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Abstract. The solvability of the Cauchy problem u(0) = u0 of an semi-
linear differential operator equation Lu̇ = Mu+N(u) is under considera-
tion. The abstract results are illustrated by the Cauchy–Dirichlet prob-
lem for degenerate reaction-diffusion equations and for Navier–Stokes
equations, and by the Cauchy–Bernard problem for Oskolkov thermo-
convection equations.
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1. Introduction

Let U and F be Banach spaces, and let operators L ∈ L(U; F) (i. e.
linear and continuous) and M ∈ Cl(U; F) (i. e. linear, closed and densely
defined). We shall study the Cauchy problem

u(0) = u0 (1.1)

for the differential operator equation

Lu̇ = Mu+N(u), (1.2)

where kerL 6= {0}, and N : domN ⊂ U → F is generally speaking
nonlinear operator. Following [1] we shall call the Eq. (1.2) a semilinear
Sobolev type equation, in contrast to linear Sobolev type equation

Lu̇ = Mu. (1.3)

The problems (1.1), (1.2) and (1.1), (1.3) are in the focus of the
attention of many researches (see monographs [2]–[5] for references). In
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260 Phase spaces for a class of Sobolev type equations

contrast to all these results our approach bases on the consept of the
phase space that are understood more broadly than in application solely
to Hamiltonian systems. Roughly speaking, a set P is called a phase
space of the Eq. (1.2) (or Eq. (1.3)) if there exists a unique solution
u = u(t) of problem (1.1), (1.2) (or (1.1), (1.3)) on some semiinterval
[0, T ) for all u0 ∈ P.

If an operator L : U → F is continuously invertible, then the Eq. (1.2)
and Eq. (1.3) are reduced trivially to the equations

u̇ = Su+ F (u) (1.4)

and

u̇ = Su (1.5)

respectively with an operator S ∈ Cl(U) and a nonlinear operator F :
domF → U in the right-hand side. If in addition S is a sectorial operator
[6], then by the Solomyak–Yosida theorem the Eq. (1.5) has an ana-
lytic semigroup of resolving operators, which are represented by Dunford
integral

U t =
1

2πi

∫

Γ

(µI − S)−1eµtdµ, t ∈ R+, U
0 = I. (1.6)

Thereupon the problem (1.1), (1.4) is solved, if operator F ∈ C1(Uα; U),
where Uα = [U0,U1]α, α ∈ [0, 1), is interpolated space, U0 = U, U1 is
domS equipped by "graphic norm" [6].

The idea of the phase space method consists in reducindg (1.2), (1.3)
topt (1.4), (1.5) respectively that are given, however, not on all Uα (or U),
but on some (possibly, smooth Banach) manifold imbedded in Uα (or U).
In [8] the problem (1.1), (1.2) was investigated under main assumption:
the point µ = ∞ is a simple pole of the L-resolvent (µL − M)−1 of
operator M . In our case the point µ = ∞ may not be isolated point of
the L-resolvent of operator M .

The paper consists of three sections. Exept of Introduction the second
section is of propaedeutic character. It contains already known results [7],
that are presented in our arrangement. The main goal of this section is
to show the construction of resolving semigroups of the Eq. (1.3). These
semigroups are created like the semigroup (1.5).

In the third section we carry out abstract discussions, consisting in
the application of the modified Lyapunov–Schmidt method to studying
of the problem (1.1), (1.2). We attempt to reduce the Eq. (1.2) to the
Eq. (1.3). Remark that the Cauchy problem (ξ(0), ϕ(0)) = (0, 0) for
equations

0 = η − ξ2, η̇ = ξ (1.7)
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has two solutions stationary (0, 0) or nonstationary (t/2, t2/4), but the
same problem for equations

0 = η − ξ2, η̇ = ξ + 1 (1.8)

has not solution. Since Eq. (1.7) and Eq. (1.8) are simplest examples of
the Eq. (1.2) then the problem (1.1), (1.2) is not well-posed in general.
This simple observation shows the necessity of the restriction of the notion
of the solution to the problem (1.1), (1.2).

