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1. Introduction

Let T be the Calderón–Zygmund singular integral operator, the clas-
sical result by Coifman, Rochberg and Weiss (see [6]) states that the com-
mutator [b, T ](f) = T (bf) − bT (f) (where b ∈ BMO(Rn)) is bounded
on Lp(Rn) for 1 < p < ∞; Chanillo (see [1]) has proved a similar result
when T was replaced by the fractional integral operator; in [9], the end-
point boundedness of the commutators was obtained. The main purpose
of this paper is to establish the endpoint boundedness of some multilin-
ear operators related to certain non-convolution type fractional singular
integral operators. As an application, the endpoint boundedness of the
multilinear operators related to the Calderón–Zygmund singular integral
operator and fractional integral operator is obtained.

2. Notations and results

Throughout this paper, Q will denote a cube of Rn with sides par-
allel to the axes. For a cube Q and a locally integrable function f , let
fQ = |Q|−1

∫

Q f(x) dx and f#(x) = supx∈Q |Q|−1
∫

Q |f(y) − fQ| dy. For
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a weight function w, f is said to belong to BMO(w) if f# ∈ L∞(w). Set
‖f‖BMO(w) = ‖f#‖L∞(w). Note that BMO(w) = BMO(Rn) if w = 1.
A function a is called an H1 atom if there exists a cube Q such that a is
supported in Q, ‖a‖L∞(w) ≤ w(Q)−1 and

∫

a(x)dx = 0. It is well known
that the Hardy space H1(w) has the atomic decomposition characteriza-
tion (see [8, 12]).

In this paper, we consider a class of multilinear integral operators
defined in the following way.

First, given a fixed locally integrable function K(x, y) on Rn × Rn,
set

TK(f)(x) =

∫

Rn

K(x, y)f(y) dy

for every bounded and compactly supported function f . We write K ∈ Σδ

for δ ≥ 0 if

|K(x, y)| ≤ C|x − y|−n+δ

and

|K(y, x) − K(z, x)| + |K(x, y) − K(x, z)| ≤ C|y − z|ε|x − z|−n−ε+δ

and 2|y − z| ≤ |x− z| for a fixed ε > 0. TK is called a fractional singular
integral operator if K ∈ Σδ for some δ ≥ 0.

Now, let m be a positive integer and A be a function on Rn. Set

Rm+1(A; x, y) = A(x) −
∑

|α|≤m

1

α!
DαA(y)(x − y)α,

and

Qm+1(A; x, y) = Rm(A; x, y) −
∑

|α|=m

1

α!
DαA(x)(x − y)α.

The multilinear operator associated with the fractional singular integral
operator TK is defined by

TA
K(f)(x) =

∫

Rm+1(A; x, y)

|x − y|m K(x, y)f(y) dy.

We also consider the variant of TA
K , which is defined by

T̃A
K(f)(x) =

∫

Rn

Qm+1(A; x, y)

|x − y|m K(x, y)f(y) dy.
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Note that T̃A
K is closely related to TA

K , for

Rm+1(A; x, y) − Qm+1(A; x, y) =
∑

|α|=m

1

α!
(x − y)α(DαA(x) − DαA(y)).

Note that when m = 0, TA
K is just the commutators of TK and

A(see [1, 6, 9]). It is well known that multilinear operator, as an ex-
tension of commutator, is of great interest in harmonic analysis and has
been widely studied by many authors(see, e.g. [2–5]). In [7] and [10], the
weighted Lp (p > 1) and Hp(0 < p ≤ 1) boundedness of the multilin-
ear operator related to the Calderón–Zygmund singular integral operator
was obtained; in [2], the weak (H1, L1) boundedness of the multilinear
operator related to some singular integral operator was obtained.

Now we state our results as following.

Theorem 2.1. Let 0 ≤ δ < n and DαA ∈ BMO(Rn) for all α with

|α| = m. Suppose TK is bounded from Lp(Rn) to Lq(Rn) for any p, q ∈
(1, +∞) and 1/q = 1/p − δ/n. If K ∈ Σδ, then

(a) TA
K is bounded from Ln/δ(Rn) to BMO(Rn);

(b) T̃A
K is bounded from H1(Rn) to Ln/(n−δ)(Rn);

(c) TA
K is bounded from H1(Rn) to weak Ln/(n−δ)(Rn).

