PACS numbers: 74.20.-z, 74.25.Ha, 74.25.Sv, 74.72.-h, 75.30.Cr, 81.15.Fg

Измерение критических токов тонких сверхпроводящих плёнок $YBa_2Cu_3O_{7-\delta}$ методом магнитной восприимчивости с помощью накладных катушек

А. А. Каленюк, Г. Г. Каминский, А. В. Семёнов * , В. О. Москалюк, В. С. Флис

Институт металлофизики им. Г. В. Курдюмова НАН Украины, бульв. Акад. Вернадского, 36, 03142 Киев, Украина *Институт физики НАН Украины, просп. Науки, 46, 03028 Киев, Украина

Нелинейная магнитная восприимчивость χ в переменном поле $H_{\rm ac}$ и критический ток $J_{\rm c}$ тонких плёнок высокотемпературного сверхпроводника YBa $_2$ Cu $_3$ O $_{7-\delta}$ исследовались с помощью плоских накладных спиралевидных приёмных катушек. В рамках модели критического состояния проведены расчёты действительной и мнимой частей «обобщённой воспримчивости» $\tilde{\chi}(a,h)$ для произвольного соотношения a=r/R между радиусами сверхпроводящей плёнки в виде тонкого диска (R) и приёмной катушки в виде одиночного витка (r). В пределе $a\to\infty$ воспроизводятся известные результаты модели Клема—Санчеса для нелинейной комплексной магнитной восприимчивости $\chi(h)$, где $h(J_{\rm c}(T),H_{\rm ac})$ — приведённая безразмерная амплитуда. Показано, что для стандартной экспериментальной ситуации (образец внутри приёмной катушки магнитометра) относитель-

Corresponding author: Viacheslav Olegovych Moskaliuk E-mail: moskslava@gmail.com

G.V. Kurdyumov Institute for Metal Physics, N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine *Institute of Physics, N.A.S. of Ukraine, 46 Nauky Ave., UA-03028 Kyiv, Ukraine

Please cite this article as: O. A. Kalenyuk, G. G. Kaminskyi, O. V. Semenov, V. O. Moskaliuk, and V. S. Flis, Measurement of Critical Currents in Superconducting Thin YBa $_2$ Cu $_3$ O $_{7-\delta}$ Films by the Magnetic Susceptibility Method Using Open-Faced Coils, Metallofiz. Noveishie Tekhnol., 39, No. 4: 441–455 (2017) (in Russian), DOI: 10.15407/mfint.39.04.0441.

ная систематическая погрешность по измерению $J_{\rm c}$ является пренебрежимо малой (меньше 2%) при a>2, однако приближается к 25% при $a\to 1$. В то же время, для накладных катушек с a<1 общий вид зависимостей $\tilde{\chi}(a,h)$ изменяется качественно, принимая пороговый характер по h. Это позволяет при каждом цикле измерений зависимостей от температуры при фиксированной амплитуде поля $H_{\rm ac}$ получать не одну точку зависимости $J_{\rm c}(T)$ (в максимуме $\chi''(T,H_{\rm ac})$), а две (в точках максимума и порога $\tilde{\chi}''(T,H_{\rm ac})$ по T), а также упрощает процедуру нормировки действительной и мнимой частей магнитной восприимчивости.

Ключевые слова: критический ток, критическая температура, магнитная восприимчивость в переменном поле, модель критического состояния, сверхпроводник.

Нелінійна магнетна сприйнятливість χ у змінному полі H_{ac} та критичний струм J_c тонких плівок високотемпературного надпровідника ${
m YBa_2Cu_3O_{7-\delta}}$ досліджувалися за допомогою пласких накладних спіралеподібних приймальних навоїв. В рамках моделю критичного стану проведено розрахунки дійсної й уявної частин «узагальненої сприйнятливости» $\tilde{\chi}(a,h)$ для довільного співвідношення a = r/R між радіюсами надпровідної плівки у вигляді тонкого диска (R) та приймального навою у вигляді одиночного витка (r). В граничному випадку $a \to \infty$ відтворюються відомі результати моделю Клема-Санчеса для нелінійної комплексної магнетної сприйнятливости $\chi(h)$, де $h(J_c(T), H_{ac})$ — зведена безрозмірна амплітуда. Показано, що для стандартної експериментальної ситуації (зразок всередині приймального навою магнетометра) відносна систематична похибка міряння J_c є нехтовно малою (менше 2%) при a > 2, однак наближається до 25% при $a \to 1$. В той же час, для накладних навоїв із a < 1 загальний вид залежностей $\tilde{\chi}(a,h)$ змінюється якісно, набуваючи пороговий характер по h. Це уможливлює при кожному мірянні залежностей від температури при фіксованій амплітуді поля H_{ac} одержувати не одну точку залежности $J_c(T)$ (в максимумі $\chi''(T, H_{ac})$), а дві (в точках максимуму та порога $\tilde{\chi}''(T,H_{_{\mathrm{ac}}})$ по T), а також спрощує процедуру нормування дійсної й уявної частин узагальненої магнетної сприйнятливости.

Ключові слова: критичний струм, критична температура, магнетна сприйнятливість у змінному полі, модель критичного стану, надпровідник.

