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1. Introductory remarks

The complex metric geometry of the universal Teichmüller space caus-
es some interesting phenomena in the classical variational problems for
univalent functions. In this paper, we investigate an interaction between
these topics.

First we reprove that all contractible invariant metrics on the univer-
sal Teichmüller space agree with its intrinsic Teichmüller metric.

Theorem 1.1. The Carathéodory metric of the universal Teichmüller

space T coincides with its Kobayashi metric, hence all invariant metrics

on T are equal the Teichmüller metric.

The infinitesimal forms of these metrics coincide with the canonical

Finsler structure on T which generates the Teichmüller metric.
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This important fact, established in [14] by renormalization of se-
quences of holomorphic quadratic differentials generating the extremal
Beltrami coefficients, underlies various deep applications. Its new proof
is much simpler and relies on some results that have intrinsic interest.
Note that such a result is still unknown for other Teichmüller spaces.

Theorem 1.1 is deeply connected with general extremal problems and
the distortion theorem for univalent functions with quasiconformal exten-
sions and gives rise to their strengthening. We consider these problems
in the last section.

2. Background

We briefly present here certain results underlying the proof of Theo-
rem 1.1. This exposition is adapted to our special cases. Let ∆ = {|z| <
1}, ∆∗ = Ĉ \ ∆.

2.1. Complex geometry of universal Teichmüller space

The universal Teichmüller space is the space of quasisymmetric home-
omorphisms of the unit circle S1 = ∂∆ factorized by Möbius maps. The
canonical complex Banach structure on T is defined by factorization of
the ball of the Beltrami coefficients (or complex dilatations)

Belt(∆)1 = {µ ∈ L∞(C) : µ|∆∗ = 0, ‖µ‖ < 1}, (2.1)

letting µ1, µ2 ∈ Belt(∆)1 be equivalent if the corresponding quasicon-
formal maps wµ1 , wµ2 (solutions to the Beltrami equation ∂zw = µ∂zw
with µ = µ1, µ2) coincide on the unit circle S1 = ∂∆∗ (hence, on ∆∗).
The equivalence classes [wµ] are in one-to-one correspondence with the
Schwarzian derivatives

Sw(z) :=
(w′′

w′

)′
− 1

2

(w′′

w′

)2
=
w′′′

w′
− 3

2

(w′′

w′

)2
, w = wµ|∆∗.

Note that for each locally univalent function w(z) on a simply con-
nected hyperbolic domain D ⊂ Ĉ, its Schwarzian derivative Sw belongs to
the complex Banach space B(D) of hyperbolically bounded holomorphic
functions on D with the norm

‖ϕ‖B(D) = sup
D
λ−2
D (z)|ϕ(z)|,

where λD(z)|dz| is the hyperbolic metric on D of Gaussian curvature
−4; hence ϕ(z) = O(z−4) as z → ∞ if ∞ ∈ D. In particular, λ∆(z) =
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1/(1 − |z|2). The space B(D) is dual to the Bergman space A1(D), a
subspace of L1(D) formed by integrable holomorphic functions on D.

The derivatives Swµ(z) with µ ∈ Belt(∆)1 range over a bounded
domain in the space B = B(∆∗). This domain models the universal
Teichmüller space T, and the defining projection

φT(µ) = Swµ : Belt(∆)1 → T

is a holomorphic map from L∞(∆) to B. This map is a split submersion,
which means that φT has local holomorphic sections (see, e.g., [7]).

The above definition of T requires a complete normalization of maps
wµ, which uniquely defines the values of wµ on ∆∗ by their Schwarzians.
We shall use the condition wµ(0) = 0 going over from wµ to the maps

wµ1 (z) = wµ(z) − wµ(0)

= z − 1

π

∫∫

∆

∂wµ

∂ζ

(
1

ζ − z
− 1

ζ

)
dξ dη (ζ = ξ + iη),

which does not reflect on the Schwarzians. We identify the bounded
domain in B filled by Swµ

1

with the space T.
The intrinsic Teichmüller metric of the space T is defined by

τT(φT(µ), φT(ν))

=
1

2
inf

{
logK

(
wµ∗ ◦

(
wν∗

)−1)
: µ∗ ∈ φT(µ), ν∗ ∈ φT(ν)

}
;

it is generated by the Finsler structure

FT(φT(µ), φ′T(µ)ν) = inf{‖ν∗/(1 − |µ|2)−1‖∞ : φ′T(µ)ν∗ = φ′T(µ)ν}

on the tangent bundle T (T) = T × B of T (here µ ∈ Belt(∆)1 and
ν, ν∗ ∈ L∞(C)). This structure is locally Lipschitz (cf. [3]).

The smallest dilatation k(f) = inf ‖µ
f̂
‖∞ among quasiconformal ex-

tensions of f |∆∗ onto Ĉ is called the Teichmüller norm (or dilatation) of
f .

The space T as a complex Banach manifold also has invariant metrics
(with respect to its biholomorphic automorphisms); the largest and the
smallest invariant metrics are the Kobayashi and the Carathéodory met-
rics, respectively. Namely, the Kobayashi metric dT on T is the largest
pseudometric d on T which does not get increased by holomorphic maps
h : ∆ → T so that for any two points ψ1, ψ2 ∈ T,

dT(ψ1, ψ2) ≤ inf{d∆(0, t) : h(0) = ψ1, h(t) = ψ2},

where d∆ is the hyperbolic metric on ∆ with the differential form λ∆|dz|.
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This distance is connected with the Teichmüller norm of f by k(f) =
tanh dT(0, Sf ).

