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Balleans of topological groups

SALVADOR HERNANDEZ, IGOR V. PROTASOV

Abstract. A subset S of a topological group G is called bounded if,
for every neighborhood U of the identity of G, there exists a finite subset
F such that S C FU, S C UF. The family of all bounded subsets of G
determines two structures on G, namely the left and right balleans B;(G)
and B, (G) , which are counterparts of the left and right uniformities of G.
We study the relationships between the uniform and ballean structures
on (G, describe all topological groups admitting a metric compatible both
with uniform and ballean structures, and construct a group analogue of
Higson’s compactification of a proper metric space.
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Introduction

A ball structure is a triple B = (X, P, B), where X, P are non-empty
sets and, for every x € X and a € P, B(x,«) is a subset of X which is
called a ball of radius « around z. It is supposed that = € B(z, «) for all
x € X and a € P. The set X is called the support of B, P is called the
set of radii.

Given any x € X, AC X, a € P, we put

B*(r,a) ={ye X :z € B(y,a)}, B(A,a)= U B(a, o).
acA

A ball structure B is called

e lower symmetric if, for any «, 3 € P, there exist o/, 3 € P, such
that, for every z € X,
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B*(z,d) C B(z,a), B(z,8") C B*(z,B);

e upper symmetric if, for any a, 3 € P, there exist o/,3 € P such
that, for every z € X,

B(z,a) C B*(x,d'), B*(z,8) C B(x,);

o lower multiplicative if, for any «, 3 € P, there exists v € P such
that, for every z € X,

B(B(x,7),7) € Blx,)( ) B(x, B),

o upper multiplicative if, for any o, € P, there exists v € P such
that, for every z € X.

B(B(z,a), ) € B(x,7).

Let B = (X, P, B) be a lower symmetric and lower multiplicative ball
structure. Then the family

{ U B(z,0) xB(w,a):aeP}

zeX

is a base of entourages for some (uniquely determined) uniformity on X.
On the other hand, if Y C X x X is a uniformity on X, then the ball
structure (X,U, B) is lower symmetric and lower multiplicative, where
B(z,U) = {y € X : (z,y) € U}. Thus, the lower symmetric and lower
multiplicative ball structures can be identified with the uniform topolog-
ical spaces.

We say that a ball structure B is a ballean if B is upper symmetric
and upper multiplicative.

The balleans are coming from many different areas: group theory [4,5],
coarse geometry [12] and asymptotic topology [2|, combinatorics [8]. A
ballean can also be defined in terms of entourages. In this case, it is called
a coarse structure. In this paper we follow terminology from [9].

Let By = (X1, P1, B1), B2 = (X2, P2, B2) be balleans. We say that a
mapping f : X7 — Xs is a <-mapping if, for every a € Py, there exists
B € P such that, for every x € X7,

f(Bi(z, ) € Ba(f(x), B),

and note that <-mapping is a counterpart of a uniformly continuous
mapping between the uniform topological spaces.
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We say that By and By are asymorphic if there exists a bijection
f: X1 — Xy such that f and f~! are <-mappings.

If By, By are balleans with common support X and the identity map-
ping id : X — X is an asymorphism, we identify B; and By , and write
By = Bs.

A ballean B = (X, P, B) is called connected if, for any =,y € X, there
exists @ € P such that y € B(x,«a). We note that connectedness can
be considered as a counterpart of Hausdorffness of a uniform topological
space.

1. Balleans on groups

Let G be a group with the identity e, Fg be a family of all finite
subsets of GG, Z be an ideal in the Boolean algebra of all subsets of G. We
say that Z is a group ideal if F¢ C T and A,B € T — AB~!' € I. Every
group ideal Z determines two balleans (see [9, Chapter 6]) B;(G,Z) and
B.(G,T) on G, where B;(G,I)=(G,ZI,By), B.(G,I)=(G,Z, B,) and, for
all AeZ, ged@,

Bi(g, A) = g(A| J{e}), B.(g, A) = (A J{eD)g.