The nonlinear magnetic susceptibility $\chi(H_{\rm ac})$ and critical current $J_{\rm c}$ in thin YBa₂Cu₃O_{7- δ} films are measured using planar spiral open-faced pick-up coils. The real and imaginary parts of a generalized susceptibility $\tilde{\chi}(a,h)$ are calculated within the framework of the critical state model for an arbitrary ratio a=r/R of the radius of a single-turn pick-up coil r to the superconducting thin-film disc radius R. Well known results of the Clem-Sanchez model in the limit $a\to\infty$ are reproduced for nonlinear complex magnetic susceptibility $\chi(h)$, where $h(J_{\rm c}(T),H_{\rm ac})$ is reduced dimensionless field amplitude. Relative systematic error of measured $J_{\rm c}$ is shown to be negligible (< 2%) in a standard experimental geometry (with a sample within the pick-up coil of magnetometer) for a>2, but it is of about 25% at $a\to 1$. On the other hand, for the open-faced coils with a<1, the nature of amplitude dependences of $\tilde{\chi}(a,h)$ is

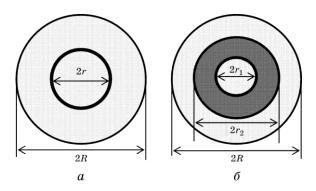
changed qualitatively, turning to have threshold on h. That is why, at the fixed field amplitude $H_{\rm ac}$, not unique point of the $J_{\rm c}(T)$ dependence (at the maximum of $\chi''(T,H_{\rm ac})$) but two points (at both the maximum and the threshold of $\tilde{\chi}''(T,H_{\rm ac})-T$ dependence) can be obtained. This also simplifies the normalization procedure of the real and imaginary parts of generalized magnetic susceptibility.

Key words: critical current, critical temperature, magnetic susceptibility in an alternating field, critical state model, superconductor.

(Получено 3 марта 2017 г.)

1. ВВЕДЕНИЕ

Важнейшей характеристикой сверхпроводящих плёнок является критический ток J_c и его зависимость от температуры и магнитного поля. Одним из методов определения $J_{
m c}$ является его вычисление из измерений магнитной восприимчивости х. Исследованию действительной χ' и мнимой χ'' частей магнитной восприимчивости ($\chi = \chi' + \chi''$) тонких плёнок высокотемпературного сверхпроводника (ВТСП) ${
m YBa_2Cu_3O_{7-\delta}}$ в зависимости от температуры $\gamma(T)$ и амплитуды переменного магнитного поля $\chi(H_{ac})$ посвящено множество экспериментальных работ [1-19]. Ввиду достаточно сильного пиннинга вихрей Абрикосова в данном материале, анализ результатов в этих работах проводится в рамках модели критического состояния Бина [20], а точнее её обобщений для поперечной геометрии (магнитного поля относительно плоскости плёнки) [21-23], а также при учёте крипа магнитного потока [24] и зависимости критического тока J_c от магнитного поля [19, 25]. Зависимости $\chi(T)$ и $\chi(H_{\rm ac})$ дают возможность не только получения значений критической температуры $T_{
m c}$ и плотности критического тока $J_{
m c}$ [1–13], но и, при наличии дополнительной частотной зависимости $\chi(T, H_{\rm ac}, \omega)$, изучения динамики вихрей в смешанном состоянии (режимов термоактивированного «крипа» (переползания) либо «течения» магнитного потока) [14-19].


Немаловажную роль играет также относительная дешевизна методики измерений магнитной восприимчивости и возможность повторно использовать образцы для других целей, поскольку их не нужно литографировать, а также создавать контакты, как в случае транспортных измерений. Благодаря перечисленным преимуществам, метод нашёл широкое применение в экспресс характеризации сверхпроводников.

Для получения χ обычно используются две одинаковые дифференциально включённые приёмные катушки, в одну из которых помещается исследуемый образец. На катушки воздействует внешнее однородное переменное магнитное поле $H_{\rm ac}$, генерирующее на них ЭДС U. С помощью фазочувствительного усилителя (lock in am-

plifier) выделяются два напряжения с нулевым $U_{\phi=0}$ и 90° -м $U_{\phi=90}$ сдвигами фазы. Эти напряжения пропорциональны действительной $\chi'\sim U_{\phi=0}/H_{\rm ac}$ и мнимой $\chi''\sim U_{\phi=90}/H_{\rm ac}$ частям магнитной восприимчивости.

Получение абсолютных значений χ' и χ'' (существенных при изучении динамики магнитного потока [24]) сопряжено со сложностями калибровки катушек и определения сверхпроводящего объёма образца. Обычно экспериментально калибровку производят, принимая $\chi' = -1$ при $T << T_c$ и $\chi' = 0$ при $T > T_c$. Однако зависимость $\chi'(T, H_{ac})$ в рабочем диапазоне температур и амплитуд поля во многих случаях (в зависимости от плохо контролируемого состояния краёв плёнки) не выходит на насыщение, либо (для предельно малых амплитуд) попадает в область сильных шумов.

В отличие от стандартных измерений, в данной работе использовались спиралевидные плоские накладные приёмные катушки (рис. 1). Преимущество таких катушек перед обычными для образцов плоской формы (значительно большая чувствительность) отмечалось в [26]. При этом плёнка полностью накрывает одну из плоских измерительных катушек, экранируя внешнее магнитное поле в последней для амплитуд, меньших определённого порога. Значения сигнала в данной геометрии, которые можно назвать «обобщённой восприимчивостью» $\tilde{\chi}(T, H_{\rm ac})$, в подпороговой области амплитуд постоянны, не зависят от свойств плёнки и полностью определяют-

Рис. 1. Схематическое изображение взаиморасположения круглой сверхпроводящей плёнки (плёнки в виде диска) и приёмной накладной одновитковой (a) и спиралевидной (б) катушек, где 2R — диаметр плёнки, r — диаметр одновитковой катушки, r_2 — максимальный диаметр спиралевидной катушки, r_1 — минимальный диаметр спиралевидной катушки.