The Carathéodory distance between ψ1 and ψ2 in T is

cT(ψ1, ψ2) = sup d∆(h(ψ1), h(ψ2)),

where the supremum is taken over all holomorphic maps h : T → ∆.

The corresponding differential (infinitesimal) forms of these metrics
are defined for the points (ψ, v) ∈ T (T), respectively, by

KT(ψ, v) = inf
h
{|t| : t ∈ C, h ∈ Hol(∆,T), h(0) = ψ, dh(0)t = v}

= inf
h
{1/r : r > 0, h ∈ Hol(∆r,T), h(0) = ψ, h′(0) = v},

CT(ψ, v) = sup
g
{|dg(ψ)v| : g ∈ Hol(T,∆), g(ψ) = 0},

where Hol(X,Y ) denotes the collection of holomorphic maps of a complex
manifold X into Y , and ∆r is the disk {|z| < r}. Without normalizing
h(0) = ψ and g(ψ) = 0, one must use instead of |t| and |dg(ψ)v| the
hyperbolic lengths ‖t‖h−1(ψ) = |t|/(1 − |h−1(ψ)|)2 and ‖dg(ψ)v‖g(ψ) of
vectors t and dg(ψ)v at the points given by subscripts.

The Royden–Gardiner theorem states that the Kobayashi and Te-
ichmüller metrics are equal on all Teichmüller spaces (cf. [5–7,24]). This
fundamental fact underlies many applications of Teichmüller space the-
ory. Its strengthened version for the universal Teichmüller space is given
by

Proposition 2.1 ([13]). The differential Kobayashi metric KT(ψ, v) on

the tangent bundle T (T) of the universal Teichmüller space T is log-

arithmically plurisubharmonic in ψ ∈ T, equals the canonical Finsler

structure FT(ψ, v) on T (T) generating the Teichmüller metric of T and

has constant holomorphic sectional curvature −4.

It implies that the Teichmüller distance τT(ϕ,ψ) is logarithmically

plurisubharmonic in each of its variables and hence the pluricomplex

Green function of the space T (i.e., the maximal plurisubharmonic func-

tion on T in each of variables ϕ,ψ) equals

gT(ϕ,ψ) = log tanh τT(ϕ,ψ) = log k(ϕ,ψ),

where k(ϕ,ψ) denotes the extremal dilatation of quasiconformal maps

determining the Teichmüller distance between the points ϕ and ψ in T.
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2.2. Sectional holomorphic curvature

The generalized Gaussian curvature κ[λ] of an upper semicontinuous
Finsler metric ds = λ(t)|dt| with λ(t) ≥ 0 in a domain Ω ⊂ C is defined
(at the points t, where λ(t) 6= 0) by

κ[λ](t) = −∆ log λ(t)

λ(t)2
, (2.2)

where ∆ is the generalized Laplacian defined by

∆λ(t) = 4 lim inf
r→0

1

r2

{
1

2π

2π∫

0

λ(t+ reiθ) dθ − λ(t)

}

(provided that 0 ≤ λ(t) < ∞). It is well known that an upper semicon-
tinuous function λ is subharmonic on Ω if and only if ∆u(t) ≥ 0 on this
domain; hence at the points t0 of local maxima of λ with λ(t0) > −∞, we
have ∆λ(t0) ≤ 0. Note that for C2 functions, ∆ coincides with the usual
Laplacian 4∂2/∂z∂z, and its non-negativity immediately follows from the
mean value inequality. For arbitrary subharmonic functions, this is ob-
tained by a standard approximation, which also yields the invariance
of the generalized Gaussian curvature under complex holomorphic maps
(apart from their critical points).

It follows from (2.2) that a (generically nonsmooth) conformal Finsler
metric ds = λ(z)|dz| with λ(z) ≥ 0 of generalized curvature at most
−K, K > 0, satisfies the inequality

∆ log λ ≥ Kλ2. (2.3)

The sectional holomorphic curvature of a Finsler metric on a complex
Banach manifold X is defined in a similar way as the supremum of the
curvatures (2.2) over appropriate collections of holomorphic maps from
the disk into X for a given tangent direction in the image.

The holomorphic curvature of the Kobayashi metric KX(x, v) of any
complete hyperbolic manifold X satisfies κ[KX ](x, v) ≥ −4 at all points
(x, v) of the tangent bundle T (X) of X, and for the Carathéodory metric
CX we have κ[CX ](x, v) ≤ −4.

For details and general properties of invariant metrics, we refer to [2,9]
(see also [1, 13]).

2.3. The Grunsky operator

The complex geometry of the universal Teichmüller space is closely
connected with the Grunsky inequalities technique which arose from in-
vestigating the univalence problem in [8].
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Any function f = z + b0 + b1z
−1 + · · · ∈ Σ determines its Grunsky

operator (matrix) Gf = (αmn(f)), where the Grunsky coefficients αmn
are determined by the expansion

log
f(z) − f(ζ)

z − ζ
= −

∞∑

m,n=1

αmnz
−mζ−n, (z, ζ) ∈ (∆∗)2,

with the principal branch of the logarithmic function, satisfy the inequal-
ities ∣∣∣∣

∞∑

m,n=1

√
mn αmnxmxn

∣∣∣∣ ≤ k. (2.4)

Here x = (xn) runs over the unit sphere S(l2) of the Hilbert space l2 with

norm ‖x‖ =
(∑∞

1 |xn|2
)1/2

, and k = k(f) ≤ 1 is the Teichmüller norm
of f (cf. [8, 19]). The quantity

κ(f) = sup

{∣∣∣∣
∞∑

m,n=1

√
mn αmnxmxn

∣∣∣∣ : x = (xn) ∈ S(l2)

}
≤ 1

is called the Grunsky norm of f ; it equals the norm of Gf regarded as a
linear operator l2 → l2.

