until recently, the majority of studies in magnonics 
dealt with samples either having or assuming uniform con-
figurations (henceforth, we often refer to these as “land-
scapes”) of the magnetization and magnetic field. This 
simplicity enabled detailed studies of the spin-wave 

(“magnonic”) dispersion and the spectrum of standing spin 
waves, which have their wave vector quantized due to con-
finement by the geometrical boundaries of the sample.  It 
has been established that the magnonic dispersion is intrin-
sically anisotropic in the dipole and dipole-exchange (i.e. 
long-wavelength) regimes but is isotropic in the exchange 
(short-wavelength) regime. In particular, the anisotropy of 
the magnonic dispersion can lead to extremely peculiar 
character of spin-wave propagation and scattering from 
geometrical boundaries [5–9]. Nonetheless, the direction of 
the spin-wave beam remains constant as long as the mag-
netic landscape remains uniform. 

However, it was soon realized and increasingly often 
exploited that, by deforming the magnetic landscape via 
making either the magnetization or the effective magnetic 
field or both non-uniform, the propagation path of spin 
waves could be deliberately modified. The study of spin 
waves in continuously varying magnetic landscapes forms 
the scope and definition of the field of graded-index 
magnonics [10]. This is similar in spirit to (and indeed, has 
been inspired by) graded-index optics [11] (or transfor-
mation optics [12]), which seek to modify the light disper-
sion in photonic and electromagnetic systems using a spa-
tially varying (“graded”) refractive index. However, the 
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magnonic dispersion described by the Landau–Lifshitz 
equation is arguably far more complex and peculiar as 
compared to that of light, thereby offering extremely rich 
opportunities and a bright outlook to the field of graded-
index magnonics.  The field of magnonics has received a 
tremendous amount of attention in recent years, particular-
ly due to the potential for spin waves to act as information 
carriers within the data storage, communication and pro-
cessing technologies [13]. It is therefore perceived that 
graded-index magnonics as a theme may well simplify the 
construction of, and indeed give rise to, many technologi-
cal applications just as transformation optics has done for 
electromagnetic technologies. 

Here, we present a nonexhaustive review of the concept 
of the graded-index magnonics together with the key re-
search results and directions that are united by this theme.  
We begin by briefly reminding the reader of the key equa-
tions governing the dispersion of spin waves in uniform 
media and their scattering from magnetic non-uniformities. 
The path of spin-wave beams through landscapes with a 
continuous variation of parameters that determine mag-
nonic dispersion is then postulated to be a result of multi-
ple scattering events from infinitesimally weak non-uni-
formities [14–16]. This idea is fed into the following 
review and discussion of a representative selection of stud-
ies of spin waves in nonuniform magnonic landscapes, 
which aim to show the diversity of phenomena falling un-
der the markedly broad umbrella of the graded-index 
magnonics concept. The discussion is illustrated using nu-
merical solutions of the Landau–Lifshitz equation (micro-
magnetic simulations [17,18]) obtained using Object-
Oriented Micro-Magnetic Framework [19]. The paper is 
concluded with some general remarks on further progress 
in the field, with emphasis on opportunities arising from 
mapping ideas and methodology from transformation op-
tics onto the exceptionally rich world of the Landau–
Lifshitz equation and its solutions for graded-index mag-
nonic media and devices. 

2. Dispersion, propagation and scattering of spin waves 
in uniform thin magnetic films 

As for any waves, the direction of the spin-wave propa-
gation is given by the group velocity (vg), calculated as the 
gradient of the frequency ( 2 )fω = π  in the reciprocal 
space.  The group-velocity vector is therefore orthogonal to 
curves of constant frequency, often referred to as iso-
frequency curves (or surfaces in the 3D case) [14]. Hence, 
we begin by reviewing the key results concerning the 
magnonic dispersion in thin-film magnetic samples. 