The fourth section contains some examples arised in applications. We
apply obtained abstract results to the Cauchy–Dirichlet problem for dege-
nerate reaction-diffusion equations and for Navier–Stokes equations, and
to the Cauchy–Bernard problem for Oskolkov thermoconvection equa-
tions. The main goal of this section is to study the morphology (i. e.
structure, lattice, organization) of the phase space of a concrete interpre-
tation of the problem (1.1), (1.2).

In conclusion let us agree to all arguments that are carried out in real
Banach spaces, but when "spectral" questions are considered, the natural
complexification is introduced; all contours are oriented by "counterclock-
wise" motion and bound domains that lying on the "left hand" side under
such motion; symbols I and O denote the "unique" and "null" operators
respectively whose domains of definition are clear from context.

2. Relatively p-sectorial operators and degenerate

analytic semigroups

Let U and F be Banach spaces, operator L ∈ L(U; F), and operator
M : domM ⊂ U → F be linear and closed.

Definition 2.1. Set

ρL(M) = {µ ∈ C | (µL−M)−1 ∈ L(F; U)}

is called a resolvent set of an operator M with respect to an operator
L (or, briefly, L-resolvent set of an operator M). The set σL(M) =
= C\ρL(M) is called spectrum of an operator M with respect to an op-
erator L (or, briefly, L- spectrum of an operator M).

Remark 2.1. When there exists an operator L−1 ∈ L(F; U) L-resolvent
set and L-spectrum of the operator M coincide with the resolvent set and
the spectrum of the operator L−1M (or the operator ML−1).

Remark 2.2. The L-resolvent set of the operator M is always open,
and, consequently, the L-spectrum of the operator M is always closed.
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Definition 2.2. Operator functions (µL − M)−1, RLµ(M) = (µL−
−M)−1L, LLµ(M) = L(µL − M)−1 are called respectively a resolvent,
right resolvent, and left resolvent of an operator M with respect to the op-
erator L (or, briefly, L-resolvent, right L-resolvent, and left L-resolvent
of the operator M).

Remark 2.3. When there exists an operator L−1 ∈ L(F; U) the right
(left) L-resolvent of the operator M coincides with the resolvent of the
operator L−1M (ML−1).

Lemma 2.1. The L-resolvent, right and left L-resolvents of the operator
M are continuous on ρL(M).

Theorem 2.1. The L-resolvent, right and left L-resolvents of the oper-
ator M are analytic in ρL(M).

Now let an operator L ∈ L(U; F), and an operator M ∈ Cl(U; F).

Definition 2.3. An operator M is called p-sectorial with respect to an
operator L with a number p ∈ N0 (or, briefly, (L, p)-sectorial), if

(i) there exist constants a ∈ R and θ ∈ (π/2, π) such that the sector

SLa,θ(M) = {µ ∈ C | | arg (µ− a)| < θ, µ 6= a} ⊂ ρL(M) ,

(ii) there exists a constant K ∈ R+ such that

max{‖RL(µ,p)(M)‖L(U), ‖LL(µ,p)(M)‖L(F )} ≤ K
/ p∏

q=0

|µq − a|

for every µ0, µ1, . . . , µp ∈ SLa,θ(M).

Remark 2.4. When there exists an operator L−1 ∈ L(F; U), the operator
M is (L, 0)-sectorial precisely when the operator L−1M is sectorial (or,
which is equivalent, the operator ML−1).