The functions with κ(f) = k(f) play a crucial role in applications of
Grunsky inequalities; a point is that the set of Sf , on which κ(f) < k(f),
is open and dense in T. One of the underlying facts in applications is the
following result.

Proposition 2.2. The equality κ(f) = k(f) for f ∈ Σ0 holds if and only

if the function f is the restriction to ∆∗ of a quasiconformal self-map wµ0

of Ĉ with Beltrami coefficient µ0 satisfying the condition

sup |〈µ0, ψ〉∆| = ‖µ0‖∞, (2.5)

where the supremum is taken over holomorphic functions ψ ∈ A2
1(∆)

with ‖ϕ‖A1(∆) = 1, where

A2
1 = {ψ ∈ A1(∆) : ψ = ω2 with ω holomorphic on ∆}.

In addition, if an extremal quasiconformal map in the equivalence class

of f is of Teichmüller type (in other words, represents in T a Strebel

point), then the restriction of µ0 onto the disk ∆ must be of the form

µ0(z) = k|ψ0(z)|/ψ0(z) with ψ0 ∈ A2
1. (2.6)
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The proof of this proposition is given in [11, 15]. It relies on the fact
that the Grunsky coefficients αmn(Sf ) generate the holomorphic func-
tions

hx(ϕ) =
∞∑

m,n=1

√
mn αmn(ϕ)xmxn, (2.7)

where ϕ = Sf and x = (xn) are the points of the sphere S(l2), mapping
the universal Teichmüller space T into the unit disk ∆. The restrictions
of these functions to the disk {φT(sµ0)} determine the Carathéodory
distance between the points Sfsµ0 and the origin, which by (2.5) equals
the Teichmüller distance.

In a special case, when the curve f(S1) is analytic, the equality (2.6)
was obtained by a different method in [20].

Note that holomorphy of the functions (2.7) is a consequence of the
fact that the Grunsky coefficients αmn are polynomials of the initial co-
efficients b1, . . . , bm+n−1 of f combined with the well-known inequality
(cf. [22, p. 61]) : for any 1 ≤ p ≤M, 1 ≤ q ≤ N ,

∣∣∣∣
M∑

m=p

N∑

n=q

√
mn αmnxmxn

∣∣∣∣
2

≤
M∑

m=p

|xm|2
N∑

n=q

|xn|2.

We mention also that both Teichmüller and Grunsky norms are con-
tinuous logarithmically plurisubharmonic functions on T (see [13, 26])
and that, by a theorem of Pommerenke and Zhuravlev, any f ∈ Σ with
κ(f) ≤ k < 1 has k1-quasiconformal extensions to Ĉ with k1 = k1(k) ≥ k
(see [17, pp. 82–84], [22, 29]).

2.4. A holomorphic homotopy of univalent functions

One can define for each f ∈ Σ the complex homotopy

ft(z) = tf
(z
t

)
= z+ b0t+ b1t

2z−1 + b2t
3z−2 + · · · : ∆∗ ×∆ → Ĉ (2.8)

so that f0(z) ≡ z. This implies Sft
(z) = t−2Sf (t

−1z), and moreover, this
point-wise map determines a holomorphic map

hf (t) = Sft
(·) : ∆ → B (2.9)

(see, e.g. [12]). The corresponding homotopy disk

∆(Sf ) = hf (∆) ⊂ T (2.10)

is holomorphic at noncritical points of maps (2.9). These disks foliate the
space T.

The dilatations of the homotopy maps are estimated by
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Proposition 2.3 ([12]). (a) Each homotopy map ft of f ∈ Σ admits

a k-quasiconformal extension to the complex sphere Ĉ with k ≤ |t|2.
The bound k(ft) ≤ |t|2 is sharp and occurs only for the maps

fb0,b1(z) = z + b0 + b1z
−1, |b1| = 1,

whose homotopy maps have the affine extensions f̂b0,b1t2(z) = z +
b0t+ b1t

2z onto ∆.

(b) If f(z) = z + b0 + bmz
−m + bm+1z

−(m+1) + · · · (bm 6= 0) for some

integer m > 1, then the minimal dilatation of extensions of ft is

estimated by k(ft) ≤ |t|m+1; this bound also is sharp.

In the second case,

hf (0) = h′f (0) = · · · = h
(m)
f (0) = 0, h

(m+1)
f (0) 6= 0,

and due to [18],

k(ft) =
m+ 1

2
|bm||t|m+1 +O(tm+2), t→ 0. (2.11)

Each homotopy function ft has an extremal extension onto ∆ with Bel-
trami coefficient of the form t|ψt|/ψt, where ψt ∈ A1 and

A1 = {ψ ∈ L1(∆), ψ holomorphic on ∆}.

3. Proof of Theorem 1.1

We accomplish the proof in two stages.
Step 1. Underlying lemmas. We shall need the following lemmas.

Lemma 3.1. For every f ∈ Σ with expansion

f(z) = z + b0 + bmz
−m + bm+1z

−(m+1) + · · · (m ≥ 1, bm 6= 0; |z| > 1),
(3.1)

there exists a number r′f > 0 (r′f ≤ 1) such that

(a) if m is odd, then for each r ≤ r′f all zeros of the defining differential

ψr in ∆ are of even order;

(b) if m is even, then all ψr with r ≤ rf have only zeros of odd order.