The exchange interaction makes a negligible contribu-
tion to the dispersion of long-wavelength spin waves, 
which are therefore termed “magnetostatic” or “dipolar” 
waves. Their dispersion is implicitly defined by [20,21] 
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where s is the film thickness, ky and kz are the in-plane 
projections of the wave vector with length k, and µ and v 
are 
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where S4 ,M Mω = πγ  ,H iHω = γ  where Hi is the internal 
static magnetic field aligned along the z-axis, MS is the 
magnetization of saturation and γ is the gyromagnetic ratio. 

For each specific frequency value, Eq. (1) describes an 
isofrequency curve, every point of which corresponds to 
the wave vector of a spin wave that is allowed to propagate 
at this frequency. Fig. 1(a) shows two typical isofrequency 
curves for dipolar spin waves in a 7.5 μm thick thin film of 
yttrium–iron–garnet (YIG), assuming Hi = 1.25 kOe and 
MS = 139 G. It is easy to see that generally the direction of 
the group velocity (normal to the curve) is not collinear 
with that of the wave vector, which is a direct consequence 
of the anisotropy of the dispersion relation. One of the two 
symmetry axes of the isofrequency curves is parallel to the 
magnetization. If ω is greater (smaller) than the frequency 
of the uniform ferromagnetic resonance FMRω =

( ),H H M= ω ω +ω  the projection of the group velocity 
onto the direction of the wave vector is positive (negative). 

As the spin-wave wavelength gets shorter, the exchange 
interaction cannot be neglected anymore and needs to be 
taken into account on equal footing with the magneto-
dipole interaction. The dispersion of such so-called “di-
pole-exchange” spin waves can be written as [22] 

 2 2
00( )( )H H MDk Dk Fω = ω + γ ω + γ +ω , (3) 

where 2 / SD A M=  is the exchange stiffness (A is the ex-
change constant) and the zeroth dipole-dipole matrix ele-
ment F00 is defined as 
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Typical dipole-exchange isofrequency curves are shown 
in Fig. 1(b) for a 100 nm thick Permalloy [23] thin film, 
biased by Hi = 500 Oe. As the frequency of the dipole-
exchange spin wave increases, the anisotropy of the disper-
sion decreases. At very short wavelength (and therefore 
very high frequencies), the isotropic exchange interaction 

Low Temperature Physics/Fizika Nizkikh Temperatur, 2015, v. 41, No. 10 977 



C.S. Davies and V.V. Kruglyak 

dominates the magnonic dispersion. The dispersion of ex-
change spin waves is isotropic, and so, the corresponding 
isofrequency curves have circular shape. 

The isofrequency curves presented in Fig. 1 are suffi-
cient on their own to describe the propagation of spin 
waves across uniformly-magnetized media, e.g. to explain 
the origin of spin wave caustics [9,24]. Spin waves excited 
by a nearly point-like magnonic source [9,25,26] have a 
broad distribution of wave vectors. However, as can be 
seen from Fig. 1, significant sections of the magnetostatic 
isofrequency curves are nearly straight. Hence, whilst spin 
waves with a range of wave vectors are excited, their group 
velocities associated with these wave vectors tend to have 
similar, nearly collinear directions, leading to the for-
mation of tightly focused, narrow spin-wave caustic 

beams. In context of the perceived magnonic technology, it 
is important to note that the noncollinearity of the mag-
nonic phase and group velocities within the beams repre-
sents a complication for designs of magnonic devices ex-
ploiting spin-wave phase [1,27–29]. 

The scattering (i.e. reflection and refraction) of spin 
waves from an interface between two uniform magnetic 
media [30] can also be described using the isofrequency-
curve method. Let us first consider a magnonic caustic beam 
propagating across a uniform 7.5 μm thick YIG film biased 
by a magnetic field of non-uniform strength. For simplicity, 
we will assume that the field is parallel to the z-axis but its 
strength takes different values in and then remains constant 
within each of regions A, B and C of the sample (Fig. 2 (a)), 
so that Hi,A = Hi,C = 11.7 kOe < Hi,B = 12 kOe. Spin waves 
with frequency of 34.8 GHz and a broad distribution of 
wave vectors are excited by a dynamic field localized at the 
bottom left corner of the sample. As the spin wave beam 
propagates from Region A to B, it refracts away from the 
normal to the interface and then again refracts towards the 
normal as it propagates from Regions B to C (Fig. 2 (a)).The 
reflections of the beam from each interface and edge of the 
sample are also visible, albeit with a reduced intensity. 