Supposing ρL 6= ∅ let us introduce into consideration a pair of equa-
tions one of which is equivalent to Eq. (1.3)

RLα(M)u̇ = (αL−M)−1Mu , (2.1)

LLα(M)ḟ = M(αL−M)−1f . (2.2)

Both of these equations will be considered as concrete interpretations of
the equation

Av̇ = Bv , (2.3)

where operatorsA,B ∈ L(V); V is Banach space. Further vector function
v ∈ C1(R+; V) satisfying this equation will be called the relaxed solution
of Eq. (2.3).
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Definition 2.4. A mapping V . ∈ C1(R+;L(V)) is called a semigroup of
solving operators (or briefly, a solving semigroup) of Eq. (2.3), if

(i) V sV t = V s+t ∀s, t ∈ R+;
(ii) for every v0 ∈ V the vector function v(t) = V tv0 is the relaxed

solution of Eq. (2.3).

Let us identify the semigroup with the set {V t | t ∈ R+}. A semigroup
{V t | t ∈ R+} will be called analytic, if it admits some analytic extension
to a certain sector containing a ray R+, while retaining its properties (i),
(ii), and will be called uniformly bounded, if

∃C ∈ R ∀t ∈ R+ ‖V t‖L(V) ≤ C.

Remark 2.5. Note that the fact that a solving semigroup of Eq. (2.3)
with an identity is not postulated.

Theorem 2.2. Let an operator M be (L, p)-sectorial. Then there ex-
ists an analytic and uniformly bounded solving semigroup of Eq. (2.1)
(Eq. (2.2)).

These semigroups may be represented by the integrals of the Dunford–
Taylor type

U t =
1

2πi

∫

Γ

RLµ(M)eµtdµ, t ∈ R+, (2.4)

F t =
1

2πi

∫

Γ

LLµ(M)eµtdµ, t ∈ R+, (2.5)

where Γ ⊂ SLa,θ(M) is a contour such that argµ→ ±θ as |µ| → ∞, µ ∈ Γ.

Remark 2.6. The semigroup {U t : t ∈ R+} is the resolving semigroup
of the Eq. (1.3). Let us introduce the sets

kerU . ={u ∈ U : U tu = 0∀t ∈ R+}, kerF . ={f ∈ F : F tf = 0∀t ∈ R+},

imU . = {u ∈ U : lim
t→0+

U tu = u}, imF . = {f ∈ F : lim
t→0+

F tf = f},

and let us set

U0 = kerRL(µ,p)(M), F0 = kerLL(µ,p)(M),

U1 = imRL(µ,p)(M), F1 = imLL(µ,p)(M).

Theorem 2.3. Suppose that an operator M is (L, p)-sectorial. Then

U0 = kerU ., F0 = kerF ., U1 = imU ., F1 = imF ..
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Now we are introducing the operators

Lk = L

∣∣∣∣
Uk

, Mk = M

∣∣∣∣
domM∩Uk

, k = 0, 1.

Theorem 2.4. Assume that an operator M is (L, p)-sectorial. Then
(i) Lk ∈ L(Uk; Fk), k = 0, 1;
(ii) Mk : domM ∩ Uk → Fk, k = 0, 1;
(iii) there exists the operator M−1

0 ∈ L(F0; U0);
(iv) the operator H = M−1

0 L0 ∈ L(U0) is nilpotent with degree of
nilpotency not greater than p.

Later on we are interesting in the cases

U = U0 ⊕ U1 and F = F0 ⊕ F1. (2.6)

Theorem 2.5. (Yagi–Fedorov [9], [10]). Let an operator M be (L, p)-
sectorial, and let Banach space U (F) be reflexive. Then U = U0 ⊕ U1

(F = F0 ⊕ F1).

Further we need the condition:

there exists the operator L−1
1 ∈ L(F1; U1). (2.7)

Definition 2.5. Operator M is called strongly (L, p)-sectorial if it is
(L, p)-sectorial and

(i) there exists a dense in F subspace
◦
F such that for all f ∈

◦
F

∥∥∥∥∥∥
M(λL−M)−1

p∏

q=0

L(µqL−M)−1f

∥∥∥∥∥∥
F

lim
ǫ→0

const(f)

|λ− a|
p∏
q=0

|µq − a|
;

(ii)

∥∥∥∥∥∥
(λL−M)−1

p∏

q=0

L(µqL−M)−1

∥∥∥∥∥∥
L(F;U)

lim
ǫ→0

const

|λ− a|
p∏
q=0

|µq − a|

for all λ, µ0, µ1, . . . , µp ∈ SLa,θ(M).

