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Boundary bound states in the Bose–Hubbard-like chain
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The degenerate Hubbard-like chain with open boundary conditions is studied with the help of the Bethe

ansatz. The special case of the Bose–Hubbard-like chain is studied in detail. Boundary bound states, which

appear as the consequence of the local potential(s), applied to the edge(s) of the open chain are studied in the

ground state.
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Last decade the interest in the behavior of low-dimen-

sional interacting quantum systems has been grown con-

siderably. In particular, the interest in the studies of inter-

acting lattice bosonic systems is connected with the

experimental realization of such a systems, e.g., in sys-

tems of ultracold gases of atoms in optical lattices, see,

e.g., [1,2], in some of which the Bose–Einstein condensa-

tion is believed to be observed. Here we consider a Bo-

se–Hubbard-like model, which properties can be obtained

using non-perturbative methods.

Several authors studied the properties of the so-called

degenerate Hubbard-like chain with the help of the Bethe

ansatz, see, e.g., [3–11]. The Hamiltonian of the model

was proposed first in the form
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where c j s,
†

(c j s, ) creates (destroys) a particle at site j with

the spin index s, n c cj s j s j s, ,
†

,� , U � 0 is the Hubbard re-

pulsion constant, and the hopping integral is taken to be

equal to unity. In particular, for N � 2 one deals with the

standard Hubbard chain of interacting electrons. On the

other hand, the case N 
 � has to be related to the

so-called Bose–Hubbard model: each particle has infinite

number of states. The operator P projects onto the sub-

space of states having at most two particles at each site.

The presence of such a projector is crucial for the applica-

bility of the Bethe ansatz method (first studies of the

model, e.g., [3,4] missed that fact). Bethe ansatz gives the

possibility to find eigenvalues and eigenfunctions of the

stationary Schr�dinger equation of the considered model.

Eigenvalues and eigenfunctions are parametrized by, ge-

nerally speaking, several sets of quantum numbers (one

set for each degree of freedom), called rapidities [12].

Later, however, it was recognized that it was not

enough to use the projectors. For example, forU � 0 Bethe

ansatz describes free particles, while according to Eq. (1)

there must be correlations between particles, caused by

the projectors. It was shown [8] that the continuum limit

of the scattering phase shifts, which follow from the Bethe

ansatz equations, are those of particles, interacting via a

potential of the form1 2� s inh r (where r is the distance be-

tween particles). It implies the necessity to include a

long-range interaction, which dynamically exclude ma-

ny-particle configurations at each site, to the Hamiltonian

Eq. ( 1). However, unfortunately, the precise form of the

lattice Hamiltonian of the degenerate Hubbard-like mo-

del, which can be solved by the Bethe ansatz, has not been

found yet. Nevertheless, studies of the Bethe ansatz solv-

able model are very important (even in the absence of the

precise form of the lattice Hamiltonian), because the fea-

tures of the Bethe ansatz exact solution, e.g., for the

Bose–Hubbard-like case N 
 � are reminiscent of those

for the real lattice Bose–Hubbard model, which was con-
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sidered, e.g., in the mean-field approximation [13], or by

the quantum Monte-Carlo techniques [14]. The most in-

teresting feature of the lattice Bose–Hubbard-like chain

(and, in fact, of the degenerate Hubbard-like chain for

N � 2) is the quantum phase transition at the critical value

of the couling constantU c between a metallic (superfluid)

gapless phase and an insulator gapped one. This feature is

absent for the standard electron Hubbard chain N � 2

(whereU c � 0). However, the Bethe ansatz solution of the

degenerate Hubbard-like chain [3–10] reveals such a

feature.

Most of the previous Bethe ansatz studies of the model

were related to the chain with periodic boundary condi-

tions (i.e. L � 
1 1etc.). Here we consider the chain with

open boundary conditions, i.e. one has to omit the term

with ( )
,

†
,c c

L s s1 � H.c. from the Hamiltonian ( 1). Also, we

add the boundary potential �
�
�p n s

s

N

1

1

, to the considered

Hamiltonian (in fact one can add another boundary poten-

tial, which acts on the particles at the last site, but for sim-

plicity we limit ourselves with only one boundary poten-

tial) without destroying of the exact integrability. Bethe

ansatz equations, for several sets of rapidities, which

parametrize eigenfunctions and eigenvalues of the con-

sidered system, have the form
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where B k ik p ik pj j j( ) [exp ( ) ] [exp ( ) ]� � � � � , e xn ( ) �
� � �( ) / ( )2 2x iUn x iUn , N p is the number of particles,

M N p0 � , and � j jk
( )

sin
0 � . The energy of the corre-

sponding state is equal to

E k pNj

j

N p

� � �
�
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1

cos , (3)

where N 1 is the total number of particles at the first site of

the chain. Obviously, the Bethe ansatz equations (2), (3)

coincide with the known ones for the case of free parti-

cles with N internal degrees of freedom (U � 0, from

which case one can see that Bethe ansatz equations are

quantization conditions), for the case of free spinless fer-

mions (orthofermions) U 
 �, and with the ones for

the standard Hubbard chain for N � 2 [12]. In the

continuum limit of small k j (here we replace cos k j 


 �1 22k j / and sin k kj j
 the Bethe ansatz equations

agree with the ones for particles with �-function local in-

teractions between particles [15].