Theorem 2.2. Let DαA ∈ BMO(Rn) for all α with |α| = m and w ∈
A1. Suppose TK is bounded on Lp(w) for all 1 < p ≤ ∞. If K ∈ Σ0,

then

(i) TA
K is bounded from L∞(w) to BMO(w);

(ii) T̃A
K is bounded from H1(w) to L1(w);

(iii) TA
K is bounded from H1(w) to weak L1(w).

Remark 2.1. The boundedness is uniform with respect to K ∈ Σδ

and K ∈ Σ0, respectively. In general, TA
K is not (H1, Ln/(n−δ)) or

(H1(w), L1(w)) bounded.
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3. Proofs of the theorems

To prove these theorems, we need the following lemmas.

Lemma 3.1 (see [5, p. 448]). Let A be a function on Rn and DαA ∈
Lq(Rn) for |α| = m and some q > n. Then

|Rm(A; x, y)| ≤ C|x − y|m
∑

|α|=m

(

1

|Q̃(x, y)|

∫

Q̃(x,y)

|DαA(z)|q dz

)1/q

,

where Q̃(x, y) is the cube centered at x and having side length 5
√

n|x−y|.

Lemma 3.2 (see [1, p. 8]). Let b ∈ BMO(Rn) and Cb be the commu-

tator defined by

Cb(f)(x) =

∫

Rn

b(x) − b(y)

|x − y|n−δ
f(y) dy.

(1) If 0 ≤ δ < n, 1 < p < ∞ and 1/q = 1/p − δ/n, then Cb is bounded

from Lp(Rn) to Lq(Rn) and from H1(Rn) to weak Ln/(n−δ)(Rn).

(2) If δ = 0, 1 < p < ∞ and w ∈ A1, then Cb is bounded on Lp(w) and

from H1(w) to weak L1(w).

Lemma 3.3 (see [5, p. 454(28)] and [12, p. 222]). Let Q be a

cube and Ã(x) = A(x) −∑|α|=m
1
α!(D

αA)Q̃xα. Then Rm+1(A; x, y) =

Rm+1(Ã; x, y).

Lemma 3.4 (see [3, p. 695, Lemma 2.2]). Let Q1 and Q2 be the

cubes with Q1 ⊂ Q2. Then

|bQ1 − bQ2 | ≤ C (1 + |log(|Q1|/|Q2|)|) ‖b‖BMO.

Proof of Theorem 2.1. (a) It suffices to prove that there exists a constant
CQ such that

1

|Q|

∫

Q

|TA
K(f)(x) − CQ| dx ≤ C‖f‖Ln/δ

holds for any cube Q. Fix a cube Q = Q(x0, d). Let Q̃ = 5
√

nQ and
Ã(x) = A(x)−∑|α|=m

1
α!(D

αA)Q̃xα, then Rm+1(A; x, y) = Rm+1(Ã; x, y)

by induction and DαÃ = DαA − (DαA)Q̃ for all α with |α| = m. We
write, for f1 = fχQ̃ and f2 = fχRn\Q̃,
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TA
K(f)(x) =

∫

Rn

Rm+1(Ã; x, y)

|x − y|m K(x, y)f(y) dy

=

∫

Rn

Rm(Ã; x, y)

|x − y|m K(x, y)f1(y) dy

−
∑

|α|=m

1

α!

∫

Rn

K(x, y)(x − y)α

|x − y|m DαÃ(y)f1(y) dy

+

∫

Rn

Rm+1(Ã; x, y)

|x − y|m K(x, y)f2(y) dy,

then

∣

∣TA
K(f)(x) − T Ã

K(f2)(x0)
∣

∣ ≤
∣

∣

∣

∣

TK

(

Rm(Ã; x, ·)
|x − ·|m f1

)

(x)

∣

∣

∣

∣

+
∑

|α|=m

1

α!

∣

∣

∣

∣

TK

(

(x − ·)α

|x − ·|m DαÃf1

)

(x)

∣

∣

∣

∣

+
∣

∣T Ã
K(f2)(x) − T Ã

K(f2)(x0)
∣

∣

:= I(x) + II(x) + III(x),

and, thus,

1

|Q|

∫

Q

∣

∣TA
K(f)(x) − T Ã

K(f2)(x0)
∣

∣ dx

≤ 1

|Q|

∫

Q

I(x) dx +
1

|Q|

∫

Q

II(x) dx +
1

|Q|

∫

Q

III(x) dx

:= I + II + III.