Theorem 2.6. Let an operator M be strongly (L, p)-sectorial. Then the
conditions (2.6), (2.7) are fulfilled.

Now we can construct the operator S = L−1
1 M1.

Theorem 2.7. Let an operator M be (L, p)-sectorial, and the conditions
(2.6), (2.7) are fulfilled. Then

(i) the operator S ∈ Cl(U1) is sectorial;
(ii) Mk ∈ Cl(Uk; Fk).
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3. Quasistationary semitrajectories

Suppose that an operator M is (L, p)-sectorial. Then by the The-
orem 2.2 let us put Uk0 = Uk, and Uk1 = domM ∩ Uk, k = 0, 1. The
spaces Uk1, k = 0, 1, equipped by the "graphic norm" is Banach spaces. If
an operator M is (L, p)-sectorial and the condition (2.6) is fulfilled, then
the embeddings Uk1 →֒ Uk0, k = 0, 1, are dense and continuous. Denote
by U1

α = [U1
0,U

1
1]α, α ∈ [0, 1), an interpolation space [6], and by Uα the

direct sum U0
1⊕U1

α. A vector-function u : (0, T ) → Uα is called a solution
of the Eq. (1.2) if it satisfies to this Eq. (1.2). A solution u = u(t) of the
Eq. (1.2) is called solution of the problem (1.1), (1.2), if lim

t→0+
u(t) = u0

in Uα.
Return to the Eq. (1.2). Under assumptions of the Theorem 2.2 and

the conditions (2.6), (2.7) we can reduce this equation to the equivalent
system

Hu̇0 = u0 +M−1
0 (I −Q)N(u), (3.1)

u̇1 = Su1 + L−1
1 QN(u), (3.2)

where u1 = Pu, u0 = u − u1, the operator P (Q) is the projection onto
U1 (F1) along U0 (F0), the operator H = M−1

0 L0 ∈ L(U0) is nilpotent,
and the operator S = L−1

1 M1 ∈ Cl(U1) is sectorial.

Definition 3.1. A solution u = u(t) of the problem (1.1), (1.2) is called a
quasistationary semitrajectory of the Eq. (1.2) passing through the point
u0 if Hu̇0(t) = 0 for every t ∈ (0, T ).

Recall that a stationary solution of the Eq. (1.2) is a quasistationary
semitrajectory, but the converse is false. In the above mentioned example
(1.7) the quasistationary semitrajectories coincide with the stationary
one, i. e. with the point (0, 0). In general (0, 0) is not the unique
solution of the problem η̇ = ξ, 0 = η−ξ2, ξ(0) = 0, η(0) = 0; there is one
more: (t/2, t2/4); however as a quasistationary semitrajectory the point
(0, 0) is a unique solution of this problem. Remark also that the example
(1.8) has not quasistationary semitrajectory passing through the point
(0, 0).

To find qusistationary semitrajectories of the Eq. (1.2) we introduce
in consideration a set

M = {u ∈ Uα : (I −Q)(Mu+N(u)) = 0}.

It is obvious (see (3.1)) that if u = u(t) is a quasistationary semitrajec-
tory then it lies in M (i. e. u(t) ∈ M for every t ∈ [0, T )). Let a point
u0 ∈ M. Set u1

0 = Pu0 and by O1
0 ⊂ U1

α define a neighborhood of the
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point u1
0 ∈ U1

α. If there exists a C∞-diffeomorphism δ : O1
0 → M such

that δ−1 = P , then we shall call the set M a Banach C∞-manifold at the
point u0. If the set M is a Banach C∞-manifold at every point u0 ∈ M,
then we shall call the set M a Banach C∞-manifold modeling by the
subspace U1

α. Connected Banach C∞-manifold is called a simple Banach
C∞-manifold if every its atlas is equivalent to the atlas containing only
a map.