Fig. 1. Schematic representation of the relative arrangement of a circular superconducting film (film in the form of a disk) and a pick-up single-turn (a) and open-faced spiral (δ) coils, where 2R is the diameter of the film, r is the diameter of the single-turn coil, r_2 is the maximum diameter of the spiral coil, r_1 is the minimum diameter of the spiral coil.

ся характеристиками катушек, что снимает упомянутую выше проблему калибровки. Однако при этом нельзя пользоваться теоретическими зависимостями $\chi'(h)$ и $\chi''(h)$, где $h=H_{\rm ac}/H_d(T)$, а $H_d(T)=J_c(T)d/2$, полученными в работе [23] для сверхпроводящего диска в поперечном магнитном поле в модели критического состояния и широко используемыми во многих экспериментальных работах [1-13, 16-19] для определения плотности критического тока J_c по положению максимума кривой $\chi''(h)$, потому что они не учитывают соотношение размеров приёмной катушки и образца. В настоящей работе в рамках модели критического состояния проведены расчёты действительной и мнимой частей «обобщённой восприимчивости» для произвольного соотношения a=r/R между радиусами сверхпроводящей плёнки (R) и приёмной катушки в виде одиночного витка (r).

2. НАХОЖДЕНИЕ ОБОБЩЁННОЙ ВОСПРИИМЧИВОСТИ В СЛУЧАЕ КОНЦЕНТРИЧЕСКОГО РАСПОЛОЖЕНИЯ ПРИЁМНОЙ КАТУШКИ В ВИДЕ ОДНОГО ВИТКА РАДИУСОМ r И СВЕРХПРОВОДЯЩЕГО ДИСКА РАДИУСОМ R И ТОЛЩИНОЙ d

Пусть две дифференциально включённые катушки и концентрично расположенная относительно одной из них сверхпроводящая плёнка находятся в плоскости z=0 во внешнем однородном магнитном поле $H_z(t)=H_{\rm ac}\cos\omega t$. Тогда результирующий сигнал, нормированный на сигнал от отдельной катушки в отсутствие плёнки, определяемый как «обобщённая восприимчивость», имеет вид

$$\tilde{\chi}'(H_{\rm ac}) = \frac{1}{\pi^2 r^2 H_{\rm ac}} \int_0^T \frac{\partial \Phi(t)}{\partial t} \sin \omega t dt - 1, \quad \tilde{\chi}''(H_{\rm ac}) = \frac{1}{\pi^2 r^2 H_{\rm ac}} \int_0^T \frac{\partial \Phi(t)}{\partial t} \cos \omega t dt. \quad (1)$$

Здесь $\Phi(t)$ — магнитный поток через катушку, создаваемый действующим магнитным полем (индукцией), представляющим собой сумму внешнего и создаваемого наведёнными в плёнке токами полей. Выражения для нормальной к плоскости плёнки составляющей соответствующей индукции B_z , получающейся в рамках квазистатического приближения и модели критического состояния для сверхпроводящей плёнки при увеличении внешнего поля от нуля до значения H_a приведены в [23] (формулы (9)–(11)). Выражения для B_z при периодическом изменении внешнего поля $H_a(t)$ даются формулами (14, a–d) в [23] и использовались при вычислении «обобщённой восприимчивости» (1), где

$$\Phi(t) = 2\pi \int_{0}^{r} B_{z}[H_{a}(t), \rho] \rho d\rho. \tag{2}$$

При a > 1, определённая таким образом «обобщённая восприим-

чивость» имеет следующий вид:

$$\tilde{\chi}'(a,h) = \frac{-8}{\pi h U(0,a)} \int_{0}^{h} U(x,a) \sqrt{\frac{x}{h} \left(1 - \frac{x}{h}\right)} dx, \tag{3a}$$

$$\tilde{\chi}''(a,h) = \frac{4}{\pi h U(0,a)} \int_{0}^{h} U(x,a) \left(1 - \frac{2x}{h}\right) dx,$$
 (36)

где

$$U(x,a) = \left[\arcsin\left(\frac{1}{a\cosh(x)}\right) - \frac{1}{a\cosh(x)}\sqrt{1 - \left(\frac{1}{a\cosh(x)}\right)^2} \right], \quad (3b)$$

 $h = H_{\rm ac}/H_d$, a $H_d = J_{\rm c}d/2$.

В случае $a \to \infty$ «обобщённая восприимчивость»

$$\tilde{\chi}'(a \to \infty, h) = \frac{-8}{\pi h} \int_{0}^{h} \cosh^{-3}(x) \sqrt{\frac{x}{h}} \left(1 - \frac{x}{h} \right) dx = \chi'_{CS}(h) / \chi_{0},$$

$$\tilde{\chi}''(a \to \infty, h) = \frac{4}{\pi h} \int_{0}^{h} \cosh^{-3}(x) \left(1 - \frac{2x}{h} \right) dx =$$

$$\equiv \frac{2}{\pi h} \left[\frac{\sinh(h)}{\cosh^{2}(h)} + \arctan(\sinh(h)) - \frac{4}{h} \int_{0}^{h} \frac{x}{\cosh^{3}(x)} dx \right] = \chi''_{CS}(h) / \chi_{0}$$
(4)

сводится к обычной восприимчивости, найденной в работе Клема—Санчеса (КС) [23], нормированной на диамагнитную восприимчивость диска в мейсснеровском состоянии, $\chi_0 = 8R/3\pi d$.