Proof. Investigating the asymptotic behavior of κ(fr) near r = 0, one can
assume that [f ] is a Strebel point, i.e., that f has Teichmüller extension
to ∆ with Beltrami coefficient µ0 = k|ψ0|/ψ0 (cf. [7,27]). Otherwise, one
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can replace f by fρ with ρ close to 1. Then fρτ = fr for τ = r/ρ. Put
µ∗0 = µ0/‖µ0‖∞ and

µ∗r(z) =

{
|ψ0(z/r)|
ψ0(z/r) , |z| < r,

0, |z| > r;

then for any ψ ∈ A1,
∫∫

∆

µ∗r(z)ψ(z) dx dy = r2
∫∫

∆

µ∗0(z)ψ(rz) dx dy. (3.2)

Note that Beltrami coefficient kµ∗r is extremal in the class of quasicon-
formal extensions of the stretching fr(z) = r−1f(z/r) across the circle
{|z| = r}.

Consider, for a fixed r, the functions

ψr(z) = r−1ψ(rz) = c0 + c1rz + · · ·

generated by ψ(z) =
∑∞

0 cnz
n ∈ A1(∆). Any such ψr is holomorphic

on the disk ∆1/r = {|z| < 1/r}. The Schwarz lemma, applied to holo-
morphic maps from ∆ into a ball in A1, yields the existence of r0 > 0
depending only on ‖ψ‖A1

such that ψr does not vanish on ∆\{0}, when-
ever r ≤ r0. One derives from Proposition 2.2 and (3.2) that the subspace
A0

1, spanned in A1(∆) by these functions, has a nonempty complement
in A1(∆).

Now observe that the Teichmüller distance between the origin of T
and the equivalence classes [tµ] for µ ∈ Belt(∆)1 with 0 < ‖µ‖∞ ≤ k1 <
1 and small t > 0 is given by

τT([0], [tµ]) = t sup

∣∣∣∣∣

∫∫

∆

µ(z)ψ(z) dx dy

∣∣∣∣∣ +O(t2), (3.3)

where the supremum is over allA1(∆) for which ‖ψ‖ = 1 and the constant
in O(t2) depends only on k1 (in fact, this holds for maps of arbitrary
Riemann surfaces, cf. [7, 10]). We apply (3.3) to the homotopy maps fr
with sufficiently small r. Let µr,0 denote its extremal Beltrami coefficient
among quasiconformal extensions of fr across the unit circle S1.

By (3.2) the initial coefficient µ0 of f determines a linear bounded
functional l(ψ) on A0

1, which we extend by Hahn–Banach to A1 and then
to L1(∆) getting a Beltrami coefficient νr of Teichmüller type. It must
coincide with µr,0 up to a quantity O(t2), hence up to an infinitesimally
trivial Beltrami coefficient satisfying

ν ∈ A1(∆)⊥ = {ν∗ ∈ Belt(∆)1, 〈ν∗, ψ〉∆ = 0 for all ψ ∈ A1}.
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As is well known, such a relation is impossible for Teichmüller extremal
coefficients; hence, νr = µr,0.

On the other hand, each fµ ∈ Σ0 with small ‖µ‖∞ is represented by
the well-known variational formula

fµ(ζ) = ζ + b0 −
1

π

∫∫

∆

µ(z)

z − ζ
dx dy +O(‖µ‖2

∞) = ζ + b0 +
∞∑

1

bnζ
−n

with

bn =
1

π

∫∫

∆

µ(z)zn−1 dx dy +O(‖µ‖2
∞), n = 1, 2, . . .

which yields

αmn(ϕ) = − 1

π

∫∫

∆

µ(z)zm+n−2 dx dy +O(‖µ‖2
∞), ‖µ‖∞ → 0. (3.4)

Comparison with (3.3), Proposition 2.2 and definition of the Grunsky
norm immediately implies κ(fr) < k(fr) if m in (3.1) is even, and

κ(fr) = k(fr) = |µr,0| (for r ≤ r1(f)) (3.5)

if m is odd. These relations are equivalent to assertions (a), (b). Lem-
ma 3.1 follows.

Remark 3.1. It follows from Proposition 2.2 that there exist f(z) =
z+b0 +b1z

−1 + · · · ∈ Σ0 with b1 6= 0 and κ(f) < k(f). Lemma 3.1 shows
that the homotopy maps fr with sufficiently small r < rf inherit the
relation between Teichmüller and Grunsky norms of the tangent maps
fm,r(z) = f0,b1r2(z

m)1/m at r = 0.
The assertion (a) of Lemma 3.1 for f ∈ Σ with b1 6= 0 was established

by R. Kühnau (by a different method). In [18, Section 6] he posed
some related conjectures. Lemma 3.1 generalizes his result and partially
answers some of Kühnau’s questions.

We apply this lemma to establish the equality of hyperbolic distances
for the points of homotopy disks ∆(ft) in T near the origin.