Theorem 3.1. Let an operator M be (L, p)-sectorial, and an operator
N ∈ C∞(U1

α; F). Let the conditions (1.3), (1.4) be fulfilled, and the set M

be a Banach C∞-manifold at the point u0. Then for any T ∈ R+ there
exists a unique quasistationary semitrajectory of the Eq. (1.2) passing
through the point u0.

Proof. In the neighborhood O1
0 of the point u1

0 the Eq. (3.2) may be
written in the form

u̇1 = Su1 + F (u1), (3.3)

where the operator F = L−1
1 QNδ ∈ C∞(O1

0; U
1), and the operator S ∈

Cl(U1) is sectorial. The existence of a unique solution of the Cauchy
problem u1(0) = u1

0 for the Eq. (3.3) for some T ∈ R+ is the classical
result [6]. Required qusistationary semitrajectory u = u(t) has the form
u(t) = δ(u1(t)) + u1(t).

In conclusion let us consider the problem (1.1), (1.2) where an op-
erator M is (L, σ)-bounded. A vector-function u ∈ C∞((−T, T ); U) is
called a solution of the equation if it satisfies to this equation for any
T ∈ R+. A solution of the Eq. (1.2) is called a solution of the problem
(1.1), (1.2) if it satisfies to (1.2). By analogy with above mentioned set
M we introduce in consideration a set

M′ = {u ∈ U : (I −Q)(Mu+N(u)) = 0}.

Definition 3.2. A solution u = u(t) of the problem (1.1), (1.2) is called
a quasistationary trajectory of the Eq. (1.2) passing through the point u0

if Hu̇0(t) = 0 for every t ∈ (−T, T ).

Remark that in the case of (L, σ)-boudedness of an operator M qua-
sistationary semitrajectory may be continued "back" by the time.

Theorem 3.2. Let an operator M be (L, σ)-bounded, moreover, ∞ be a
removable singular point or a pole of the order p ∈ N. Let an operator
N ∈ C∞(U; F), and the set M′ be a Banach C∞-manifold at the point
u0. Then for any T ∈ R+ there exists a unique quasistationary trajectory
u = u(t), t ∈ (−T, T ), of the Eq. (1.2) passing through the point u0.



Georgy A. Sviridyuk 267

Proof. In the neighborhood O1
0 ⊂ U1 of the point u1

0 = Pu0 the Eq. (1.2)
may be written in the form (3.3). Multiplying (3.3) by δ′u1 on the left we
can take the equation

u̇ = G(u), (3.4)

where the operator G = δ′u1(S + L−1
1 QNδ) : u→ TuM, the operator δ′u1

is the Frechet derivative of C∞-diffeomorphism δ at the point u1 = Pu,
TuM is the tangent space. The existence of a unique solution of the
Cauchy problem (1.1) for the Eq. (3.4) for any T ∈ R+ is the classical
Cauchy theorem [11].

Remark 3.1. If ∞ is essential singular point then the Theorem 3.2 is
false even for the linear Eq. (1.3) [7].

4. Phase spaces

Let us return to the Eq. (1.2).

Definition 4.1. A set P ⊂ U is called a phase space of the Eq. (1.2), if

(i) every solution u = u(t) of the Eq. (1.2) lies in P, i. e. v(t) ∈ P

∀t ∈ R+;

(ii) for every u0 ∈ P there exists a unique solution of the problem
(1.1), (1.2).

In this section we shall consider such examples, in which the phase
space is simple Banach C∞-manifold and coincides with the set M.

