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We consider generalizations of the Bieberbach equation with nonlinear right parts, which makes it possible to study
many problems of mathematical physics in inhomogeneous and anisotropic media with smooth characteristics. We
establish interconnections of these semilinear equations with quasiconformal mappings, obtain on this basis, a series
of theorems on the existence of their solutions that blow-up on the boundary of a unit disk, as well as on punctured
unit disks and rings, and give their explicit representations.
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1. Introduction. Let Q be a domain in the complex plane C, and let A(z) be a symmetric 2 x 2
matrix such that det A = 1 with real entries, which are smooth in z € Q , maybe except isolated
points, and

%|§|2<<A(z)§,§><l<|§|2, 1<K<e VEeR?. (1)

We study the blow-up problem for the model semilinear equation
div [A(2)Vu (2)] =e“? in Q (2)

and show that the well-known Liouville—Bieberbach function solves this problem under an ap-
propriate choice of the matrix A(z). The proof is based on the fact that every regular solution u
can be expressed as u(z) = T (w(z)), where w : Q — G stands for a quasiconformal homeomorphism
generated by the matrix A(z), and T'is a solution of the semilinear weighted Bieberbach equation

AT (w)=m(w)e' @ in G. (3)

Here, the weight m (w) is the Jacobian of the inverse mapping o '(w):
Recall that, given a bounded domain Q in C, solutions to a semilinear equation

Au(z)= f(u(2)) (4)
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are called its boundary blow-up solutions or its large solutions, if
u(z) >+ as d(z):=dist (z,0Q2)—0. (5)

In the last decades, semilinear equations became a central subject of studies in the theory
of nonlinear partial differential equations. The study of such equations is of interest because of
their numerous applications to actual problems of differential geometry, mathematical physics,
logistic problems, etc.: see, e.g., [1, 2], and the extended bibliography therein. In this context, the
consideration of matrix-valued functions instead of scalar functions in (2) makes it possible to
study many physical processes not only in inhomogeneous but also in anisotropic media that is
very actual at present.

The existence of a large solution to Eq. (4) is related to the existence of a maximal solution
u of (4) in Q, which, in turn, depends on the so-called Keller—Osserman condition, see [3, 4].
Namely, J.B. Keller and R. Osserman provided a sharp condition on the growth of f at infinity,
which guarantees that the set of solutions to (4) is uniformly bounded from above in compact sub-
sets of Q. Qualitatively, the condition means that the superlinearity of f at infinity is sufficiently
strong. They derived an a priori estimate for solutions to (4) in terms of p(z)=dist (z,0Q). This
estimate implies that the Eq. (4) possesses a maximal solution in a bounded domain. Under some
additional conditions on Q, the maximal solution blows up everywhere on the boundary. Thus, we
arrive at a large solution.

Recall that a function f € C (R,) satisfies the Keller—Osserman condition if there exists a posi-
tive non-decreasing function 4 such that

ot ~1/2
[(©)=h(t),VteR, and [ {j h(s)ds} dt <o forall £,>0. (6)

It is known that if f is non-decreasing and satisfies the Keller—Osserman condition, then a large
solution exists in every bounded smooth domain. Uniqueness in smooth domains was established
under some additional conditions on f, see, e.g., [5], Section 5.3. It is easy to check that the
functions f (¢) = e’ and f (¢) = t?, p > 1, satisfy (6). The semilinear equation

Au(z)=e"®, (7

as far as we know, was first investigated by Bieberbach in his pioneering work [6] related to the
study of the Riemannian geometry and automorphic functions in a plane. More precisely, if a
Riemannian metric of the form |ds|? = €2“®)|dx|* has constant Gaussian curvature —g?; then Au =
= g?e?*. 1t is this work that has stimulated numerous studies in the field of semilinear differential
equations in R", n > 1, and Eq. (7) continues to play the role of one of the fundamental model
equations of the theory. It is important to note that, in simply connected planar domains Q,
the large solutions for Eq. (7) are expressed explicitly by means of the Liouville—Bieberbach
formula

o2
u(z)=log 8|/"(2)

2N\2"’
A=/
where f stands for a conformal map /: Q —D:={z:|z| < 1}.
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For the model case of the equation
Au=e™, a>0, )

the following result holds, see [5], Theorem 5.3.7.

Theorem A. Let Q be a bounded domain in C such that d Q=09 Q. Then there exists one and
only one blow-up solution to (9).

2. The main lemma. Let us associate the complex-valued function

1
2)=—(ayy—ay —2ia 10
n(z) det([+A)( 29 Ay 12) (10)
with the above matrix-valued function A(z), where I stands for the unit matrix. Then the condition
of ellipticity (1) is written as
K-1

w2 < Kl (11)

Thus, we associate the Beltrami equation
0;(2) = u(2)®,(2) (12)

with A, where 03 =do= (0, +io,)/2, 0, =00=(0,-in,)/2,z=x+iy, and 0, and o, are
partial derivatives of » with respect to x and y, correspondingly.