Lemma 3.2. For every f ∈ Σ of the form (3.1) with m ≥ 1, there exists

rf > 0 such that for all r ≤ rf , we have the equalities

cT(0, Sfr
) = dT(0, Sfr

) = τT(0, Sfr
)

= tanh−1

(
m+ 1

2
|bm|rm+1

)
+O(rm+2). (3.6)

The infinitesimal forms of these metrics also coincide for small r.
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Proof. First assume that m in expansion (3.1) is odd. Then by Lem-
ma 3.1 there exists rf > 0 such that for any r ≤ rf the extremal Beltrami
coefficient of the homotopy map fr is of the form

µr = kr|ψr|/ψr with ψr ∈ A2
1,

i.e., ψr = ω2
r with holomorphic ωr in ∆. Such a quadratic differential is

represented in the form

ψr(z) =
1

π

∞∑

m+n=2

√
mn xrmx

r
nz

m+n−2

with xr = (xrn) ∈ l2 and ‖ψ‖A1
= ‖x0‖l2 (cf. [20]). Pick c > 0 so that

‖cψr‖A1
= 1, and consider the holomorphic map

hcx0(ϕ) =
∞∑

m,n=1

√
mn αmn(ϕ)x0

mx
0
n : T → ∆ (3.7)

whose lifting into the ball Belt(∆)1 is ĥcx0(µ) = hcx0 ◦ φT. Using (3.4),
one computes that the differential of ĥcx0 at the origin µ = 0 equals

dĥcx0(0)ν =
1

π

∫∫

∆

ν(z)
∞∑

m,n=1

√
mnx0

mx
0
nz

m+n−2 dx dy.

In particular, for ν = tµr,

dĥcx0(0)[t|ψr|/ψr] = ct

∫∫

∆

|ψr(z)| dx dy = t,

hence the restriction of the map (3.7) to the disk ∆(ψr) = {φT({tµr})} ⊂
T is a hyperbolic isometry of the unit disk, and the Carathéodory and
Teichmüller metrics of T are equal on ∆(ψr). Since cT(·, ·) ≤ dT(·, ·) ≤
τT(·, ·), the equalities (3.6) follow.

If m in (3.1) is even, we consider the map

f2(z) = f(z2)1/2 = z +
b0
2

1

z
+
bm
2

1

z2m−1
+ · · ·

It is well-defined since f(0) = 0 and provides an odd function, symmetric

with respect to the origin. Denote the coefficients of f2 by b
(2)
j and let

α
(2)
mn(f) = αmn(f2).

Squaring f(z) 7→ f(z2)1/2 transforms the defining quadratic differen-
tials ψr = ψr(z)dz

2 of fr into ψ∗
r = ψr(z

2)4z2dz2 with zero of even order
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at the origin. Thus one can apply to f2 the previous arguments, using
instead of (2.10) the functions

h2,x(ϕ) =
∞∑

m,n=1

√
mn α(2)

mn(ϕ)xmxn. (3.8)

The maps f are completely normalized, thus each coefficient bj , j ≥ 0, is
holomorphic on T. It is represented as a polynomial of a finite number of
initial coefficients b0, b1, . . . , bs of the original function f (and free terms
b0 are uniquely determined from the condition f(0) = 0). Thus the maps
(3.8) also depend holomorphically from µf and Sf , and since squaring
transform preserves quasiconformal dilatation of fr, the equalities (3.6)
follow.

The proof for the infinitesimal metrics follows the same line, com-
pleting the proof of the lemma.

Step 2. Equality of invariant metrics on the homotopy disks. First
assume that Sf is a Strebel point of the space T, equivalently, f ∈ Σ0

admits quasiconformal extension whose Beltrami coefficient in ∆ is
defined by a holomorphic quadratic differential ψ ∈ A1. We compare
the infinitesimal Carathéodory and Kobayashi metrics on the homotopy
disk ∆(Sf ), using Minda’s maximum principle.

Lemma 3.3 ([21]). If a function u : Ω → [−∞,+∞) is upper semicon-

tinuous in a domain Ω ⊂ C and its generalized Laplacian satisfies the

inequality ∆u(z) ≥ Ku(z) with some positive constant K at any point

z ∈ Ω, where u(z) > −∞, and if

lim sup
z→ζ

u(z) ≤ 0 for all ζ ∈ ∂Ω,

then either u(z) < 0 for all z ∈ Ω or else u(z) = 0 for all z ∈ Ω.

The restrictions of the infinitesimal metrics Carathéodory and Koba-
yashi metrics to the disk ∆(Sf ) determine on ∆ the metrics

λK(t) = KT(hf (t), h
′
f (t)) =

|t|
(1 − |h−1

f (Sft
)|)2

,

λC(t) = CT(hf (t), h
′
f (t)) = sup

g

{ |g ◦ hf (t)|
1 − |g ◦ hf (t)|2

: g ∈ Hol(T,∆)

}

having at noncritical points of the map hf the generalized Gaussian cur-
vatures −4 and at most −4, respectively. By Lemma 3.2, for all |t| ≤ rf ,
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we have the equality cT(0, Sft
) = dT(0, Sft

), which implies, by Schwarz’s
lemma,

λC(t) = λK(t), for |t| < min{rf , 1}, (3.9)

while λC(t) ≤ λK(t) for rf < |t| < 1. We only need to consider the case
rf < 1.

Apart from the critical points of the map hf , the metric λC(t) is
subharmonic, hence upper semicontinuous, and λK(t) is locally Lipschitz
continuous and subharmonic. Thus if there are the points t ∈ ∆, where
λC(t) < λK(t)}, their set must be open. Pick a connected component Ω0

of this set and a boundary point t0 of Ω0, and put

M = {supλK(t) : t ∈ U0}

for t running over a sufficiently small neighborhood U0 of t0. For all such
t, λK(t) + λC(t) ≤ 2M ; thus, letting

u = log(λC/λK),

we get

∆u(t) = ∆ log λC(t) − ∆ log λK(t)

= 4(λC(t)
2 − λK(t)2) ≥ 8M(λC(t) − λK(t)). (3.10)

Since
M log(a/b) ≥ a− b for 0 < b ≤ a < M

(with equality only for a = b), (3.10) yields

M log
λC(t)

λK(t)
≥ λC(t) − λK(t),

and hence
∆u(t) ≥ 4M2u(t).