To understand the behavior observed in Fig. 2(a), the 
isofrequency curves belonging to each region of the sample 
are plotted in Fig. 2(b). Upon increasing the effective field 
strength (while keeping the frequency and the magnetization 
orientation fixed), the magnetostatic isofrequency curves on 
either side of the ky-axis are pushed away from each other, 
leading to an increased gradient along their quasi-linear sec-
tions. We note that this behavior occurs only for 

,FMRω < ω  as in the present case, but is reversed otherwise. 
The incident spin waves in Region A have a range of wave 

Fig. 1. (a) (Color online) Typical isofrequency curves of magne-
tostatic spin waves in a YIG film are plotted using Eqs. (1) and 
(2) for frequencies above (5.8 GHz) and below (5 GHz) the FMR 
frequency. Examples of group velocities vg corresponding to 
wave vectors k are indicated schematically on each curve. (b) 
Typical isofrequency curves of dipole-exchange spin waves in a 
Permalloy thin film are plotted using Eq. (3) for frequencies of 
10 GHz and 17 GHz. 
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vector values and directions, even though the associated 
group velocities are nearly collinear (as explained earlier). 
Let us fix the wave-vector component that is parallel to the 
interface, i.e. ky. The beam directions in the different regions 
of the sample will then be given by the normal to the 
isofrequency curves at points of their intersection by a verti-
cal line corresponding to the selected ky value. 

The concept presented in Fig. 2 is the cornerstone of in-
terpretation of many experimental observations in the field 
of graded-index magnonics. Moreover, by tracing the spa-
tial evolution of isofrequency curves in media with con-
tinuous variation of magnetic properties defining the mag-
nonic dispersion, one is able to not only explain but also 
predict and design the character of propagation and scatter-
ing of spin-wave beams. In the following, we review some 
of the most remarkable effects already observed in graded-
index magnonic media (the properties of which are de-
scribed by the Landau–Lifshitz equation) and furthermore 
consider the potential new avenues of research available to 
future researchers within this theme. 

3. Brief review of effects observed in graded-index 
magnonic media 

Perhaps, one of the first graded-index effects observed 
during the latest boom of magnonics research was the dis-
covery of spin-wave modes confined within so-called 
“spin-wave wells”, first in stripes [31,32] and then in 
squares and rectangles [33,34]. This confinement is a di-
rect consequence of the existence in the magnonic disper-
sion of a threshold frequency below which spin waves 
cannot propagate or be excited. This threshold frequency 
approximately scales with the value of the static internal 
magnetic field. Hence, spin waves that are allowed in the 
regions of a reduced internal magnetic field (typically, cre-
ated by the demagnetising field in magnetic elements of 
nonellipsoidal shape due to edge magnetic charges) are not 
allowed to propagate into the bulk of the sample, where the 
demagnetising field is reduced and the internal field is 
therefore increased. 

This phenomenon of spin-wave confinement in internal 
magnetic field landscapes is analogous to confinement of a 
quantum-mechanical electron in a potential well, whereby 
the spin wave plays the role of the electron wave function 
and the internal magnetic field plays the role of the elect-
ron potential energy. However, the vectorial nature of the 
magnetic field makes it challenging to induce confinement 
in more than one dimension. Hence, a suitably excited spin 
wave could still propagate in the direction orthogonal to 
the direction of the field induced confinement, leading to 
the idea of spin-wave channeling [35,36]. The lateral ex-
tent of such magnonic channels (typically created close 
and parallel to the edge of a thin-film sample) is directly 
linked to the spin-wave frequency [37]. Moreover, by con-
tinuously varying the geometry of the magnonic wave-

guide and therefore of the associated non-uniform field 
distribution, the spin-wave channels can “cling” to the 
edges of a nonrectangular structure, resulting in spin-wave 
splitting and potentially magnonic interferometer function-
ality [38]. 