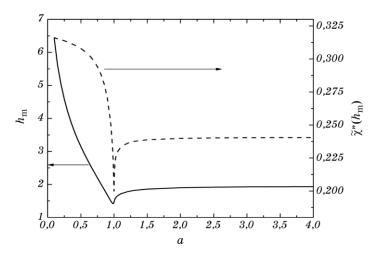
При a < 1

$$\tilde{\chi}'(a,h) = -1 + \frac{16}{\pi^2 a h} \int_{h_0(a)}^h \sqrt{\frac{x}{h} \left(1 - \frac{x}{h}\right)} U_c(x,a) dx,$$

$$\tilde{\chi}''(a,h) = \frac{8}{\pi^2 a h} \int_{h_0(a)}^h \left(\frac{2x}{h} - 1\right) U_c(x,a) dx,$$
(5)

где

$$U_{c}(x,a) = \arccos\left[\frac{1}{a\cosh x}\right] + \frac{1}{a\cosh x}\sqrt{1 - \left[\frac{1}{a\cosh x}\right]^{2}},$$


$$h_{0}(a) = \operatorname{arcosh}(a^{-1}).$$

Очевидно, что сигнал тождественно равен нулю (а соответственно

«обобщённая восприимчивость» равна -1) при условии $h < h_0(a)$, когда фронт потока в образце от возбуждающего поля не достигает приёмной катушки. Учитывая определение (3в), из порогового значения амплитуды H_0 (где $h_0 = H_0/H_d$) находится значение критического тока:

$$J_{c} = \frac{2H_{0}}{d \operatorname{arcosh}(R/r)}.$$
 (6)

На основании выражений (3)–(5) были проведены численные расчёты «обобщённой восприимчивости» при разных значениях параметра a. Значения обезразмеренной (на H_d) амплитуды $h_m(a)$, при которой мнимая часть восприимчивости достигает максимума по h (используемые, согласно (3в), для определения значений критических токов в плёнках), а также сами значения мнимой части в максимуме $\tilde{\chi}''(a,h_m)$ отображены на рис. 2. Следует отметить, что по своей форме (4) отличается от полученного в [23] (формулы (23), (28)) результата модели КС, в которой восприимчивость находилась несколько иным способом. Однако нетрудно убедиться, что при n=1 (основная гармоника нелинейной восприимчивости) эти фор-

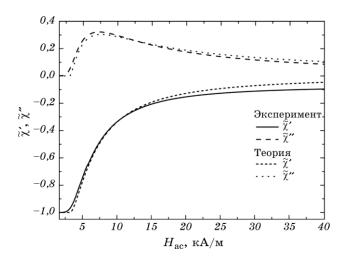

Рис. 2. Значения обезразмеренной (на H_d) амплитуды $h_{\rm m}(a)$, при которой мнимая часть обобщённой восприимчивости $\tilde{\chi}''(a,h)$ достигает максимума по h (сплошная линия), а также значения мнимой части в максимуме $\tilde{\chi}''(a,h_{\rm m}(a))$ (пунктир) в зависимости от отношения a радиусов одновитковой приёмной катушки и плёнки.

Fig. 2. The values of the dimensionless (reduced on H_d) amplitude $h_{\rm m}(a)$, at which the imaginary part of the generalized susceptibility $\tilde{\chi}''(a,h)$ reaches a maximum with respect to h (solid line), and the imaginary part at the maximum $\tilde{\chi}''(a,h_{\rm m}(a))$ (dashed line), depending on the ratio a of the radii of the single-turn pick-up coil and film.

мулы полностью эквивалентны (4), что видно, в частности, из совпадения численных значений $h_{\rm m}=1,942$ и $\chi''(h_{\rm m})=0,241\chi_0$ модели КС со значениями, следующими из (4) (соответствуют пределу $a\to\infty$ на рис. 2). При этом величина $(h_{\rm m}(\infty)-h_{\rm m}(a))/h_{\rm m}(\infty)$ характеризует относительную систематическую погрешность по измерению $J_{\rm c}$ методом «максимума потерь» [1] в рамках модели КС, когда не учитывается конечный размер приёмной катушки.

Как видно из рис. 2, для стандартной экспериментальной ситуации (образец внутри приёмной соленоидальной катушки) относительная систематическая погрешность в рамках модели КС является пренебрежимо малой (меньше 2%) при a>2, однако приближается к 25% при $a\to 1$. В то же время, для накладных измерительных катушек с a<1 общий вид зависимостей $\tilde{\chi}(a,h)$ изменяется качественно, принимая пороговый характер по h. Это позволяет при каждом цикле измерений по температуре при фиксированной амплитуде поля получать не одну точку зависимости $J_c(T)$ (в максимуме $\chi''(T)$), а две (в точках максимума $T_{\rm m}$ и порога T_0 $\tilde{\chi}''(a,h_{\rm m}(T))$ по T).

Для значений параметров, наиболее соответствующих экспериментальной ситуации, на основе выражений (5) были также посчитаны действительная и мнимая части «обобщённой восприимчивости» в зависимости от амплитуды переменного магнитного поля и сопоставлены с результатами эксперимента (рис. 3).