Now, let us estimate I, II and III, respectively. First, we have known
(see [12, p. 144]), for b ∈ BMO(Rn),

‖b‖BMO ≈ sup
Q

(

1

|Q|

∫

Q

|b(y) − bQ|p dy

)1/p

,

then, for x ∈ Q and y ∈ Q̃, using Lemma 3.1 and Lemma 3.4, we get

Rm(Ã; x, y) ≤ C|x−y|m
∑

|α|=m

[

1

|Q̃(x, y)|

∫

Q̃(x,y)

(

|DαA(z)−(DαA)Q̃(x,y)|

+ |(DαA)Q̃(x,y) − (DαA)Q̃|
)q

dz

]1/q
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≤ C|x − y|m
∑

|α|=m

(

‖DαA‖BMO + 1 +
∣

∣log |Q(x, y)|/|Q̃|
∣

∣

)

≤ C|x − y|m
∑

|α|=m

‖DαA‖BMO,

thus, by the (Ln/δ, L∞)-boundedness of TK , we have

I ≤ C

|Q|

∫

Q

∣

∣

∣

∣

Tδ

(

∑

|α|=m

‖DαA‖BMOf1

)

(x)

∣

∣

∣

∣

dx

≤ C
∑

|α|=m

‖DαA‖BMO‖Tδ(f1)‖L∞

≤ C
∑

|α|=m

‖DαA‖BMO‖f‖Ln/δ ;

Secondly, by the (Lp, Lq)-boundedness of TK for 1/q = 1/p− δ/n, p > 1
and Hölder’s inequality, we gain

II ≤ C

|Q|

∫

Q

|Tδ

(

∑

|α|=m

(DαA − (DαA)Q̃)f1

)

(x)| dx

≤ C
∑

|α|=m

(

1

|Q|

∫

Q

|Tδ((D
αA − (DαA)Q̃)f1)(x)|q dx

)1/q

≤ C|Q|−1/q
∑

|α|=m

‖(DαA − (DαA)Q̃)f1‖Lp

≤ C
∑

|α|=m

(

1

|Q|

∫

Q̃
|DαA(y) − (DαA)Q̃|q dy

)1/q

‖f‖Ln/δ

≤ C
∑

|α|=m

‖DαA‖BMO‖f‖Ln/δ .

To estimate III, we write

T Ã
K(f2)(x) − T Ã

K(f2)(x0)

=

∫

Rn

[

K(x, y)

|x − y|m − K(x0, y)

|x0 − y|m
]

Rm(Ã; x, y)f2(y) dy

+

∫

Rn

K(x0, y)f2(y)

|x0 − y|m [Rm(Ã; x, y) − Rm(Ã; x0, y)] dy
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−
∑

|α|=m

1

α!

∫

Rn

(

K(x, y)(x − y)α

|x − y|m − K(x0, y)(x0 − y)α

|x0 − y|m
)

DαÃ(y)f2(y) dy

:= III1 + III2 + III3;

By Lemma 3.1 and Lemma 3.4, we know that, for x ∈ Q and y ∈
2k+1Q̃ \ 2kQ̃,

|Rm(Ã; x, y)| ≤ C|x−y|m
∑

|α|=m

(‖DαA‖BMO+|(DαA)Q̃(x,y)−(DαA)Q̃|)

≤ Ck|x − y|m
∑

|α|=m

‖DαA‖BMO.

Note that |x− y| ∼ |x0 − y| for x ∈ Q and y ∈ Rn \ Q̃, we obtain, by the
condition on K,

|III1| ≤ C

∫

Rn

( |x − x0|
|x0 − y|m+n+1−δ

+
|x − x0|ε

|x0 − y|m+n+ε−δ

)

|Rm(Ã; x, y)||f2(y)| dy

≤ C
∑

|α|=m

‖DαA‖BMO

∞
∑

k=0

∫

2k+1Q̃\2kQ̃

k

( |x − x0|
|x0 − y|n+1−δ

+
|x − x0|ε

|x0 − y|n+ε−δ

)

|f(y)| dy

≤ C
∑

|α|=m

‖DαA‖BMO‖f‖Ln/δ

∞
∑

k=1

k(2−k + 2−εk)