The properties of λC and λK yield that u is upper semicontinuous.
We can apply Lemma 3.3 which provides, in view of (3.9), that both

metrics λC and λK must be equal on U0, hence in some domain containing
the initial disk {|t| < rf}. Continuing in a similar way, one obtains the
equality of these metrics at all noncritical points of the map hf . This
yields that the original metrics CT and KT coincide at all nonsingular
points of the disk ∆(Sf ).

Now consider the Teichmüller disks containing the origin ψ = 0 and
touching ∆(Sf ) at such points, and compose on these disks the corre-
sponding holomorphic maps ∆ → T and T → ∆ defining the distances
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dT and cT. The Schwarz lemma implies, in view of the established equal-
ity of the infinitesimal metrics, that cT = dT on any such disk. By
continuity of metrics, this equality extends to all points of the homotopy
disk ∆(Sf ).

Now observe that dT = τT (and hence also cT) is circularly symmet-
ric on ∆(Sf ) (i.e., dT(0, Sft

) = dT(0, Sf|t|) for all |t| ≤ 1). Since any

circularly symmetric subharmonic function u(t) on ∆ is continuous in
|t| ∈ [0, 1], one gets

cT(0, Sf ) = dT(0, Sf ). (3.11)

To establish the equality of infinitesimal metrics, consider the Te-
ichmüller geodesic disk {φT(sµ0) : |s| < 1} joining the point Sf with the
origin of T. Let Sf correspond to s = s0. Pick in Hol(T,∆) a sequence
of maps gn for which

lim
n→∞

d∆(0, gn(Sf )) = cT(0, Sf ).

Then Schwarz’s lemma, applied to the functions

ĝn(s) = gn(Sfsµ0 ) : ∆ → ∆, n = 1, 2, . . . ,

implies, in view of (3.11),

lim
n→∞

dgn(Sfs0µ0 )v = 1, v = φT(µ0),

which, in turn, yields the equality

CT(Sf , v) = KT(Sf , v)

for all tangent vectors v at Sf . This completes the proof of the theorem
for Strebel’s points.

Using the density of such points in the space T and the continuity of
metrics, one extends the equality (3.11) to all points of T. Then the case
of the infinitesimal metrics is investigated in the same way as for Strebel’s
points using one of the extremal Beltrami coefficients µ0 for f (now not
unique) and applying the above arguments to the disk {φT(sµ0)}.

It remains to establish the coincidence of the global distances between
arbitrary points ϕ1, ϕ2 in T. One can use for this a standard procedure
involving the so-called right translations of T1, generated by the right
shifts on the ball Belt(∆)1.

Let us take a Beltrami coefficient ν ∈ Belt(∆)1 with φT(ν) = ϕ.
Then wν(S1) is a quasicircle with the interior domain Dν = wν(∆).
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Having this domain mapped conformally onto ∆ by the corresponding
function w, one obtains (for fixed ν) a biholomorphic isomorphism

µ 7→ σ(µ) =
µ− ν

1 − νµ

wν ◦ w−1

wν ◦ w−1

of the ball Belt(∆)1. This isomorphism is compatible with the canonical
projection φT and thus descends to a holomorphic bijection σ̂ of T defined
from the commutative diagram

Belt(∆)1
σ−−−−→ Belt(∆)1

φT

y
yφT

T
σ̂−−−−→ T

It implies also the Teichmüller isometry

τT(φT(ν), φT(µ)) = τT(φT(σ(ν)),0)

and the similar equalities for the Carathéodory and Kobayashi metrics.
This completes the proof of the theorem.

4. Extremal problems for univalent functions

4.1. Complex geodesics

By Schwarz’s lemma, any holomorphic map j of a complex Banach
manifold X into the disk ∆ is estimated by

cX(x, y) ≤ dX(x, y) ≤ d∆(j(x), j(y)), x, y ∈ X,

where cX and DX denote the Carathéodory and Kobayashi metrics of X,
respectively.

A holomorphic map h : ∆ → X is called a complex geodesic if for any
two distinct points t1, t2 ∈ ∆,

d∆(t1, t2) = cX(h(t1), h(t2)) = dX(h(t1), h(t2)).

Then h(∆) is a holomorphically embedded disk, geodesic for both metrics
cX and dX (cf. [28]).

4.2. A general theorem

Now let F (f) be a holomorphic (continuous and Gateaux C-differenti-
able) functional on the class Σ, i.e., we have for any f ∈ Σ and small t ∈ C
the equality

F (f + th) = F (f) + tF ′
f (h) +O(t2), t→ 0, (4.1)
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in the topology of uniform convergence on compact sets in ∆∗. Here
F ′
f (h) is a C-linear functional. The restriction of F to Σ0 is lifted to

the ball Belt(∆)1 by F̂ (µ) = F (fµ), and we assume that this lifting
is holomorphic on Belt(∆)1. Moreover, assume that this functional is
holomorphic on the Schwarzians Sfµ . Then the functional F ′

f (h) in (4.1)
is a strong (Fréchet) derivative of F on T.