Рис. 3. Сравнение экспериментальных и теоретических зависимостей $\tilde{\chi}'$ и $\tilde{\chi}''$ от амплитуды переменного магнитного поля для значений параметров, наиболее соответствующих экспериментальной ситуации при $T=78~\mathrm{K}$.

Fig. 3. Comparison of the experimental and theoretical dependences of the $\tilde{\chi}'$ and $\tilde{\chi}''$ on the amplitude of an alternating magnetic field for the values of the parameters most relevant to the experimental situation at $T=78~\mathrm{K}$.

3. ПОЛУЧЕНИЕ ПЛЁНОК

Исследуемые образцы ВТСП плёнок $YBa_2Cu_3O_{7-\delta}$ были получены методом двухлучевого импульсного лазерного осаждения, в котором использовались две конструктивно идентичные оптические линии, состоящие из Q-модулированных Nd:YAG-лазеров и оптических усилителей. На выходе такой системы достигалась энергия лазерного излучения до $250\,\mathrm{MДж}$ в импульсе с длиной волны $1,064\,\mathrm{mkm}$ при частоте повторения $25\,\mathrm{\Gamma u}$. Осаждение плёнок проводилось из стехиометрических $YBa_2Cu_3O_{7-\delta}$ мишеней на монокристаллические подложки $LaAlO_3$ при температуре $780\,\mathrm{^{\circ}C}$ и давлении кислорода в камере $150\,\mathrm{mtopp}$. Скорость роста плёнок составляла $25\,\mathrm{mm/muh}$. Чтобы достичь оптимально уровня допирования после окончания осаждения в рабочую камеру напускался кислород до давления $700\,\mathrm{topp}$ и плёнка медленно (на протяжении $90\,\mathrm{muhym}$) охлаждалась до комнатной температуры с $30\,\mathrm{muhymhod}$ выдержкой при температуре $450\,\mathrm{^{\circ}C}$.

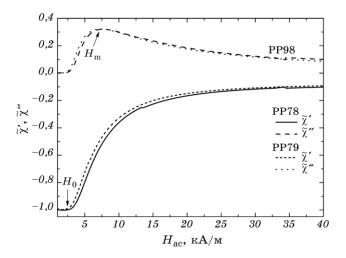
Таким образом, были получены две $YBa_2Cu_3O_{7-\delta}$ плёнки PP78 и PP79 с близкими значениями плотностей критического тока и температуры начала сверхпроводящего перехода (табл. 1.).

4. МЕТОДИКА ИЗМЕРЕНИЙ

Для получения зависимостей $\tilde{\chi}'(T, H_{\rm ac})$ и $\tilde{\chi}''(T, H_{\rm ac})$, представленных на рис. 4 и рис. 5, использовались одна возбуждающая (внешняя) ($H_{\rm max}=35~{\rm kA/m}$ на частоте $F=113~{\rm \Gamma u}$) и две приёмные (внутренние) дифференциально включённые катушки. При этом приёмные представляли собой плоские 12-витковые однослойные накладные спиралевидные катушки с внутренним и внешним радиусом соответственно $r_1=2~{\rm mm}$ и $r_2=6~{\rm mm}$ (рис. 1, δ). К одной из катушек плотно прилегала сверхпроводящая плёнка большего размера. Таким образом, плёнка полностью экранировала небольшое возбуждающее переменное магнитное поле $H_{\rm ac}$ в этой катушке в области полей до так называемого порогового поля H_0 . Такая геометрия, в отличие от широко используемой геометрии «образец внутри ка-

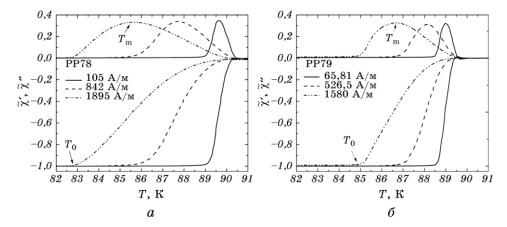
ТАБЛИЦА 1. Характеристики $YBa_{2}Cu_{3}O_{7-\delta}$ плёнок.

TABLE 1. Characteristics of YBa₂Cu₃O_{7-δ} films.


№ об- разца	Материал подложки	Размер,	Толщина, нм	$T_{\rm c}$, K	Плотность критического тока $J_{\rm c}(78~{ m K}),{ m MA/cm}^2$
PP78	$LaAlO_3$	10×10	360	90,4	1,6
PP79	$LaAlO_3$	10×10	360	89,5	1,53

тушки» позволяла провести нормировку, приняв $\tilde{\chi}'(H_{\rm ac} < H_0) = -1$ (рис. 4, $H_{\rm ac} < 2.5$ кA/м). В соответствии с величиной нормировки, рассчитывалась величина $\tilde{\chi}''(T, H_{\rm ac})$. С увеличением амплитуды $H_{\rm ac}$, фронт магнитного потока продвигается к центру плёнки и достигает катушки при $H_{\rm ac} = H_0$. Затем $\tilde{\chi}'$ становится немного больше -1 (рис. 4), когда радиус свободной от магнитного потока зоны становится чуть меньше максимального радиуса спиралевидной катушки r_2 .

Используя (6) и приняв за 2R минимальные размеры образца (2R=10 мм), а r — радиус внешнего витка катушки (2r=6 мм), из амплитудных зависимостей $\tilde{\chi}'(H_{\rm ac})$ и $\tilde{\chi}''(H_{\rm ac})$ (рис. 4) были найдены значения плотности критического тока образцов PP78 и PP79 для температуры $78~\rm K$ (табл. 1).