≤ C
∑

|α|=m

‖DαA‖BMO‖f‖Ln/δ ;

For III2, by the formula (see (39) in [5]):

Rm(Ã; x, y) − Rm(Ã; x0, y) =
∑

|β|<m

1

β!
Rm−|β|(D

βÃ; x, x0)(x − y)β

and Lemma 3.1, we have

|Rm(Ã; x, y) − Rm(Ã; x0, y)|
≤ C

∑

|β|<m

∑

|α|=m

|x − x0|m−|β||x − y||β|‖DαA‖BMO,
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similar to the estimates of III1, we get

|III2| ≤ C
∑

|α|=m

‖DαA‖BMO

∞
∑

k=0

∫

2k+1Q̃\2kQ̃

|x − x0|
|x0 − y|n+1−δ

|f(y)| dy

≤ C‖DαA‖BMO‖f‖Ln/δ ;

For III3, by taking r > 1 such that 1/r+δ/n = 1, similar to the estimates
of III1, we get

|III3| ≤ C
∑

|α|=m

∞
∑

k=0

∫

2k+1Q̃\2kQ̃

( |x − x0|
|x0 − y|n+1−δ

+
|x − x0|ε

|x0 − y|n+ε−δ

)

|DαÃ(y)||f(y)| dy

≤C
∑

|α|=m

∞
∑

k=1

(2−k+2−εk)

(

|2kQ̃|−1

∫

2kQ̃

|DαA(y)−(DαA)Q̃|r dy

)1/r

‖f‖Ln/δ

≤ C
∑

|α|=m

‖DαA‖BMO‖f‖Ln/δ .

Thus
III ≤ C

∑

|α|=m

‖DαA‖BMO‖f‖Ln/δ .

(b) It is only to show that there exists a constant C > 0 such that
for every H1-atom a(that is that a satisfies: supp a ⊂ Q = Q(x0, d),
‖a‖L∞ ≤ |Q|−1 and

∫

a(y) dy = 0 (see [8])), the following holds:

‖T̃A
K(a)‖Ln/(n−δ) ≤ C.

We write
∫

Rn

[

T̃A
K(a)(x)

]n/n−δ
dx

=

[

∫

|x−x0|≤2r

+

∫

|x−x0|>2r

]

[

T̃A
K(a)(x)

]n/(n−δ)
dx := J + JJ.

For J , by the following equality

Qm+1(A; x, y) = Rm+1(A; x, y) +
∑

|α|=m

1

α!
(x − y)α(DαA(x) − DαA(y)),
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we have,

|T̃A
K(a)(x)| ≤ |TA

K(a)(x)| + C
∑

|α|=m

∫

Rn

|DαA(x) − DαA(y)|
|x − y|n−δ

|a(y)| dy,

thus, T̃A
K is (Lp, Lq)-bounded by Lemma 3.2 and (a), where 1/q = 1/p−

δ/n. We see that

J ≤ C‖T̃A
K(a)‖n/((n−δ)q)

Lq |2Q|1−n/((n−δ)q)

≤ C‖a‖n/(n−δ)
Lp |Q|1−n/((n−δ)q) ≤ C.

To obtain the estimate of JJ , we denote Ã(x) = A(x) −∑|α|=m
1
α! ×

(DαA)2Qxα. Then Qm(A; x, y) = Qm(Ã; x, y). We write, by the vanish-
ing moment of a,

T̃A
K(a)(x) =

∫

Rn

K(x, y)Rm(A; x, y)

|x − y|m a(y)dy

−
∑

|α|=m

1

α!

∫

Rn

K(x, y)DαÃ(x)(x − y)α

|x − y|m a(y) dy

=

∫

Rn

[

K(x, y)

|x − y|m − K(x, x0)

|x − x0|m
]

Rm(Ã; x, y)a(y) dy

+

∫

Rn

K(x, x0)

|x − x0|m
[Rm(Ã; x, y) − Rm(Ã; x, x0)]a(y) dy

−
∑

|α|=m

1

α!

∫

Rn

[

K(x, y)(x − y)α

|x − y|m − K(x, x0)(x − x0)
α

|x − x0|m
]

DαÃ(x)a(y) dy,

:= JJ1 + JJ2 + JJ3.