Now let G be finitely generated, S be a finite system of generators of
G. The left (right) Cayley graph Cay(G,S) (Cay,(G,S)) is a graph with
the set of vertices G and the set of edges By = {{z,y} : 2 'y € S} (E, =
{xz,y} : zy~! € S}). Clearly, these graphs are connected. Given any
x,y € G, we denote by d;(z,y) (d,(x,y)) the length of a shortest path in
Cay(G,S) (Cay, (G, S)) between x,y. The metric spaces (G, d;), (G, d;)
are an effective tool in geometrical group theory [4,5]. Every metric space
can be considered as a ballean (see Section 2), and the balleans B;(G, F¢)
B, (G, Fq) are asymorphic to the balleans determined by (G, d;), (G,d,).

In what follows, all topological groups are supposed to be Hausdorff.
A subset A of a topological group G is called bounded if, for every neigh-
borhood U of the identity, there exists F € Fg such that A C FU,
A C UF. We note that A is bounded if and only if its closure in the
completion of G by two-sided uniformity is compact.

A topological group G is said to be totally bounded (o-bounded, locally
bounded), if G is a bounded subset (G is a countable union of bounded
subset, there is a bounded neighborhood of e).

Given a topological group (G, 7), the family Z, of all bounded subsets
of G is a group ideal. A subject of this paper is the balleans Bi(G) =
B (G,I;), B.(G) = B,.(G,Z;), which are called the left and right ballean
of topological group GG. For a locally compact group, these balleans were
introduced and studied in [3].
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Let G be a group with the identity e, B = (G, P, B) be a ballean
on G. Following [9, Chapter 6], we say that B is

o left (right) invariant if all the shifts x — gz (x — zg) are <-
mappings;

o uniformly left (right) invariant if, for every a € P, there exists
B € P such that gB(z,a) C B(gz, ) (B(z,a)g € B(zg, 3)) for all
x,9 € G.

If B is uniformly left (right) invariant, then B is left (right) invariant,
but the converse statement does not hold [9, Example 6.1.1].

Proposition 1.1. For a connected ballean B on a group G, the following
statements are equivalent

(1) B is uniformly left (right) invariant;

(ii) there exists a group ideal T on G such that B = B)(G,T) (B =
B-(G,T)).

Proof. See [9, Section 6.1]. O
Given any z € G, A C G, we put

¥ ={glzg: ge G}, A% = U a®.
acA

We say that a group ideal Z on G is uniformly invariant if AC € T
for every A € T.

Proposition 1.2. Let 7 be a group ideal on a group G. Then the fol-
lowing statements are equivalent

() BiG,T) = B.(G.T);

(13) T is uniformly invariant;

(iii) the mapping v — x~ ' : B(G,T) — B)(G,T) is a <-mapping;
)

(tv) the mapping (xz,y) — zy : Bi(G,I) x B(G,Z) — Bi(G,T) is a

<-mapping.

Proof. See [9, Section 6.1]. O
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Proposition 1.3. For a topological group G, the following statements
are equivalent

(i) Bi(G) = B.(G);

(7i) a subset AC s bounded for every bounded subset A;
(441)

(iv)

Proof. Apply Proposition 1.2 to the group ideal Z of all bounded subsets

the mapping x — x= . B)(GQ) — Bi(G) is a <-mapping;

the mapping (z,y) — zy : Bi(G)xBi(G) — Bi(G) is a <-mapping.

Remark 1.1. By [13], for a locally compact group G, the condition (7i)
of Proposition 1.3 is equivalent to the following one: & is bounded for
every x € (G. We show that this statement does not hold for locally
bounded groups. For each n € w, we consider the semidirect product
Ay, = BpACy, where By, ~ Zs, C), ~ Zy and put G = )

nEw

We endow G with the topology whose base at identity is formed by the
subsets {@),,,>, Cn : m € w}. Then G is a group with finite conjugated
classes, the subset C' = ) C,, is bounded, but C¢ is unbounded.

new

2. DMetrizability

A metric d on a set X determines the metric ballean B(X,d) =
(X,R*, By), where Rt = {r e R: 7 > 0}, By(z,r) ={y € X : d(z,y) <
r}. A ballean B is called metrizable if B is asymorphic to some metric
ballean. By [9, Theorem 2.1.1], a ballean B = (X, P, B) is metrizable
if and only if B is connected and cfB < Ng, where cofinality cfB is the
minimal cardinality of cofinal subsets of P. A subset P’ C P is cofinal
if, for every o € P, there exists o/ € P such that B(z,a) C B(z,d') for
every x € X.

Proposition 2.1. Let d be a left invariant metric on a group G with the
identity e, V, = {x € G : d(z,e) <r}, r € RT. Then the family {V, : r €
RT} is a base for some group ideal Z; on G, and B(G,d) = Bi(G,Z,).