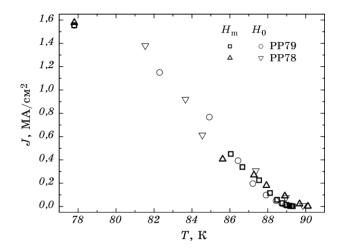

При амплитуде $H_{\rm ac}=H_{\rm m}$ на зависимости $\tilde{\chi}''(H_{\rm ac})$ наблюдался характерный пик высотой $\tilde{\chi}''(H_{\rm m})=0,315$. Отношение амплитуды $H_{\rm m}$ к H_0 во всех полученных амплитудных измерениях было практически постоянным ($H_{\rm m}/H_0=2,45$), что подтверждает хорошую применимость модели критического состояния. Подставим в (6) отношение амплитуды $H_{\rm m}$ к H_0 и получим выражение для определения плотности критического тока по положению максимума

$$J_{\rm c} = 0.816 H_{\rm m}/(d \operatorname{arcosh}(R/r)).$$
 (7)

Рис. 4. Амплитудные $H_{\rm ac}$ зависимости $\tilde{\chi}'$ и $\tilde{\chi}''$ образцов PP78 и PP79 полученные при $T=78~\rm K$; H_0 и $H_{\rm m}$ — характерные значения амплитуды порога и максимума зависимостей.

Fig. 4. The amplitude $H_{\rm ac}$ dependences of the $\tilde{\chi}'$ and $\tilde{\chi}''$ of the samples PP78 and PP79 obtained at T=78 K; H_0 and $H_{\rm m}$ are characteristic amplitude values of the threshold and the maximum of the dependence.

Рис. 5. Температурные зависимости $\tilde{\chi}'$ и $\tilde{\chi}''$ образцов PP78 (a) и PP79 (б) полученные при разных значениях $H_{\rm ac}$; $T_{\rm 0}$ и $T_{\rm m}$ — характерные значения температуры порога и максимума зависимостей.


Fig. 5. The temperature dependences of the $\tilde{\chi}'$ and $\tilde{\chi}''$ of the samples PP78 (a) and PP79 (6) obtained at different values $H_{\rm ac}$; T_0 and $T_{\rm m}$ are characteristic temperature values of the threshold and the maximum of the dependences.

В дальнейшем (6) и (7) использовались для определения плотности критического тока при характерных температурах порога T_0 и максимума $T_{\rm m}$ на зависимостях $\tilde{\chi}''(T)$ при фиксированных значениях амплитуды поля H_i из условий $H_i = H_0$ в (6) и $H_i = H_{\rm m}$ в (7) (рис. 5). В результате были получены температурные зависимости плотности критического тока $J_{\rm c}(T)$ для образцов PP78 и PP79 (рис. 6). Наблюдается постоянство отношения $H_{\rm m}/H_0$ во всем измеренном интервале температур, что приводит к хорошей корреляция между значениями $J_{\rm c}$, полученными двумя способами.

В целом, значения $J_c(78 \text{ K})$ оказались близки (примерно в 1,5 раза больше, что естественно, учитывая разницу между образцами в T_c около 2 K), а зависимости $J_c(T)$ качественно сходны с результатами, полученными ранее по стандартной методике для плёнок на аналогичных подложках LaAlO₃ в [5, 7].

5. ВЫВОДЫ

В рамках модели критического состояния проведены расчёты действительной и мнимой частей «обобщённой восприимчивости» $\tilde{\chi}(a,h(J_{\rm c}(T),H_{\rm ac}))$, определённой через регистрируемый сигнал для конкретной экспериментальной схемы, в случае произвольного соотношения a между радиусами тонкого сверхпроводящего диска и приёмной катушки в виде одиночного витка. В пределе $a \to \infty$ из

Рис. 6. Температурные зависимости плотности критического тока $J_{\rm c}(T)$ образцов PP78 и PP79, полученные в результате анализа начала вхождения (порога) магнитного потока в катушку (H_0) и положения максимума $(H_{\rm m})$.

Fig. 6. Temperature dependences of the critical current density $J_{\rm c}(T)$ of the samples PP78 and PP79, obtained as a result of the analysis of the beginning of magnetic flux entry into the coil (the threshold H_0) and the maximum position (H_m) .

«обобщённой восприимчивости» получаются известные результаты модели КС [23] для нелинейной комплексной магнитной восприимчивости $\chi(h)$.

Показано, что для стандартной экспериментальной ситуации (образец внутри приёмной соленоидальной катушки) относительная систематическая погрешность по измерению $J_{
m c}$ методом максимума потерь [1] в рамках модели КС является пренебрежимо малой (меньше 2%) при a > 2, однако приближается к 25% при $a \to 1$. В то же время, для накладных измерительных катушек с a < 1 общий вид зависимостей $\tilde{\gamma}(a,h)$ изменяется качественно, принимая пороговый характер по приведённой амплитуде поля h. Это позволяет при каждом цикле измерений по температуре T при фиксированной амплитуде поля H_{ac} снимать не одну точку зависимости $J_{\mathrm{c}}(T)$ (в максимуме $\tilde{\chi}''(T)$), а две (в точках максимума T_{m} и порога T_{0} $\tilde{\chi}''(T)$ по T), а также упрощает процедуру нормировки действительной $\tilde{\chi}'$ и мнимой $\tilde{\chi}''$ частей обобщённой магнитной восприимчивости $\tilde{\chi}$. С использованием плоских накладных катушек были получены температурные и амплитудные зависимости $\tilde{\chi}'(T, H_{ac})$ и $\tilde{\chi}''(T, H_{ac})$ сверхпроводящих плёнок YBCO. Из полученных характеристик были вычислены плотности критического тока по двум характерным точкам — порогу h_0 для проникновения потока в катушку и положению пика $h_{\rm m}$ на зависимости $\tilde{\chi}''(h)$. Значения $J_{\rm c}(78\,{\rm K})$ оказались близки, а зависимости $J_c(T)$ качественно сходны с результатами, полученными ранее по стандартной методике для плёнок на аналогичных подложках LaAlO₃ в [5, 7].