Now, similar to the proof of III, we obtain, for x ∈ (2Q)c

|JJ1| ≤ C

∫

Rn

[ |y − x0|
|x − y|n+m+1−δ

+
|y − x0|ε

|x − y|n+m+ε−δ

]

|Rm(Ã; x, y)||a(y)| dy

≤ C
∑

|α|=m

‖DαA‖BMO(|Q|1/n|x − x0|−n−1+δ + |Q|ε/n|x − x0|−n−ε+δ),

|JJ2| ≤ C

∫

Rn

|Rm(Ã; x, y) − Rm(Ã; x, x0)||a(y)|
|x − y|m+n−δ

dy
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≤ C
∑

|α|=m

‖DαA‖BMO

∫

Rn

|x0 − y‖a(y)|
|x − x0|n+1−δ

dy

≤ C
∑

|α|=m

‖DαA‖BMO|Q|1/n|x − x0|−n−1+δ

and

|JJ3| ≤ C

∫

Rn

|x0 − y|
|x − y|n+1−δ

∑

|α|=m

|DαÃ(x)||a(y)| dy

≤ C
∑

|α|=m

|DαÃ(x)|(|Q|1/n|x − x0|−n−1+δ + |Q|ε/n|x − x0|−n−ε+δ).

Thus

JJ ≤
∫

(2Q)c

(|JJ1 + JJ2 + JJ3|)n/(n−δ) dx

≤ C

(

∑

|α|=m

‖DαA‖BMO

)n/(n−δ) ∞
∑

k=1

k[2−kn/(n−δ) + 2−knε/(n−δ)] ≤ C.

(c) By the following equality

Rm+1(A; x, y) = Qm+1(A; x, y) +
∑

|α|=m

1

α!
(x − y)α(DαA(x) − DαA(y)),

we have

|TA
K(f)(x)| ≤ |T̃A

K(f)(x)| + C
∑

|α|=m

∫

Rn

|DαA(x) − DαA(y)|
|x − y|n−δ

|f(y)| dy,

thus, by Lemma 3.2 and (b), we obtain

|{x ∈ Rn : |TA
K(f)(x)| > λ}| ≤ |{x ∈ Rn : |T̃A

K(f)(x)| > λ/2}|

+

∣

∣

∣

∣

∣

{

x ∈ Rn :
∑

|α|=m

∫

Rn

|DαA(x) − DαA(y)|
|x − y|n−δ

|f(y)| dy > Cλ

}∣

∣

∣

∣

∣

≤ C(‖f‖H1/λ)n/(n−δ).

This completes the proof of Theorem 2.1.
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Proof of Theorem 2.2. (i) It is only to prove that there exists a constant
CQ such that

1

w(Q)

∫

Q

|TA
K(f)(x) − CQ|w(x) dx ≤ C‖f‖L∞(w)

holds for any cube Q. Fix a cube Q = Q(x0, d). Let Q̃ and Ã(x) be
the same as the proof of Theorem 2.1. We have, similar to the proof of
Theorem 2.1, for f1 = fχQ̃ and f2 = fχRn\Q̃,

∣

∣TA
K(f)(x) − T Ã

K(f2)(x0)
∣

∣ ≤
∣

∣

∣

∣

TK

(

Rm(Ã; x, ·)
|x − ·|m f1

)

(x)

∣

∣

∣

∣

+
∑

|α|=m

1

α!

∣

∣

∣

∣

TK

(

(x − ·)α

|x − ·|m DαÃf1

)

(x)

∣

∣

∣

∣

+
∣

∣T Ã
K(f2)(x) − T Ã

K(f2)(x0)
∣

∣

:= I(x) + II(x) + III(x),

and, thus,

1

w(Q)

∫

Q

∣

∣TA
K(f)(x) − T Ã

K(f2)(x0)
∣

∣w(x) dx

≤ 1

w(Q)

∫

Q

I(x)w(x) dx +
1

w(Q)

∫

Q

II(x)w(x) dx

+
1

w(Q)

∫

Q

III(x)w(x) dx := I + II + III.