The anisotropic dispersion of long-wavelength spin 
waves yields another (and probably, unique to magnonics) 
scheme of wave confinement. Indeed, by fixing the direc-
tion of the wave vector, we see from Fig. 1(a) that there 
exists a range of small k-values for which spin wave exci-
tation is allowed for one but is forbidden for the other (or-
thogonal) direction of the magnetization relative to that of 
the wave vector. Hence, regions of curved magnetization 
can also prohibit propagation and therefore confine magne-
tostatic and dipole-exchange spin waves, as indeed was 
observed e.g. in Refs. 39, 40. The same mechanism could 
lead to the confinement of spin waves in the in-plane direc-
tion that is orthogonal to that of the static internal magnetic 
field, e.g. when it is orthogonal to the edge of a thin-film 
magnetic stripe. 

The variation of the internal magnetic field has also been 
used to continuously tune the wavelength of propagating 
spin waves. Let us consider the funnel-shaped Permalloy 
element shown in Fig. 3(a). With a transverse bias field ap-
plied (HB = 1.25 kOe), the average demagnetizing field in-
creases in strength as we move along the funnel from left to 
right [41]. As a result, the projection of the total internal 
field onto the magnetization decreases, thereby decreasing 
also the spin-wave frequency at a given wavelength. Con-
sidering instead a fixed frequency, the vertices of the higher-
frequency isofrequency curves in Fig. 1(a) move to higher 

Fig. 3. (a) (Color online) The projection of the effective field on the static 
magnetization is shown for a 100 nm thick funnel-shaped Permalloy 
waveguide. (b) A snapshot of the out-of-plane component of the dynamic 
magnetization is shown for a spin wave excited harmonically at 14 GHz 
at the far left end of the waveguide. 

(a) 

(b) 

z 

25 –25 
mx, G 

HB =1.25 kOe 

2.5 µm 

2.5 0 
 internal field, kOe 

y 

Low Temperature Physics/Fizika Nizkikh Temperatur, 2015, v. 41, No. 10 979 



C.S. Davies and V.V. Kruglyak 

ky-values, and so, the spin-wave wavelength decreases. This 
wavelength reduction is clearly seen in the shown snapshot 
of the dynamic magnetization associated with the spin wave 
continuously excited at 14 GHz at the far left of the structure 
(Fig. 3(b)). It is interesting to note that the demonstration of 
this effect for a bulk YIG sample by Schlömann in 1964 was 
probably the first-ever manifestation of the graded-index 
magnonics principles discussed in literature [42]. The use of 
this so-called Schlömann mechanism of spin-wave excita-
tion to couple free-space microwaves to spin waves of many 
orders of magnitude shorter wavelength propagating in 
Permalloy microstructures was demonstrated in Refs. 43,44. 
The formation of spin-wave wells discussed earlier can be 
interpreted as a result of the inability of the wavelength vari-
ation (at constant frequency) to compensate for the variation 
of the internal magnetic field. 

In two dimensions, the spatial variation of the internal 
magnetic field and magnetization enables the steering of spin 
waves both in continuous films and networks of magnonic 
waveguides. The possibility of steering spin-wave caustics in 
thin magnetic films arises directly from the strict relationship 
between the directions of the static magnetization and caus-
tics at a given value of the internal magnetic field. However, 
the continuous variation of the internal magnetic field and 
magnetization can lead to even more striking consequences, 
such as a complete disappearance of one of the spin-wave 
beams launched into a T-junction of magnonic wave guides 
[10]. Fig. 4(a) shows the configuration of the internal mag-
netic field and magnetization in an asymmetrically magne-
tized T-junction of 5 µm wide/100 nm thick Permalloy 
waveguides. Fig. 4(b) and (c) show snapshots of the dynamic 
magnetization due to a spin-wave beam propagating from the 
vertical “leg” into the right “arm” of the junction from time-
resolved scanning Kerr microscopy (TRSKM) and OOMMF 
simulations, respectively. The spin-wave beam that was sup-
posed to propagate to the left arm of the junction is absent, 
because the non-uniform field and magnetization (i.e. the 
“graded magnonic index”) steer it into the lower edge of the 
left arm, from which it is then backward-reflected into the 
right arm of the junction.  The curves and arrows in Fig. 4 (c) 
show the direction of the group velocity of the incident and 
reflected spin waves calculated using the approach presented 
in Fig. 2 (b). Of a special note is the curving of the spin-wave 
beam towards the normal to the rear edge of the arm by the 
graded magnonic index.  This beam curving is a spin-wave 
analogue of the so-called "mirage effect", which was also 
observed in simulations from Ref. 45. 