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

- 1. M. Wurlitzer, M. Lorenz, K. Zimmer, and P. Esquinazi, Phys. Rev. B, 55: 11816 (1997).
- 2. Th. Herzog, H. A. Radovan, P. Ziemann, and E. H. Brandt, *Phys. Rev. B*, **56**: 2871 (1997).
- 3. E. Mezzetti, R. Gerbaldo, G. Ghigo, L. Gozzelino, B. Minetti, C. Camerlingo, A. Monaco, G. Cuttone, and A. Rovelli, *Phys. Rev. B*, **60**: 7623 (1999).
- Ю. В. Федотов, С. М. Рябченко, А. П. Шахов, Физика низких температур, 26: 638 (2000).
- 5. Э. А. Пашицкий, В. И. Вакарюк, Ю. В. Федотов, С. М. Рябченко, *Физика низких температур*, 27: 131 (2001).
- 6. Yu. V. Fedotov, S. M. Ryabchenko, E. A. Pashitskii, A. V. Semenov, V. I. Vakaryuk, V. S. Flis, and V. M. Pan, *Physica C*, 372–376: 1091 (2002).
- Ю. В. Федотов, С. М. Рябченко, Э. А. Пашицкий, А. В. Семенов,
 В. И. Вакарюк, В. М. Пан, В. С. Флис, Физика низких температур, 28: 245 (2002)
- 8. V. M. Pan, Yu. V. Fedotov, S. M. Ryabchenko, E. A. Pashitskii, A. V. Semenov, V. I. Vakaryuk, V. S. Flis, and Yu. V. Cherpak, *Physica C*, 388–389: 431 (2003).
- 9. Ю. В. Федотов, Э. А. Пашицкий, С. М. Рябченко, В. А. Комашко, В. М. Пан, В. С. Флис, Ю. В. Черпак, *Физика низких температур*, **29**: 842 (2003).
- Y. V. Cherpak, V. A. Komashko, S. A. Pozigun, A. V. Semenov,
 C. G. Tretiatchenko, E. A. Pashitskii, and V. M. Pan, *IEEE Transactions on Applied Superconductivity*, 15: 2783 (2005).
- 11. А. И. Коссе, А. Ю. Прохоров, В. А. Хохлов, Г. Е. Шаталова, Н. Е. Письменова, А. В. Семёнов, М. П. Черноморец, Д. Г. Ковальчук, Г. Г. Левченко, Φ изика и техника высоких давлений, 15, № 3: 131 (2005).
- V. M. Pan, Yu. V. Cherpak, A. V. Semenov, E. A. Pashitskii, V. A. Komashko, S. A. Pozigun, C. G. Tretiatchenko, and A. V. Pan, *Phys. Rev. B*, 73: 054508 (2006).
- A. I. Kosse, A. Yu. Prokhorov, V. A. Khokhlov, G. G. Levchenko,
 A. V. Semenov, D. G. Kovalchuk, M. P. Chernomorets, and P. N. Mikheenko,
 Supercond. Sci. Technol., 21: 075015 (2008).
- 14. J. J. Akerman and K. V. Rao, Phys. Rev. B, 65: 134525 (2002).
- D.-X. Chen, E. Pardo, A. Sanchez, S.-S. Wang, Z.-H. Han, E. Bartolome,
 T. Puig, and X. Obradors, *Phys. Rev. B*, 72: 052504 (2005).
- 16. М. П. Черноморец, Д. Г. Ковальчук, С. М. Рябченко, А. В. Семенов, Φ изика низких температур, 32: 277 (2006).
- 17. М. П. Черноморец, Д. Г. Ковальчук, С. М. Рябченко, А. В. Семенов, Э. А. Пашицкий, *Физика низких температур*, **32**: 1096 (2006).
- 18. Д. Г. Ковальчук, М. П. Черноморец, С. М. Рябченко, Э. А. Пашицкий, А. В. Семёнов, *Физика низких температур*, **36**: 101 (2010).
- 19. Д. Г. Ковальчук, М. П. Черноморец, *Физика низких температур*, **39**: 1298 (2013).

- 20. C. P. Bean, Rev. Mod. Phys., 36: 31 (1964).
- 21. P. N. Mikheenko and Yu. E. Kuzovlev, *Physica C*, **204**: 229 (1993).
- 22. J. Zhu, J. Mester, J. Lockhart, and J. Turneaure, Physica C, 212: 216 (1993).
- 23. J. R. Clem and A. Sanchez, Phys. Rev. B, 50: 9355 (1994).
- 24. E. H. Brandt, Phys. Rev. B, 55: 14513 (1997).
- 25. D. V. Shantsev, Y. M. Galperin, and T. H. Johansen, *Phys. Rev. B*, **61**: 9699 (2000).
- S. G. Gevorgyan, T. Kiss, T. Oyama, M. Inoue, A. A. Movsisyan,
 H. G. Shirinyan, V. S. Gevorgyan, T. Matsushita, and M. Takeo, Supercond. Sci. Technol., 14: 1009 (2001).