First, using Lemma 3.1 and the L∞(w)-boundedness of TK , we have

I ≤ C

w(Q)

∫

Q

∣

∣

∣

∣

TK

(

∑

|α|=m

‖DαA‖BMOf1

)

(x)

∣

∣

∣

∣

w(x) dx

≤ C
∑

|α|=m

‖DαA‖BMO‖Tf1‖L∞(w) ≤ C
∑

|α|=m

‖DαA‖BMO‖f‖L∞(w);

Secondly, since w ∈ A1, w satisfies the reverse of Hölder’s inequality:

(

1

|Q|

∫

Q

w(x)q dx

)1/q

≤ C

|Q|

∫

Q

w(x) dx
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for all cube Q and some 1 < q < ∞ (see [12]), thus, taking p > 1 and
1/p+1/p′ = 1, by the Lp(w)-boundedness of TK and Hölder’s inequality,
we gain

II ≤ C

w(Q)

∫

Q

∣

∣

∣

∣

T

(

∑

|α|=m

(DαA − (DαA)Q̃)f1

)

(x)

∣

∣

∣

∣

w(x) dx

≤ C
∑

|α|=m

(

1

w(Q)

∫

Q

|T ((DαA − (DαA)Q̃)f1)(x)|pw(x)dx

)1/p

≤ C
∑

|α|=m

(

1

w(Q)

∫

Q

|(DαA(x) − (DαA)Q̃)f1(x)|pw(x) dx

)1/p

≤ C
∑

|α|=m

w(Q)−1/p

(

∫

Q̃

|DαA(x) − (DαA)Q̃|pq′ dx

)1/pq′

×
(

∫

Q̃

w(x)q dx

)1/pq

‖f‖L∞(w)

≤ C
∑

|α|=m

(

1

|Q|

∫

Q̃

|DαA(x) − (DαA)Q̃|pq′ dx

)1/pq′

×
(

1

|Q|

∫

Q̃

w(x)q dx

)1/pq
( |Q|

w(Q)

)1/p

‖f‖L∞(w)

≤ C
∑

|α|=m

‖DαA‖BMO

(

1

|Q|

∫

Q̃

w(x) dx

)1/p
( |Q|

w(Q)

)1/p

‖f‖L∞(w)

≤ C
∑

|α|=m

‖DαA‖BMO‖f‖L∞(w);

For III, similar to the proof of Theorem 2.1, we obtain

III ≤ C
∑

|α|=m

‖DαA‖BMO
1

w(Q)

×
∫

Q

∞
∑

k=0

∫

2k+1Q̃\2kQ̃

k

( |x − x0|
|x0 − y|n+1

+
|x − x0|ε

|x0 − y|n+ε

)

|f(y)| dy w(x) dx
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+ C
∑

|α|=m

1

w(Q)

∫

Q

∞
∑

k=0

∫

2k+1Q̃\2kQ̃

( |x − x0|
|x0 − y|n+1

+
|x − x0|ε

|x0 − y|n+ε

)

× |DαÃ(y)||f(y)| dy w(x) dx

≤ C
∑

|α|=m

‖DαA‖BMO‖f‖L∞(w)

∞
∑

k=1

k(2−k + 2−kε)

≤ C
∑

|α|=m

‖DαA‖BMO‖f‖L∞(w).

(ii) It suffices to show that there exists a constant C > 0 such that
for every H1(w)-atom a (that is that a satisfy: supp a ⊂ Q = Q(x0, r),
‖a‖L∞(w) ≤ w(Q)−1 and

∫

a(y)dy = 0 (see [8])), we have

‖T̃A
K(a)‖L1(w) ≤ C.

We write

∫

Rn

T̃A
K(a)(x)w(x) dx =

[

∫

2Q

+

∫

(2Q)c

]

T̃A
K(a)(x)w(x) dx := J + JJ.

For J , similar to the proof of Theorem 2.1, we get

|T̃A
K(a)(x)| ≤ |TA(a)(x)| + C

∑

|α|=m

∫

Rn

|DαA(x) − DαA(y)|
|x − y|n |a(y)| dy,

thus, T̃A
K is Lp(w)-bounded by Lemma 3.2 and (i). We see that

J ≤ C‖T̃A
K(a)‖L∞(w)w(2Q) ≤ C‖a‖L∞(w)w(Q) ≤ C;

For JJ , notice that if w ∈ A1, then w(Q2)
|Q2|

|Q1|
w(Q1) ≤ C for all cubes Q1, Q2

with Q1 ⊂ Q2. Thus, by Hölder’s inequality and the reverse of Hölder’s
inequality for w ∈ A1 and some 1 < q < ∞, taking p > 1 and 1/p+1/p′ =
1, similarly, we obtain