Example 4.1 The hybrid of Oskolkov system and heat equation in the
Oberbeck–Boussinesque approximation

(1 − κ∇2)vt = ν∇2v − (v · ∇)v −∇p+ gγS,
∇ · v = 0,
St = δ∇2S − v · ∇S + γv

(4.1)

describes the thermal convection of viscoelastic incompressible fluid (see
[12] for more details). If one of horizontal components of the velocity is
equal to zero, then the system (4.1) is reduced to a system

(1 − κ∆)∆
∂ψ

∂t
= ν∆2ψ − ∂(ψ,∆ψ)

∂(x, y)
+ gγ

∂θ

∂x
,

∂θ

∂t
= δ∆θ − ∂(ψ, θ)

∂(x, y)
+ β

∂ψ

∂x
,

(4.2)

which models plane-parallel thermal convection.
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Set Ω = (0, l) × (0, h), where l, h ∈ R+. At the domain Ω × R+ we
shall consider the Cauchy–Bernard problem for the system (4.2)

ψ(x, y, 0) = ψ0(x, y), θ(x, y, 0) = θ0(x, y), (x, y) ∈ Ω; (4.3)

ψ(x, 0, t) = ∆ψ(x, 0, t) = ψ(x, h, t) = ∆ψ(x, h, t) = 0, (4.4)

θ(x, 0, t) = θ(x, h, t) = 0, x ∈ (0, l), t ∈ R+; (4.5)

functions ψ and θ are periodic with respect to x. (4.6)

We shall reduce the problem (4.2)–(4.6) to the problem (1.1), (1.2). To
this end we set U = Uψ × Uθ, F = Fψ × Uθ, where Uψ = {ψ ∈ W 4

2 (Ω) :
ψ satisfies (4.4), (4.6)}, Uθ = Fψ = L2(Ω). We define the operators

L =

(
(I − κ∆)∆ O

O I

)
, κ ∈ R; M =

(
ν∆2

O

O δ∆

)
, κ ∈ R;

where domM = Uψ × {θ ∈ W 2
1 (Ω) : θ satisfies (4.5), (4.6)}. It is clear

that the operators L ∈ L(U; F), M ∈ Cl(U; F).

Lemma 4.1. [12]. For every κ ∈ R \ {0}, ν, δ ∈ R+ the operator M is
strongly (L, 0)-sectorial.

Further we set

domN = Uψ × {θ ∈W 2
1 (Ω) : θ satisfies (4.5), (4.6)}

and by the formula

N(u) =




gγ
∂θ

∂x

∂(ψ,∆ψ)

∂(x, y)
∂ψ

∂x

∂(ψ, θ)

∂(x, y)





we define the operator N : domN → F. It is obviously that domN ⊂
[U0,U1]α, α ∈ (0, 1).

Lemma 4.2. [12]. For every g, γ ∈ R, α ∈ (0, 1) the operator N ∈
C∞(Uα; F).

It is easy to show that all Frechet derivatives of the operator N are
equal to zero, when the order of derivative is greater than two.

Denote by σ(A) the spectrum of the homogeneous Dirichlet problem
for the Laplace operator ∆ in the domain Ω. Using the methods of [12]
one can obtain the following result.
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Theorem 4.1. For every γ, g ∈ R, δ, ν ∈ R+, α ∈ (0, 1) and
(i) κ−1 /∈ σ(∆) the phase space of the problem (4.2), (4.4)–(4.6) is

whole space Uα;
(ii) κ−1 ∈ σ(∆) the phase space of the problem (4.2), (4.4)–(4.6) is

a simple Banach C∞-manifold M = {u ∈ Uα : 〈Mu + N(u), ϕl〉 = 0,
κ−1 = λl} that is modelling by the subspace U1

α={u ∈ Uα : 〈u, ϕl〉 = 0,
κ−1 = λl}.