REFERENCES

- 1. M. Wurlitzer, M. Lorenz, K. Zimmer, and P. Esquinazi, *Phys. Rev. B*, **55**: 11816 (1997).
- 2. Th. Herzog, H. A. Radovan, P. Ziemann, and E. H. Brandt, *Phys. Rev. B*, **56**: 2871 (1997).
- 3. E. Mezzetti, R. Gerbaldo, G. Ghigo, L. Gozzelino, B. Minetti, C. Camerlingo, A. Monaco, G. Cuttone, and A. Rovelli, *Phys. Rev. B*, **60**: 7623 (1999).
- 4. Yu. V. Fedotov, S. M. Ryabchenko, and A. P. Shakhov, *Low Temperature Physics*, **26**: 464 (2000).
- 5. E. A. Pashitskii, V. I. Vakaryuk, S. M. Ryabchenko, and Yu. V. Fedotov, *Low Temperature Physics*, 27: 96 (2001).
- Yu. V. Fedotov, S. M. Ryabchenko, E. A. Pashitskii, A. V. Semenov,
 V. I. Vakaryuk, V. S. Flis, and V. M. Pan, *Physica C*, 372–376: 1091 (2002).
- 7. Yu. V. Fedotov, S. M. Ryabchenko, E. A. Pashitskii, A. V. Semenov, V. I. Vakaryuk, V. M. Pan, and V. S. Flis, *Low Temperature Physics*, 28: 172 (2002).
- 8. V. M. Pan, Yu. V. Fedotov, S. M. Ryabchenko, E. A. Pashitskii, A. V. Semenov, V. I. Vakaryuk, V. S. Flis, and Yu. V. Cherpak, *Physica C*, 388–389: 431 (2003).
- 9. Yu. V. Fedotov, E. A. Pashitskii, S. M. Ryabchenko, V. A. Komashko, V. M. Pan, V. S. Flis, and Yu. V. Cherpak, *Low Temperature Physics*, **29**: 630 (2003).
- Y. V. Cherpak, V. A. Komashko, S. A. Pozigun, A. V. Semenov,
 C. G. Tretiatchenko, E. A. Pashitskii, and V. M. Pan, *IEEE Transactions on Applied Superconductivity*, 15: 2783 (2005).
- A. I. Kosse, A. Yu. Prokhorov, V. A. Khokhlov, G. E. Shatalova,
 N. E. Pis'menova, A. V. Semenov, M. P. Chernomorets, D. G. Kovalchuk, and
 G. G. Levchenko, Fizika i Tekhnika Vysokikh Davleniy, 15, No. 3: 131 (2005)
 (in Russian).
- V. M. Pan, Yu. V. Cherpak, A. V. Semenov, E. A. Pashitskii, V. A. Komashko, S. A. Pozigun, C. G. Tretiatchenko, and A. V. Pan, *Phys. Rev. B*, 73: 054508 (2006).
- 13. A. I. Kosse, A. Yu. Prokhorov, V. A. Khokhlov, G. G. Levchenko, A. V. Semenov, D. G. Kovalchuk, M. P. Chernomorets, and P. N. Mikheenko, *Supercond. Sci. Technol.*, 21: 075015 (2008).
- 14. J. J. Akerman and K. V. Rao, *Phys. Rev. B*, **65**: 134525 (2002).

- 15. D.-X. Chen, E. Pardo, A. Sanchez, S.-S. Wang, Z.-H. Han, E. Bartolome, T. Puig, and X. Obradors, *Phys. Rev. B*, **72**: 052504 (2005).
- 16. M. P. Chernomorets, D. G. Kovalchuk, S. M. Ryabchenko, and A. V. Semenov, Low Temperature Physics, 32: 205 (2006).
- 17. M. P. Chernomorets, D. G. Kovalchuk, S. M. Ryabchenko, A. V. Semenov, and E. A. Pashitskii, *Low Temperature Physics*, 32: 832 (2006).
- 18. D. G. Kovalchuk, M. P. Chernomorets, S. M. Ryabchenko, E. A. Pashitskii, and A. V. Semenov, *Low Temperature Physics*, 36: 81 (2010).
- 19. M. P. Chernomorets and D. G. Kovalchuk, Low Temperature Physics, 39: 1008 (2013).
- 20. C. P. Bean, Rev. Mod. Phys., 36: 31 (1964).
- 21. P. N. Mikheenko and Yu. E. Kuzovlev, *Physica C*, **204**: 229 (1993).
- 22. J. Zhu, J. Mester, J. Lockhart, and J. Turneaure, *Physica C*, 212: 216 (1993).
- 23. J. R. Clem and A. Sanchez, *Phys. Rev. B*, **50**: 9355 (1994).
- 24. E. H. Brandt, Phys. Rev. B, 55: 14513 (1997).
- 25. D. V. Shantsev, Y. M. Galperin, and T. H. Johansen, *Phys. Rev. B*, **61**: 9699 (2000).
- S. G. Gevorgyan, T. Kiss, T. Oyama, M. Inoue, A. A. Movsisyan,
 H. G. Shirinyan, V. S. Gevorgyan, T. Matsushita, and M. Takeo, Supercond. Sci. Technol., 14: 1009 (2001).