Even relatively small regions of graded magnonic index 
could either present obstacles for or find application in 
magnonic data and signal processing devices [46]. Indeed, 
any bending of magnonic waveguides necessarily leads 
either to spatial variation of the angle between the static 
magnetization and the wave vector, or to curvature of the 
static magnetization. In the former case, the graded 
magnonic index can lead to scattering and even transfor-

mation of the propagating spin wave [47,48]. In the latter 
case, the curved magnetization can lead to such exotic ef-
fects as the curvature induced (“geometrical”) magnetic 
anisotropy [49,50], which could be described in terms of 
magnetic energy contributions characteristic of the 
Dzyaloshinskii–Moriya interaction [51,52]. 

At the same time, transverse Bloch-type magnetic do-
main walls represent a natural reflectionless potential for 
propagating spin waves. Indeed, spin waves propagating 
through such domain walls preserve their amplitude but 
acquire a phase shift. This phase shift is directly related to 
the magnetization rotation within the domain wall - specif-
ically, the spin-wave phase shifts are 90° and 180° for 180° 
and 360° domain walls, respectively. In contrast to Bloch 
walls, the amplitude reflectivity of spin waves from Néel-
type magnetic domain walls can vary significantly (ranging 
between the extremes of zero and unity) depending on the 

Fig. 4. (Color online) Spin waves in an asymmetrically magnetized 
Permalloy T-junction (after Ref. 10). (a) The calculated distributions 
of the static magnetisation (arrows) and the projection of the internal 
magnetic field onto the magnetization (color scale) are shown for the 
magnetic field of HB = 500 Oe applied at 15° to the vertical sym-
metry axis. Each arrow represents the average of 5×5 mesh cells. 
(b) A TRSKM snapshot of the spin-wave beam propagating into the 
arm of the Permalloy T-junction is shown for the bias magnetic field of 
HB = 500 Oe applied at 15° relative to the leg of the junction. The fre-
quency of the cw magnetic "pump" field was 8.24 GHz. (c) The numer-
ically simulated out-of-plane component of the dynamic magnetization 
corresponding to the experimental snapshot from panel (b) is shown 
together with the directional unit vectors of the group velocities v̂  and 
wave vectors k̂  extracted for the incident (index “i”) and reflected 
(index “r”) spin-wave beams at kx = 0.94 µm–1. The pumping frequen-
cy in the simulations was 7.52 GHz. The difference in the frequency 
values in the experiments and simulations was due to inevitable differ-
ences between the measured and simulated samples. 
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thickness of the film and the wave vector. Given that mag-
netic domain walls themselves have been proposed as in-
formation carriers, there is also scope for creating hybrid 
spin-wave/domain-wall devices. 

In addition to the interaction of plane spin waves with 
confined regions of graded magnonic index, a traditionally 
active and discovery-rich research area of magnonics has 
dealt with spin waves in extended, strongly nonuniform 
micromagnetic states and textures, featuring magnetic vor-
tices and antivortices [56–59], complex domain structures 
and skyrmions [62,63]. The relevant research results are 
reviewed in other articles of this Special Issue [64–66]. 

At last but not least, the graded magnonic index can and 
has in fact been used in design of magnonic crystals [67] in 
several ways. The nonuniform internal magnetic field can 
either serve to modulate the magnonic properties in the di-
rection of spin wave propagation [68,69], or to channel spin 
waves through e.g. topographically defined landscapes 
[70,71]. Alternatively, as discussed earlier, the same can be 
achieved as a result of the non-uniform configuration of the 
magnetization in patterned magnetic films [72–74]. 