Here 〈·, ·〉 is inner product in F, {λk} = σ(∆), {ϕk} is orthonormal
family of corresponding eigenfunctions.
Example 4.2 Let Ω ⊂ R

n be bounded domain with a boundary ∂Ω of
the class C∞. In the semicylinder Ω × R+ we consider a system of the
equations of the reaction-diffusion type

0 = α1∆u1 + f1(u1, u2), u2t = α2∆u2 + f2(u1, u2), (4.7)

where one of the concentration (namely, u1 = u1(x, t)) "varies faster
than the other" (u2 = u2(x, t)). We suppose that functions fk, k = 1, 2,
have the form of so-called Lefever–Prigogine model (see for example [13])
f1(u1, u2) = Au2−u1u

2
2, f2(u1, u2) = B− (A+1)u2 +u1u

2
2, where A and

B are any constants. Starting to the reduction of the Cauchy–Dirichlet
problem

uk(x, 0) = uk0(x), x ∈ Ω, k = 0, 1, (4.8)

uk(x, t) = 0, (x, t) ∈ ∂Ω × R, k = 0, 1, (4.9)

for the system (4.7) to the problem (1.1), (1.2) we recall the following
result from Appendix C of [13].

Lemma 4.3. Suppose f ∈ C∞(Ω; Rm) and l > n/2. Then the operator
F : ⊕W l

2 → W l
2 given by F : u→ f(u) is well defined and belongs to the

class C∞.

Assuming that l > n/2, we set U = F = W l
2 ⊕W l

2, and we define the
operators

L =

(
O O

O I

)
, M =

(
α1∆ O

O α2∆

)
, N : u→

(
f1(u)
f2(u)

)
,

domM = (W l+2
2 ∩

◦

W 1
2 ) ⊕ (W l+2

2 ∩
◦

W 1
2 ), u = (u1, u2). It is clear that

the operator M is strongly (L, 0)-sectorial for all (α1, α2) ∈ R
2
+, and

the operator N ∈ C∞(Uα; F) for all (A,B) ∈ R
2, Uα = U. Since the

projectors P = Q = L, we can construct the set

M = {u ∈ U : α1∆u1 +Au2 − u1u2 = 0}.
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Lemma 4.4. The set M is a simple Banach C∞-manifold that is mod-
eling by the subspace {0} ⊕W l

2 for all α1 ∈ R+, A ∈ R.

Proof. First we show that M 6= ∅. Really, for every u2 ∈W l
2 there exists

a unique u1 ∈W l+2
2 ∩

◦

W 1
2 such that u = (u1, u2) ∈ M.

Next, let us consider the operator D : u2 → −A(α1∆ − u2
2)

−1(u2),
where (α1∆−u2

2)
−1 is a the Green operator. The operatorD∈C∞(U1;U0),

where U1 = {0} ⊕ W l
2, U0 = W l

2 ⊕ {0}. Desired C∞-diffeomorphism
δ : U1 → M has the form

δ(u2) =

(
D(u2)
u2

)
.

By the lemma (4.4) and the theorem (3.1) we have

Theorem 4.2. Suppose (α1, α2) ∈ R
2
+, (A,B) ∈ R

2, then for every
(u10, u20) ∈ M, and for any T ∈ R+ there exists a unique solution
(u1, u2) ∈ C∞((0, T ); M) of the problem (4.8), (4.9).

Remark 4.1. See in [14] another view-point on the problem (4.7)–(4.9).