We already used in the proof of Lemma 3.1 a variational formula for
f ∈ Σ0. More generally,

ω = Hµ(w) = w +
1

π

∫∫

f(∆∗)

µ(ζ)g(w, ζ) dξ dη +O(‖µ‖2
∞);

where the kernel g of variation is of the form

g(w, ζ) =
1

w − ζ
+ g1(ζ),

where the additional term g1(ζ) depends on the additional normalization
of f . For example, if f(1) = 1, f(0) = 0, b0(f) = 0, then g1(ζ) equals,
respectively, to 1/ζ, 1/(ζ − 1), 0. Under any of such normalizations, the
ratio O(‖µ‖2

∞)/‖µ‖2
∞ remains uniformly bounded on Ĉ as ‖µ‖ → 0. We

shall assume that such an additional normalization of f ∈ Σ0 is chosen.
As is well known, any such F is represented by a complex Borel mea-

sure on C, which allows to extend this functional to all holomorphic
functions on ∆∗ (cf. [25]). In particular, the value FI(g(I, z)) of F on the
identity map I(z) = z is well defined.

Let us consider the case when the derivative

ψ0(z) = F ′
I(g(I, z)) (4.2)

is a meromorphic functions on C, which is holomorphic and integrable on
the unit disk ∆. This rather natural assumption holds, for example, for
the general distortion functionals F of the form

F (f) = F (f ′(z1), . . . , f
(m1)(z1); . . . ; f

′(zp), . . . , f
(mp)(z1)),

where z1, . . . , zp are the distinct fixed points in ∆∗ with assigned orders
m1, . . . ,mp, respectively. In this case, the function (4.2) is rational.

The following general theorem immediately solves the maximization
problem for any functional F of the above form on the classes

Σk = {fµ ∈ Σ0 : ‖µ‖∞ ≤ k} (k < 1)

under an appropriate restriction to the dilatation k.
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Theorem 4.1. Suppose that the range domain of the functional F on

Σ0 has more than two boundary points and its derivative F ′
I(g(I, ·)) = ψ0

determines in T a cT-geodesic disk

∆(ψ0) = {φT(|ψ0|/ψ0)}. (4.3)

Then there exists a number k0(F ) > 0 such that for all k ≤ k0(F ), we

have the sharp bound

max
k(f)≤k

|F (f) − F (I)| ≤ max
|t|=k

|F (f t|ψ0|/ψ0) − F (I)|; (4.4)

in other words, the values of F on the ball

Belt(∆)k = {µ ∈ Belt(∆)1 : ‖µ‖∞ ≤ k}

are located in the closed disk ∆(F (I),Mk) centered at the point F (I) and

with radius

Mk(F ) = max
|t|=k

|F (f t|ψ0|/ψ0) − F (I)|. (4.5)

The equality occurs only for µ = t|ψ0|/ψ0 with |t| = k.
Conversely, if the inequality (4.3) holds for F for 0 < k ≤ k0(F ),

then up to a constant multiple a > 0,

F (fµ) = G̃(Sfµ) +O(‖µ‖2
∞) as ‖µ‖∞ → 0, (4.6)

where G̃ is holomorphic on T and its renormalization

G̃(ϕ) = G̃(ϕ)/ sup
ψ∈T

|G̃(ϕ)|

is the defining map for the disk ∆(ψ0) as cT-geodesic.

This theorem implies many sharp distortion estimates for univalent
functions with quasiconformal extension. It shows that assumption of the
theorem about the disk (4.3) to be cT-geodesic is in fact sufficient and
necessary for getting the explicit bound (4.4).

The known results in this direction are of rather specific forms and
give only the sufficient conditions ensuring the bound (4.4). For example,
it was established in [16] for functionals F whose derivatives F ′

I(g(I, ·))
have in the unit disk only zeros of even order, using a special projector of
norm 1. The same idea underlies the proof of sufficiency in Theorem 4.1.

Proof. (a) Let the disk (4.3) be cT-geodesic. Without loss of generality,
one can assume that fµ ∈ Σ0 are normalized by fµ(1) = 1, hence for
small ‖µ‖,
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fµ(z) = z − 1

π

∫∫

∆

µ(ζ)
( 1

ζ − z
− 1

ζ − 1

)
dξ dη +O(‖µ‖2

∞)

= z − z − 1

π

∫∫

∆

µ(ζ) dξ dη

(ζ − 1)(ζ − z)
+O(‖µ‖2

∞) as ‖µ‖∞ → 0,

and F (I) = 0. Let f0 be any function in Σk maximizing |F | over Σk (the
existence of such f0 follows from compactness). We may assume that its
Beltrami coefficient µf0 is extremal in its class, i.e.,

‖µf0‖∞ = inf{‖µ‖∞ ≤ k : fµ|∆∗ = f0|∆∗}.

Suppose that

µf0 6= tµ0 for some t with |t| = k, (4.7)

where

µ0 = |ψ0|/ψ0.

We show that for small k this leads to a contradiction.

The proof relies on the following important property of extremal
maps. Let

ωp(z) = zp − 1 − ψ0(z) (ζ ∈ ∆), p = 1, 2, . . . , (4.8)

and

〈µ, ψ〉∆ =

∫∫

∆

µ(z)ψ(z) dx dy, for µ ∈ L∞(∆), ψ ∈ L1(∆).

The following lemma from [16] provides a key property of extremal maps.

Lemma 4.1. For sufficiently small k ≤ k0(F ), the extremal Beltrami

coefficient µf0 is orthogonal to all functions (4.8), i.e.,

〈µf0 , ωp〉∆ = 0.

Consider now the holomorphic map

Λ(µ) = g ◦ φT(µ) : µ ∈ Belt(∆)1,

where g : T → ∆ determines the hyperbolic isometry between the disks
(4.3) and ∆. The differential of Λ at µ = 0 is a linear operator P :
L∞(∆) → L∞(∆) of norm 1 which is represented in the form

P (µ) = β〈µ, ψ0〉µ0.
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Let P (µf0) = α(k)µ0. Since, by assumption, f0 is not equivalent to f t0µ0

with |t0| = k, we have

{
Λ

( t
k
µf0

)
: |t| < 1

}
$ {|t| < 1}.