4. Conclusions and outlook 

Over the past decade, magnonics has emerged as one of 
the most rapidly growing research fields in magnetism and 
a potential rival of semiconductor technology in the field 
of data communication and processing.  However, together 
with loss reduction, the control of the spin-wave trajectory, 
the shortening of the wavelength of studied spin waves and 
the associated miniaturization of realized functional mag-
nonic devices remain major challenges in both experi-
mental research and technological development in mag-
nonics. Here, we have reviewed the concept of graded-
index magnonics, which could help meet these challenges. 
Indeed, the propagation of spin waves in graded magnonic 
media can be controlled using sub-wavelength, continuous-
ly varying magnetic non-uniformities rather than physical 
patterning. This should minimize scaling of the magnonic 
device size with the spin-wave wavelength, in contrast to 
e.g. magnonic crystal based approaches. This sort of cross-
over from studying magnonic phenomena associated with 
ubiquitous nonuniformity of micromagnetic configurations 
in geometrically patterned magnetic systems to the exploi-
tation of the graded magnonic index is predicted to drive 
the magnonics research in the nearest future. 

From the point of view of the Landau–Lifshitz equa-
tion, this trend will lead to two major directions of theoret-
ical development. Within the first of them, the concepts, 
ideas and sometimes whole classes of solutions and theo-
retical methods developed in transformation optics and 
quantum mechanics will continue to be mapped onto 
magnonic systems [42,49,50]. In particular, the study of 
exchange spin waves, which have an isotropic dispersion 
described by a parabolic law in the continuous medium 
approximation, will benefit from this approach.  Within the 

second direction, researchers will face the challenge of 
developing a completely new theoretical formalism that 
will fully account for the rich and exciting complexities 
inherent to the Landau–Lifshitz equation. In addition to the 
already discussed anisotropic dispersion of magnetostatic 
and dipole-exchange spin waves, the challenges include 
the non-linearity of the Landau–Lifshitz equation [75,76] 
and exotic contributions to the magnetic energy, such as 
the magneto-elastic coupling [77,78] and (nonreciprocal) 
Dzyaloshinskii–Moriya [51,52] interaction, and magnetic 
dissipative function [79,80]. 

We have limited the discussion above to the case of pat-
terned thin-film magnetic structures, which are in the focus 
of current experimental studies and in which the graded 
magnonic index is created by virtue of their patterning.  
The key advantage of such samples is that, due to the mag-
netic hysteresis, their graded magnonic landscapes could 
potentially be programmed e.g. by the external magnetic 
field [81]. However, it is clear that the scope of the concept 
is far broader. Indeed, the graded magnonic index can be 
created through application of external non-uniform stimu-
li, ranging from the magnetic field due to the electrical 
currents [82] or magnetic charges [83] through to electric 
field, spin currents [85] and thermal gradients, including 
those created optically [25,87,88]. An exciting extension of 
the concept is that of non-stationary, dynamically con-
trolled graded-index landscapes [89,90]. Alternatively, the 
means of nano- and micro-scale materials engineering al-
low one to create essentially arbitrary magnonic landscapes 
[91–94], provided that the spin-wave damping could be 
controlled at a reasonably low level. Finally, one should 
not forget that the world of magnetic materials is not lim-
ited to transition metal ferromagnet and YIG samples. In-
deed, the spin dynamics and therefore spin waves in multi-
sublattice magnetic materials are generally faster and argu-
ably richer than one might think [95–97], and are still gov-
erned by the generalization of the Landau–Lifshitz equa-
tion. Extension of the graded-index magnonics concept to 
such systems is certainly possible but is beyond the scope 
of this paper. 

The range of spin-wave phenomena covered by this 
brief review challenges both the expertise of the authors 
and the journal page limits for this Special Issue. Yet, we 
hope that our contribution will help to inspire and guide 
future researchers though the exciting world of graded-
index magnonics, which is both governed and created by 
the Landau–Lifshitz equation. 
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