JJ ≤ C
∑

|α|=m

‖DαA‖BMO

∞
∑

k=1

(2−k + 2−εk)

( |Q|
w(Q)

w(2k+1Q)

|2k+1Q|

)

+ C
∑

|α|=m

∞
∑

k=1

(2−k + 2−εk)
|Q|

w(Q)

(

1

|2k+1Q|

∫

2k+1Q

|DαÃ(x)|p dx

)1/p
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×
(

1

|2k+1Q|

∫

2k+1Q

w(x)p′ dx

)1/p′

≤ C
∑

|α|=m

‖DαA‖BMO

∞
∑

k=1

k(2−k + 2−εk)

(

w(2k+1Q)

|2k+1Q|
|Q|

w(Q)

)

≤ C.

(iii) Similarly, we know

|TA
K(f)(x)| ≤ |T̃A(f)(x)| + C

∑

|α|=m

∫

Rn

|DαA(x) − DαA(y)|
|x − y|n |f(y)| dy,

by Lemma 3.2 and (ii), we obtain

w({x ∈ Rn : |TA
K(f)(x)| > λ}) ≤ w({x ∈ Rn : |T̃A

K(f)(x)| > λ/2})

+ w

({

x ∈ Rn :
∑

|α|=m

∫

Rn

|DαA(x) − DαA(y)|
|x − y|n |f(y)| dy > Cλ

})

≤ C‖f‖H1(w)/λ.

This completes the proof of Theorem 2.2.

4. Applications

In this section we shall apply the Theorem 2.1 and 2.2 to some partic-
ular operators such as the Calderón–Zygmund singular integral operator
and fractional integral operator.

Aplication 1 (Calderón–Zygmund singular integral operator).
Let T be the Calderón–Zygmund operator defined by (see [8, 12])

T (f)(x) =

∫

K(x, y)f(y) dy,

the multilinear operator related to T is defined by

TA(f)(x) =

∫

Rm+1(A; x, y)

|x − y|m K(x, y)f(y) dy.

Then it is easily to see that TK satisfies the conditions in Theorem 2.2,
thus that TA is bounded from L∞(w) to BMO(w) and from H1(w) to
weak L1(w) and that T̃A is bounded from H1(w) to L1(w) for w ∈ A1

and DαA ∈ BMO(Rn) with |α| = m.
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Aplication 2 (Fractional integral operator with rough kernel).
For 0 ≤ δ < n, let Tδ be the fractional integral operator with rough
kernel defined by (see [7, 9, 10])

Tδf(x) =

∫

Rn

Ω(x − y)

|x − y|n−δ
f(y) dy,

the multilinear operator related to Tδ is defined by

TA
δ f(x) =

∫

Rn

Rm+1(A; x, y)

|x − y|m+n−δ
Ω(x − y)f(y) dy,

where Ω is homogeneous of degree zero on Rn,
∫

Sn−1 Ω(x′)dσ(x′) = 0 and
Ω ∈ Lipγ(Sn−1) for 0 < γ ≤ 1, that is there exists a constant M > 0
such that for any x, y ∈ Sn−1, |Ω(x) − Ω(y)| ≤ M |x − y|γ . Then Tδ

satisfies the conditions in Theorem 3.1. In fact, for supp f ⊂ (2Q)c and
x ∈ Q = Q(x0, d), by the condition of Ω, we have (see [12])

∣

∣

∣

∣

Ω(x − y)

|x − y|n−δ
− Ω(x0 − y)

|x0 − y|n−δ

∣

∣

∣

∣

≤ C

( |x − x0|γ
|x0 − y|n+γ−δ

+
|x − x0|

|x0 − y|n+1−δ

)

,

thus, similar to the proof of Theorem 2.1,

|TA
δ (f)(x) − TA

δ (f)(x0)|

≤ C
∞
∑

k=1

k(2−γk + 2−k)‖DαA‖BMO‖f‖Ln/δ

≤ C‖DαA‖BMO‖f‖Ln/δ .

Therefore that TA
δ is bounded from Ln/δ(Rn) to BMO(Rn) and from

H1(Rn) to weak Ln/(n−δ)(Rn) and T̃A
δ is bounded from H1(Rn) to

Ln/(n−δ)(Rn) for all DαA ∈ BMO(Rn) with |α| = m.
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