Thus, by Schwarz’s lemma,

|a(k)| < k. (4.9)

Now consider the function

ν0 = µf0 − α(k)µ0

which is not equivalent to zero, due to our assumption (4.7). We show
that ν0 annihilates integrable holomorphic functions on ∆. We use the
following lemma from [4] concerning the projections of norm 1 in Banach
spaces.

Let V be a complex Banach space with norm ‖ · ‖ differentiable on
V \ {0}, and suppose that

A(v, w) = lim
t→0

‖v + tw‖ − ‖v‖
t

for all v ∈ V \ {0}, w ∈ V ;

for every fixed v 6= 0 it is a bounded linear functional on V .

Lemma 4.2. Let W be a non-trivial closed (complex) subspace of V , and

let W ′ be the closed subspace

W ′ = {w ∈ V : A(v, w) = 0 for all v ∈W \ {0}.

There is a projection P of norm 1 from V onto W if and only if W ′ is

a complementary subspace to W , that is W ⊕W ′ = V . Further, if P
exists, it is unique and its kernel is W ′.

We have

〈ν0, ψ〉∆ = 0

for all ψ from the subspace W ′ = 〈ωp〉 of A1(∆) spanned by functions
(4.8), since 〈µf0 , ψ〉∆ = 0 by Lemma 4.1 and 〈µ0, ψ〉∆ = 0 by Lemma 4.3
applied to the one-dimensional subspace W = {λψ0 : λ ∈ C}. To
establish that

〈ν0, ψ0〉∆ = 0,

consider the conjugate operator

P ∗(ψ) = 〈µ0, ψ〉∆ψ0
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which maps L1(∆) into L1(∆) and fixes the subspace W . The definition
of ν0 implies P (ν0) = 0, thus

〈ν0, ψ0〉∆ = λ〈ν0, P
∗ν0〉∆ = 〈Pν0, ψ0〉∆ = 0.

Since the functions ψ0, ωp, p = 1, 2, . . . , form a complete set in the
space A1(∆), we have proved that ν0 is orthogonal to all ψ ∈ A1(∆), i.e.,
belongs to the set

A1(∆)⊥ = {µ ∈ L∞(∆) : 〈µ, ψ〉∆ = 0 for all ψ ∈ A1(∆)}.

Now we use the well-known properties of extremal quasiconformal
maps (see e.g., [7, 10, 23]). First of all, since µf0 is extremal for f0,

‖µf0‖∞ = inf{|〈µf0 , ψ〉∆| : ϕ ∈ A1(∆), ‖ψ‖ = 1};

moreover, by the Hamilton–Krushkal–Reich–Strebel theorem such an
equality is necessary and sufficient for µ ∈ Belt(∆)1 to be extremal
for fµ. Hence, for any ν ∈ A1(∆)⊥,

‖µf0‖∞ = inf{|〈µf0 + ν, ψ〉∆ : ψ ∈ A1(∆), ‖ψ‖ = 1} ≤ ‖µf0 + ν‖∞.

Thus we have

Lemma 4.3. If f0 is extremal.

‖µf0‖∞ = k ≤ ‖µf0 − ν0‖∞. (4.10)

We may now complete the proof of the sufficiency part. By (4.10),

k ≤ ‖µf0 − ν0‖∞ = ‖α(k)µ0‖∞ = α(k),

which contradicts (4.9). Hence f0 is equivalent to f tµ0 and we can take
µf0 = tµ0 for some |t| = k.

(b) Let again F (I) = 0. We lift the original functional F to

G(µ) = π−1 ◦ F̂ (µ) : Belt(∆)1 → ∆,

where π is a holomorphic universal covering of the domain V (F ) =
F (Σ0) by a disk ∆a = {|z| < a} with π(0) = 0, π′(0) = 1 (the lift-
ing is single valued, since the ball Belt(∆)1 is simply connected). The
normalization of π ensures that for sufficiently small |ζ|,

π(ζ) = ζ +O(ζ2)

(with uniform estimate of the remainder for |ζ| < |ζ0|), which implies the
asymptotic equality (4.6). The covering functional G is holomorphic also
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in the Schwarzians Sfµ , which generates a holomorphic map G̃ : T → ∆

so that G = G̃ ◦ φT. The above arguments estimate G for small ‖µ‖
similarly to (4.4), but now the radius (4.5) is given by

Mk(G) = k for 0 < k < k1(g).

Restricting G̃ to the extremal disk (4.3) and applying to this restriction
Schwarz’s lemma, one derives that on this disk G̃(t) ≡ t; thus this map
must be cT-geodesic. The theorem is proved.

4.3. Additional remarks

For the bounded functionals F : Σ → C with F (I) = 0, there
is a useful lower estimate for k0(F ), which allows one to apply Theo-
rem 4.1 effectively. Namely, similarly to [16], one obtains that if M(F ) :=
supΣ |F (f)| <∞ then the above estimate holds for all

k ≤ k0(F ) =
‖F ′

I‖
‖F ′

I‖ +M(F ) + 1
, (4.11)

where

‖F ′
I‖ =

1

π

∫∫

∆
|F ′
I(g(I, z))| dx dy

(one has to verify that all arguments in the proof of Theorem 4.1 work
well for such k).

Similar sharp results hold for univalent functions in the unit disk.
For example, the bound (4.4) implies the best known sharp estimates

for coefficients of the functions from Σ0 and S0 with dilatations restricted
by (4.11).
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