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Kaleidoscopical configurations

IGOR PROTASOV, KSENIA PROTASOVA

Abstract. Let G be a group and X be a G-space with the action
GxX — X, (g,z) — gx. A subset A of X is called a kaleidoscopical
configuration if there is a coloring x : X — k (i.e. a mapping of X
onto a cardinal x) such that the restriction x|g4 is a bijection for each
g € G. We survey some recent results on kaleidoscopical configurations
in metric spaces considered as G-spaces with respect to the groups of its
isometries and in groups considered as left regular G-spaces.
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1. Introduction

Let X be a set § be a family of subsets of X. The pair (X, §) is called
a hypergraph. Following [9], we say that a coloring x : X — &k (l.e. a
mapping of X onto a cardinal k) is kaleidoscopical if x| is bijective for
all F € §. A hypergraph (X,§) is called kaleidoscopical if there exists
a kaleidoscopical coloring xy : X — k. The adjective “kaleidoscopical”
appeared in definition [13| of an s-regular graph I'(V, E) (each vertex
v € V has degree s) admitting a vertex (s + 1)-colloring such that each
unit ball B(v,1) = {u € V : d(u,v) = 1} has the vertices of all colors
(d is the path metric on V). These graphs define the kaleidoscopical
hypergraphs (V,{B(v,1) : v € V}) and can be considered as the graph
counterparts of the Hamming codes [10].

In this paper we survey some recent results and open problems on
kaleidoscopical configurations in G-spaces.

Let G be a group. A G-space is a set X endowed with an action
G x X — X, (g,z) — gz. All G-spaces are suppose to be transitive: for
any x,y € X, there exists g € G such that gx = y. For a subset A C X,
we denote G[A] = {gA : g € G} where gA = {ga : a € A}.
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A subset A C X is called a kaleidoscopical configuration if the hy-
pergraph (X, G[A]) is kaleidoscopical, in words, if there exists a coloring
X : X — |A| such that x|44 is bijective for every g € G.

We note that finite kaleidoscopical configurations in a sense are an-
tipodal to monochromatizable configurations defined and studied in [9,
Chapter 8|: a subset A of a G-space X is called monochromatizable if, for
any finite coloring of X, there is g € G such that gA is monochrome.

In Section 2 we discus a relationship between the kaleidoscopical con-
figurations in a G-space X and transversals of the family {gA : g € G},
A C G. We present also an effective method (namely, the splitting), of
construction of kaleidoscopical configurations in a G-space X from the
finite chains of G-invariant equivalence relations on X.

The main results of Section 3 are about kaleidoscopical configurations
in R™ considered as a G-space with respect to the group G = Iso(R") of
all Euclidean isometries. For n = 1, it is easy to find a kaleidoscopi-
cal configuration in R of any size < the cardinality of the continuum.
The problem is much more difficult for n > 2. Surprisingly, the subsets
Z x {0}, Q x {0}, Q x Q and Z x Z are kaleidoscopical in R?. The most
intriguing open problem: for n > 2, does there exist a finite kaleidoscop-
ical configuration K, |K| > 2 in R™. We show that if such a K exists in
R? then |K| > 5.

Each group G can be considered as a (left) regular G-space X = G,
where (g,z) — gz is the group product. In Section 4 we show that
kaleidoscopical configurations in G are tightly connected with factoriza-
tions of G = AB by subsets A, B. The factorizations were introduced
by Hajos [5] to solve the famous Minkowsky’s problem on tiling of R"
by the copies of a cube. For modern state of factorizations see [17,18].
Also we establish a connection between kaleidoscopical configurations and
T-sequences from [12].

2. Transversality and factorization

Let (X, J) be a hypergraph. A subset 7' C X is called an §-transversal
if |F(T| =1 for each F' € §. All results of this section are from [1].

Theorem 2.1. A hypergraph (X,§) is kaleidoscopical if and only if X
can be partitioned into §-transversals.

For a cardinal k, cfx denotes the cofinality of &.

Theorem 2.2. Let k be an infinite cardinal, (X,§) be a hypergraph
such that |§| = k and |F| = k for each F € §. If [FNF'| < c¢fk for all
distinct F, F' € § then there is a disjoint family S of F-transversals such
that |T| = k and |T| = K for each T € ¥.
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For a hypergraph (X,§), z € X and A C X, we put
St(z, ) :U{F€§:$€F},

St(A, %) = J{St(a, F) : a € A},

Theorem 2.3. A hypergraph (X, §) is kaleidoscopical provided that, for
some infinite cardinal k, the following two conditions are satisfied:

(1) |§| < k and |F| = & for each F € §;

(ii) for any subfamily A C § of cardinality |2| < k and any subset B C
X\ (U2 of cardinality |B| < k the intersection St(B,F) N (JA)

has cardinality less than k.

Now we present some construction of kaleidoscopical configurations in
arbitrary G-space, called the splitting. The kaleidoscopical configurations
obtained in this way will be called splittable.