Example 4.3 Let Ω ⊂ R
n, n = 2, 3, be bounded domain with a boundary

∂Ω of the class C∞. In the semicylinder Ω×R+ we consider the Cauchy–
Dirichlet problem

~v(x, 0) = ~v0(x), x ∈ Ω, (4.10)

~v(x, t) = 0, (x, t) ∈ ∂Ω × R+ (4.11)

for the Navier–Stokes equations

~vt = ν∇2~v − (~v · ∇)~v −∇p+ ~f, 0 = ∇ · ~v. (4.12)

Before the beginning of the reduction of the problem (4.10)–(4.12) to the
problem (1.1), (1.2) we replace the equation 0 = ∇ · ~v to the system of
equations 0 = ∇(∇ · ~v). By the Gauss theorem we obtain the system
which is equivalent to (4.12). Besides that we set ~p = ∇p, and later on
we consider the problem (4.10), (4.11) for the system

~vt = ν∇2~v − (~v · ∇)~v − ~p+ ~f, 0 = ∇(∇ · ~v). (4.13)

Denote by H
2 = (W 2

2 )n,
◦

H
1= (

◦

W 1
2 )n, L

2 = (L2)n and consider lineal
G = {~v ∈ (C∞)n : ∇ · v = 0}. The closure of G by the norm of L

2

we denote by Hσ. The space Hσ is Hilbert space with the inner product
〈·, ·〉 from L

2, besides that, there exists a decomposition L
2 = Hσ ⊕ Hπ,
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where Hπ is the orthogonal complement to Hσ. Denote by Π : L
2 → Hπ

the corresponding orthoprojector. The restriction of the projector Π on

H
2∩

◦

H
1 is a linear bounded operator Π :→ H

2∩
◦

H
1→ H

2∩
◦

H
1. Therefore

we can represent H
2∩

◦

H
1 as the direct sum H

2∩
◦

H
1= H

2
σ ⊕ H

2
Π, where

H
2
σ = ker Π, H

2
σ = imΠ. There exist dense and continuous imbeddings

H
2
σ ⊂ Hσ, and H

2
π ⊂ Hπ. The space H

2
π contains such vector functions,

that u(x) = 0, x ∈ ∂Ω, and u = ∇ϕ, ϕ ∈W 3
2 .

Let us set U = F = Hσ × Hπ × Hp, Hp = Hπ. Every vector u ∈ U

has the form u = (uσ, uπ, up), and every vector f ∈ F has the form
f = (fσ, fπ, fp). It is easy to show that the operator, given by the formula
L = diag{Σ,Π,O} is linear and bounded with kerL = {0} × {0} × Hp,
imL = Hσ × Hπ × {0}; and the operator, given by the formula

M =




−νΣA −νΣA O

−νΠA −νΠA −Π
O B O



 ,

is linear, closed and dense defined operator M : domM → F, domM =
H

2
σ×H

2
π×Hp. Here A = diag{−∇2, . . . ,−∇2} : H

2
σ×H

2
π → L

2, B : ~v →
∇(∇ · ~v), B ∈ L(H2

σ ⊕ H
2
π; Hπ), kerB = H

2
σ.

Lemma 4.5. Suppose ν ∈ R+, then the operator M is strongly (L, 1)-
sectorial.

The projectors P and Q have the forms

P =




Σ O O

O O O

O O O



 and Q =




Σ O −νΣAB−1

π

O O O

O O O



 ,

where Bπ is the restriction of the operator B on H
2
π.

It is easy to show, that the operator, given by the formula

N : u→




−Σ(v · ∇)v
−Π(v · ∇)v

O



 , v = uσ + uπ,

lies in C∞(
◦

H
1; L2), if n = 2, 3. Using the projectors P and Q we construct

the set

M = {u ∈ Uα : uπ = 0, up = Π(f − (uσ · ∇)uσ)},

where f = (fσ, fπ, 0) ∈ F, Uα = H
1
σ×

◦

H
1
π ×Hp,

◦

H
1
σ(π)=

◦

H
1 ∩Hσ(π).
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Theorem 4.3. Suppose ν ∈ R+, n = 2, 3, f ∈ F, f = (fσ, fπ, 0), then
for every u0 ∈ M there exists a unique solution u ∈ C∞((0, T ); M) for
any T ∈ R+ of the problem (4.10), (4.11), (4.13). The set M is a Banach

C∞-manifold modeled by the subspace
◦

H
1
σ ×{0} × {0}.
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