Below we shall consider only the case N 
 �, related

to the Bose–Hubbard chain with open boundary condi-

tions. In this case only one set of quantum numbers, k j is

essential [4]. In the thermodynamic limit L 
 �, N p 
 �,

but with the ratio N Lp � being fixed, using the standard

for Bethe ansatz solvable models procedure [12], we can

write down integral equations for so-called «dressed ener-

gies» �( )k and densities�( )k (�h k( ) is the density of holes)

for eigenstates
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where� is the chemical potential, the kernel has the form

G x
U

x U
( )

[ ]
�

�

2

4 2 2�
. (5)

Here, using the fact that dressed energies, densities, ker-

nels and driving terms (those, which do not depend on

�( )k , �( )k , and �h k( ) are even functions, we replaced dis-

tributions of k over total intervals, like for periodic

chains, instead of half-intervals for the open chain. This

is why, the term G k L( sin ) /2 appeared in the equation for

densities. One can see that driving terms in the equations

for densities has the term of order of 1 and the contribu-

tion of order of 1/ L. The integral equation for densities is

linear. Hence, we can look for the solution of that equa-

tion in the form � � �( ) ( ) ( / ) ( )( ) ( )k k L k� �0 11 . Equations
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for � ( )0 and � ( )1 are separated from each other, and they

describe the behavior of the bulk and boundaries, respec-

tively.

Obviously, the equations for the bulk part, � ( )0 , coin-

cide with the ones for periodic case [3–11]. Quantum

numbers k are distributed in the interval � � �Q k Q. It is

easy to see that for U U c� � 4 3 the considered model is

in the metallic phase with gapless low-lying excitations,

while for U U c� the model is in the insulating phase

[4,8]. From now on we concentrate in the insulating case

with Q � � (N Lp � ). In that case it is easy to calculate the

ground state energy (of the bulk), which is equal to

E
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where f U� �4 162/ [ ], and E is the complete elliptic

integral of the second kind. The energy of the low-lying

excitation is
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where k 0 is related to the momentum of the excitation ph
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It is easy to see that Eh is the monotonically decreasing

function of | |k 0 , and it has minima at k 0 �  � and a maxi-

mum at k 0 0� . Hence, the low boundary of the band of

low-lying excitation is equal to � � � �2 8 42/ [ ]U U ,

and the upper boundary is equal to 2 8 42� � �/ [ ]U U .

As for the chemical potential, it is then equal to

� �� � �E kh ( )0 . Other bulk excitations (bound states, or

strings) have higher energies.

Now let us consider the boundary contribution. In the

absence of the boundary potential the ground state energy

of free edges, or the surface energy (it is the difference be-

tween the ground state energy of the chain with open and

with periodic boundary conditions), is equal to
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Next, we turn to boundary bound states. In principle,

one is free to leave boundary bound states empty [12].

However, they are important for, e.g., calculation of the

exponents for correlation functions. There are no bound-

ary bound states for | |p � 1, and we can use the previous

analysis in that case. On the other hand, for | |p � 1bound-

ary bound states, caused by the boundary potential p ap-

pear with the roots k i pj �  ln and the energy

E p pb � � �( ) /2 1 . The (most important) levels of the

low-energy boundary bound states are split off the upper

and lower boundaries of the band of the low-lying excita-

tions Eq. (7). Higher energy boundary bound states are

also split off upper and lower boundaries of the bands for

higher energy bulk excitations. Notice that we are inter-

ested in decaying roots. The surface energy in the case

with p � 0 is equal to
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The last two terms denote the removing of the root, re-

lated to the boundary bound state, from the continuum of

bulk states, forming the vacuum.

On the other hand, Eqs. ( 2) can be solved for the cases

of free bosons (N 
 �, U � 0), or free spinless fermions

(orthofermions) (U 
 �) [12]. Those cases are interest-

ing, because we can understand the behavior of the

boundary bound states for the metallic case with gapless

excitations. Bethe ansatz equations for these two cases

have the form

exp ( ) ( )2 1ik B kj
L

j �  , (11)

where the «plus» sign is taken for the first case, and the

«minus» one for the second case, respectively. Here one

can obviously see that Bethe ansatz equations are

quantization conditions for the rapidities k j (they are

quasi-momenta for free particles). One can also see that

for p � 0 ( p � 1) solutions for boundary bound states ap-

pear even for free particles (they are split off the bands of

bulk linear excitations). The surface energy at N Lp � is

equal to
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where S p p p( ) ( / ) [( )/| | ]� � �2 1 1� arctan . The surface en-

ergy for p � 0 is equal to Es � �1 2( / )� . It turns out that it

is incorrect to take the limit U of Eqs. ( 9) and ( 10) to ob-

tain this result, because those equations were obtained for

the insulating phase U U c� .

In summary, we have studied the Bethe ansatz solution

of the degenerate Hubbard-like chain with open boundary
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conditions. The most interesting case of the Bo-

se–Hubbard-like chain is analysed for the ground state.

The surface energy (the energy of the free edges of the

chain) is calculated. We have shown that for large values

of boundary potentials boundary bound states are split off

the bands of the bulk states. The most important states ap-

pear in the gap, where no bulk excitations exist for the in-

sulating phase with U U c� . Our results can be applied,

e.g., for ultracold atoms in optical lattices, or photonic lat-

tices, where discrete surface low-lying excitations were

recently observed [16–19].
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