Given an equivalence relation £ C X x X on a set X, let X/E =
{[z]g : * € X} be the quotient space consisting of the equivalence classes
[zl = {y € X : (z,y) € E}, v € X. Denote by qp : X — X/E,
ge(x) = [z]g, the quotient mapping. For a subset K of X, let K/E =
{[z]lg:2 € K} C X/FE and [K|g = U,exlr]le € X.

Let E be an equivalence relation on a set X. A subset K C X is
defined to be

o E-parallel if KN [x]g = [z]g for all z € K
e E-orthogonal if KN x]g = {z} forall x € K.

Given two equivalence relations E, F' on X such that F' C E, we gener-
alize these two notions defining K C X to be

e E/F-parallel if [K]p N [x]g = [z]g for all z € K;;
e E/F-orthogonal if [K|p N [z]g = [z]F for all z € K.

We observe that K C X is E-parallel (E-orthogonal) if it is E/Ax-
parallel (E//Ax-orthogonal), where Ax = {(z,z) : z € X}.

An equivalence relation E on a G-space X is called G-invariant if, for
each (z,y) € E and every g € G we have (g, gy) € E. For a G-invariant
equivalence relation E on X, the quotient space X/F is a G-space under
the induced action

Gx X/E— X/E, (g,[2]p)— [g7]&

of the group G.
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Theorem 2.4. Let Ax = Ey C E; C -+ C E,, = {X x X} be a chain
of G-invariant equivalence relations on a G-space X. A subset K of X
is kaleidoscopical provided that, for everyi € {0,...,m — 1}, K is either
Ei+1/E;-parallel or E;t1/E;-orthogonal.

A subset K of a G-space X is called splittable if there is a chain
Ax = Ey C By C --- C E, = {X x X} of G-invariant equivalence
relations on X such that, for each i € {0,...,m—1}, K is either E; 1/ E;-
parallel or F;;1/E;-orthogonal. By Theorem 2.4, each splittable subset
of X is a kaleidoscopical configuration.

Some partial answers to the following general question are in the next
sections.

Question 2.1. Given a G-space X, how one can detect whether each
kaleidoscopical configuration in X is splittable?

For motivation of the following definition see |1, Section 4].

A G-space has the semi-Hajos property if, for every kaleidoscopical
subset K C X, there is an equivalence relation E on X, F # Ax such
that K is E-parallel or E-orthogonal and K/FE is kaleidoscopical in the
G-space K/E.

Theorem 2.5. If each kaleidoscopical subset of a G-space X is splittable,
then X has the semi-Hajos property.

On some partial conversions of Theorem 2.5 see [1, Section 4].

A G-space X is called primitive if each G-invariant equivalence rela-
tion on X is either Ax or {X x X }. Clearly, each splittable configuration
K in a primitive G-space X is trivial, i.e. either K = X or K is a single-
ton. It is natural to ask whether every kaleidoscopical configuration in a
primitive G-space is trivial? The answer to this question is affirmative if
X is 2-transitive: for any (x,v), (2',y') € X2\ Ax, there is g € G such
that (2/,y') = (g9x,gy). But for n > 2, the primitive space R™ endowed
with the action of its group of all Euclidean isometries has a plenty of
infinite kaleidoscopical configurations, see Section 3.

Question 2.2. Is every finite kaleidoscopical configuration in a (finite)

primitive G-space trivial?

3. Kaleidoscopical configurations in metric spaces

Here we consider each metric space (X, d) as a G-space endowed with
the natural action of its isometry group G = Iso(X). If this action is
transitive, X is called isometrically homogeneous.
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Let us recall that a metric space (X, d) is ultrametric if the metric d
satisfies the strong triangle inequality

d(z,z) < max{d(z,y),d(y, z)}
for all x,y, z. In this case, for every € > 0, the relation
E.={(z,y) € X?:d(z,y) <&}
is an invariant equivalence relation on X.

Theorem 3.1 ([1]). Let (X,d) be an isometrically homogeneous ultra-
metric space with the finite distance scale d(X x X) = {eo,€1,...,en}
where 0 = g9 < €1 < -+ < &,. Then every kaleidoscopical configuration
in X is (Eey, Eeys - - -, Eg,)-splittable.

Let (X,d) be a metric space. By S(z,r) ={y € X : d(z,y) =r}, we
denote the sphere of radius r centered at x.

A subset K of X is called rigid if, for any distinct points x,y,z € K
and numbers 74, ry, 7, € d(K x K) the spheres S(z,7;), S(y,7y), S(2,72)
have no common points in X \ K. A proof of the following theorem uses
Theorem 2.3.

Theorem 3.2 ([1]). Let X be a metric space and let G C Iso(X) be
a group of isometries of X. Then each infinite rigit subset K of X of
cardinality | K| > |G| is kaleidoscopical.