In turn, the Beltrami equation (12) generates a quasiconformal homeomorphism @ : Q — G,
see, e.8., | 7; 8, p. 67], where one can take, as the domain G any plane domain, which is conformally
equivalent to Q. In what follows, we will say that A, p, and ® are agreed.

Lemma 1. Let © : Q — G be a homeomorphic solution to the Beltrami equation (12) agreed with
the matrix-valued function A; let T be a real-valued function in C*(G), and u=T o ®. Then

div [A@)Vu(2)] =], (AT (w), w=w (2), (13)

where ] | (2) stands for the Jacobian of the mapping o (2).

3. On semilinear equations in a unit disk. Below, we confine ourselves to a few examples of
the application of Lemma 1 to the study of some properties of boundary blow-up solutions of a
classical model semilinear elliptic equation div [A(z2)Vu] =p(2) e

Note first of all that, given a complex—valued function p, satisfying (11), one can invert the
algebraic system (10) to obtain the corresponding matrix-valued function

t-pP  —2Imp
(I T T
A(2)= ) |- (14)
—2Imp |1+u|
1=l 1=

Theorem 1. Let k (t), 0 < t < 1; be a complex-valued smooth function, |k(t)| < g <1, and let
A(2) be given in the unit disk D by (14) with W(z)=k(|z|)z/Z. Then the boundary blow-up solution
to the equation

div [A(2)Vu(2)] = p(l2]) €@, (15)
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where
1|k (t)l? { ¢ 4k(T) dm}
=" Re —,
Po= |1 KOP J 1—k(1) 1
has the explicit representation
8
u(z)=log————
O oy
with
e, 1+k() dt
= Re
ol eXp{ 1—k(7) t}
In particular, among the quasiconformal automorphisms of the unit disc I,
2l 1+k(t) dt
_Z. I+k@dr] 16
o el 15 o

agreed with u(z)=+k(|z|)z/Zz from Theorem 1, there is a variety of volume-preserving maps, for
which J (z) =1, z € D. Hence, Theorem 1 implies the following statement that may have of
independent interest.

Corollary 1. Let a matrix-valued function A(z) be given in D by (14) with

u(z>=k(|zr)§, k() =V () 2iv(EN1-V (D), (17)

where v(t),0 <t<1,is areal-valued smooth function.If |v(t)|< q <1, then there exists one and only
one boundary blow-up solution to the generalized Bieberbach equation

div [A(2)Vu]=¢e* z e D, (18)
which is written explicitly by the same Liouville— Bieberbach formula

8
u(z)=log———. (19)
(=12’
For example, the well-known spiral mapping

s (Z) — 262i10g|2‘

is just volume-preserving. Indeed, in this case, the Beltrami coefficient

w@=22=tanz,
o, 2 z

and we see that it corresponds to (17) with v(¢) = 1/ V2 . 1f 2= pei, the matrix A generated by such
u(z) will depend on ¢ only and has the form

A_(B—Z(cos2(p—sin2(p) —2(c052(p+sin2(p)]

. 20
—2(cos2¢+sin2¢) 3+2(cos2@—sin2¢) (20)

The spiral mappings play an important role in applications. F. Gehring employed s (z) in [9]

to solve the well-known Bers’ problem on the structure of the universal Teichmdller space. F. John
[10] used the mapping s(z) to study the uniqueness of a non-linear elastic equilibrium for pre-
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scribed boundary displacements. The spiral mappings also play an important role in the theory of
smooth planar mappings with constant principal stretches, see [11, 12]. The problem of conformal
differentiation as well as many regularity, distortion, and rotation problems for quasiconformal
mappings in the plane were also investigated by means of the spiral mapping. We recall a typical
such problem that goes back to F. John and is closely related to the non-linear elasticity theory. In
[13], he showed that if /: C — Cisa (1 + &) — bi-Lipschitz mapping and if, for some 0 < a < b, we
have f(z)=zfor |z|>b; [ (2)=z¢"° for |z|<a, then

16| < C (1+log(bja))e . (21)
The angle estimate (21) follows from the basic stability theorems in [13] for (1 + €)—bi-Lipschitz
mappingsinaplane. The BMO technique [ 14]also plays animportant role for (21). Quasiconformal
methods lead to the sharp solution of John’s problem, see [8, 15], Chapter 13. It is shown that the
logorithmic spiral gives the extremum to E. John’s angle distortion problem for plane bi-Lipschitz
mappings.