Now we consider the Euclidean space R™ as a G-space with respect to
the group G = Iso(R") of all isometries of R”. Given a cardinal xk < ¢, it
is easy to find a kaleidoscopical configurations of cardinality s in R, but
the problem is much more delicate for R, n > 2.

Theorem 3.3 ([1]). Any algebraically independent over Q subset A of
an affine line (identified with R) in the Euclidean space R™ is rigid. For
anyn > 2, R™ contains 2° kaleidoscopical configurations of cardinality c.

Following [8], we say that a subset A of R™ has the Steinhaus property
if the family {gA : g € Iso(R™)} has a transversal B. In this case,
B is a transversal of the family {z + A : * € R"}. By Theorem 4.1
{B —a :a € A} is a partition of R". Since each subset B — a is a
transversal of the family {gA : g € Iso(R™)}, by Theorem 2.1, A is a
kaleidoscopical configuration.

Theorem 3.4 ([6,7]). The subsets Z x {0}, Q x {0}, Q of R have the
Steinhaus property and hence are kaleidoscopical configurations.
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Theorem 3.5 ([2—4]). The subset Z x Z of R? has a Steinhaus property
and hence is a kaleidoscopical configuration.

Theorem 3.6 ([15]). The subset Z™ x {0}~ does not have the Stein-
haus property for 4 < m < n.

Question 3.1. Does there exist a non-trivial finite kaleidoscopical con-
figuration in R™ forn > 27

We put £(R") = min{|F|: |F| > 1 and F is a kaleidoscopical config-
uration in R™}. It is easy to see that k(R™) > x(R™), where x(R") is a
chromatic number of R”. We recall that x(R™) is the smallest number
of colors for which there is a coloring of R™ without monochrome points
at the distance 1. It is well known that 4 < y(R?) < 7 and there is a
conjecture that y(R") = 2" — 1 see [16, §47]. Thus, k(R?) > 4. We
show that x(R?) > 5.

For n > 1 and d > 0, a rather red coloring of R™ with respect to d is
a 2-coloring of R™, with red and blue, such that no two blue points are a
distance d apart. Let m, = min{|F|: F C R? and each isometric copy of
F is forbidden for red by some rather red coloring of R?}. By [14, p. 102],
5 <me <8.

Now assume that there is a kaleidoscopical configuration K in R? of
cardinality |K| = 4. Let x : R? — {1,2,3,4} be the corresponding
kaleidoscopical coloring. We recolor ' : R? — {red,blue} by the fol-
lowing rule x/(x) is blue if and only if x/(z) = 4. Let d be a distance
between some two points of K. Since Yy is kaleidoscopical, we conclude
that ’ is rather red and each isometric copy of F' is forbidden for red,
contradicting m. > 5.

4. Kaleidoscopical configurations in groups

A subset A of a group G is defined to be complemented if there exists
a subset B of G such that the multiplication mapping u: A x B — G,
(a,b) — ab, is bijective. Following [18|, we say that B is a complementer
factor to A and G = AB is a factorization of G. In this case, we have

the partitions
G=||aB=|]A40
acA beB
A subset A C G is called doubly complemented if there are factorizations
G = AB = BC for some subsets B, C of G.
The following interrelations between kaleidoscopical configurations
and factorizations are observed in [1].
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Theorem 4.1. Let A, B be subsets of a group G. Then B is G[A]-
transversal if and only if G = AB™' is a factorization of G. In particular,
each kaleidoscopical configuration in G is complemented.

Theorem 4.2. A subset A of an Abelian group G is a kaleidoscopical
configuration if and only if A is complemented.

Question 4.1. Is each complemented subset of a (finite) group kaleido-
scopical?

The remaining results of this section are from [11]. We say that a
subset A of a group G is rigid if, for each g € G\ A, the set g ! ANA~1A
is finite. Applying Theorem 2.3 we get:

Theorem 4.3. If A is a countable rigid subset of a group G then A is a
kaleidoscopical configuration.

An injective sequence (ap)ney in a group G is called a T-sequence [12]
if there exists a Hausdorff group topology in which (a,)ne. converges to
the identity e of G.

Theorem 4.4. For every T-sequence (ap)new in a group G, the set A =
{e,an,a,' 1 n € w} is a kaleidoscopical configuration. In particular, A
is complemented and G can be partitioned into right translations of A.

Theorem 4.5. Fvery infinite subset S of an Abelian group G contains
an infinite kaleidoscopical configuration.

Corollary 4.1. If S is an infinite subset of an Abelian group, then S
contains an infinite complemented subset.

Let G be a group defined by the following generators and relations
(Tons Ym = T2, = Y2, = €, TpTmTn = Ym, M <1 < W).
Then the subset {z,, : n € w} has no infinite rigid subsets.

Question 4.2. Does every infinite subset of an arbitrary infinite group
contains an infinite kaleidoscopical (complemented) subset?
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