4. On semilinear equations in a ring.

Theorem 2. Let A(2) be given in the annulus {z € C : r<|z| < 1} by (14) with

1@ =k()Z, kO=VAO£ VOV, (22)

where v (t) stands for a real-valued smooth function with |v (£)| <q<1,0<t<1.
Then there exists one and only one boundary blow-up solution to the equation

div [A(2)Vu(z)] = e*®, (23)
which is given explicitly by the formula
2
u(z)=log 2n (24)
2 2 2 @,
|z|"log” r-sin (1Ogrlog]z\)

in the annulus r<|z| < 1.

Making use of the limit in (24) as » — 0, we get the following result, which may be of inde-
pendent interest.

Corollary 2. For each matrix-valued function A(z) from Theorem 2, the equation

div [A(2)Vu(z)] = e4? (25)
and the Bieberbach equation

Vu(z) = e (26)
admit the boundary blow-up solution
log— 2

2 log” [

in the punctured unit disk 0 <|z|< 1.

5. The final remarks. The approach given in the last section to the construction of a boundary

blow-up solution to the Bieberbach equation in the unit disk D with a singularity at the origin can
be extended to the case of a finite number of singular points z;, |z;|<1, k=1, 2,...,n. Indeed, let
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>0 be such that all the circles d,={z:|z—z | <7} belong to D and do not intersect each other. De-
note, by F(z), a conformal mapping of the circular multiconnected domain D\U}_; d}, onto the
unit disc ). Then the required solution with prescribed singularities at the points z, is given by

! 2
u(z)=Ilim logm.
=0T (AHE @)
Remark 1. Perhaps, a reader has pointed out that Lemma 1 was formulated for matrix-valued
functions A(z) with smooth entries. It was done only for the sake of simplicity in the exposition.
We plan to publish the relevant results for the case of measurable entries satisfying the uniform
ellipticity condition, as well as to study the case of degeneration.

(28)
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HOJYJINHENHBIE YPABHEHUA HA IIJTOCKOCTU
N KBASUKOH®OPMHDBIE OTOBPAJKEHUA

Paccmotpenst 0600mienust ypaBhenusi brubepbaxa ¢ HeJTMHEHHBIMI IPABBIME YaCTSIMHU, KOTOPBIE TIO3BOJISIIOT 13-
y4aTh MHOTUE HPOGJIEMbl MATEMATUYECKON (DUBUKK B HEOAHOPOAHBIX U AHU30TPOIHBIX CPEIax C [JAJAKUMU Xa-
PaKTEPUCTUKAME. YCTAHOBJIEHBI B3AMMOCBSI3H ITHX TTOJIYIHHEHBIX YPABHEHUH € KBA3UKOH(DOPMHBIMU 0TOOPA-
JKEHMSIMU M Ha 9TOH OCHOBE IOJIYYeH PSAJ TEOPEM CYIIECCTBOBAHUS UX PEIICHUH, B3PLIBAIONINXCS Ha TPaHUIle
€IMHUYHOIO KPyTa, IPOKOJIOTBIX eIMHUYHBIX KPYIaX U KOJIbIAX, a TaKyKe IPUBE/IeHbI X SBHbIC [TPEJICTaBICHUSL.

Kntoueevte cnosa: nonyiuneiinoie siunmudeckue ypasienus, ypasuenue bubepbaxa, xeasuxonpopmmvie omo-
opaxcenusi, ypasuenue benompamu, ycrosue Kennepa— Occepmana.
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HATIIBJIHIVIHI PIBHAHHA HA TIJIOIIUHI
TA KBABIKOH®OPMHI BIJOBPAYKEHHA

PosriistHyTO y3araibHeHHs piBHsIHHA BibGepbaxa 3 HeJTiHIHHUMY TIPaBUMU YaCTUHAMM, sIKi JAH0Th MOKJIMBICTH
BUBYATH Oarato mpobieM MaTeMaTHIHOI (hisUKM B HEOTHOPIMTHUX Ta aHI30TPOITHUX CEPETOBUIINAX 3 TIAJAKUMHU
XapaKTepucTUKaMu. BCTaHOBIEHO B3aEMO3B'I3KM 1IMX HAMIBJIIHIHHUX PIBHAHB 3 KBa3iKoHGOPMHUME BigoOpa-
JKEHHSIMU 1 Ha T[i#f OCHOBI OTPUMAHO PSIJT TEOPEM iICHYBaHHS 1X PO3B’sI3KiB, 1110 BUOYXatOTh Ha TPAHUTI OIHHUIHO-
IO KPyTa, IPOKOJOTHX OAMHIIHUX KiJl Ta KiJIbISX, a TAKOK HABEAEHO 1X SIBHI 300pakeHHsI.

Kniouoei cnosa: nanieniniini exinmuuni piensmns, pisnanns bibepbaxa, keasikongopmmi 6idobpanceniis, piesi-
ns benompami, ymosa Kennepa-Occepmana.
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