Proof. Given any z,y € G, we have d(z,e) = d(e,z ') and d(zy,e) =
d(y,z7 1) < d(y,e)+d(z71,e) = d(y,e)+d(z,y),s0 V, = V"L and V.V, C
Vyis for all r,s € RT. Clearly, every finite subset of G is contained in
some ball V.. Thus, Z; is a group ideal.

Since d(z,y) < r if and only if y € zV,, B(G,d) = Bi(G,Zy). O



92 BALLEANS OF TOPOLOGICAL GROUPS

Proposition 2.2. Let 7 be a group ideal with a countable base on a
group G. Then there exists a left invariant metric d on G, taking integer

values, such that B(G,T) = B(G,d).

Proof. Since 7 has a countable base, we can choose a base {V,, : n € w}
for Z such that Vo = {e} and V,, = V'L, V,,Vj, € V,,41 for each n € w.
Given any x € X, we put

|z]| = min{n e w:xz € V,}.
By the choice of {V}, : n € w}, we have
el =l 2=l eyl < el + yll.

We define a metric d on G by the rule d(z,y) = ||z~ 'y|, and note that
B(G,d) = B)(G,TI). O

Now let G be a topological group. If G is first countable, by [6,
Theorem 8.3, the left uniformity of G can be determined by some left
invariant metric. If G is o-bounded, by Proposition 2.2, the left ballean
B;(G) can also be determined by a left invariant metric. In the next
theorem we stick together these two statements.

Theorem 2.1. For every topological group G, the following statements
are equivalent

(1) there is a left invariant metric d on G compatible both with left
uniformity and left ballean structure of G;

(13) G 1is first countable, locally bounded and o-bounded.

Proof. (1) = (i). If G is discrete, by Proposition 2.2, there exists a
left invariant metric d on G taking integer values and determining left
ballean structure of G. Clearly, d determines the discrete uniformity.

We assume that G is non-discrete and modify a construction of metric
from [6, Theorem 8.3]. We fix a bounded symmetric neighborhood Uy
of the identity e of G and choose a family {U, : n € Z} of bounded
symmetric neighborhoods of e such that

UnUn CUny1, |JUn =G,
NneZ

and {U, : n € Z} is a base of neighborhoods of e. For each n € Z, we
put Vorn = U,. Given any r = 2l 4 9l +---+25”, 1 >0l > -+ >,
l; € Z, we put

Vi = Vi, Vs - Vi
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Repeating the arguments proving Theorem 8.3 from [6], we conclude
that

(1) r<s=V,CVg
(2) ‘/TVQl C Vr—&—21+2-

Then we define a function ¢(z) = inf{r : = € V,} and note that
e(x) =0 if and only if x = e. We put

d(x,y) = sup{|p(zx) — p(2y)| : 2 € G},

and note that d is a left invariant metric on G.

By (1), (2) and [6, Theorem 8.3], d determines a left uniformity of G.

Ifd(z,e) < 2! then x € V5l. On the other hand, let z € Val. If z € V.,
by (2), zx € Viyal so ¢(zx) < p(2) + 2142, Analogously, if zz € V. then
V.V 'e c VI3 and ¢(2) < @(zx) 4+ 2142, Tt follows that d(z,e) < 2+2
so d determines the left ballean structure of G.

(i) = (ii). Since the left uniformity of G is compactible with d , G
is first countable. Since B;(G) is metrizable, by [5, Theorem 2.1.1], G is
o-bounded. Since B(G,d) = Bi(G), each ball By(z,r) is bounded, so G
is locally bounded. O

Remark 2.1. In the discrete case, Theorem 2.1 guarantees a left in-
variant metric on a countable group G such that every ball B(g,r) is
finite. If G is finitely generated, then the word metric is appropriate.
In the general case, we enumerate G = {g, : n € w} so that gy = [
and if g, # g, ' then either g,11 = g, ' or go_1 = g,'. We define a
weight function w on G inductively. Put w(gp) = 0 and assume that we
have defined w(go), ..., w(gn). If gni1 = g, we put w(gni1) = w(gn),
otherwise w(gn+1) = w(gn) + 1. Then, for every g € G, we put

HgH :mln{w(xl)—i-—l—w(a:n) g =1 Tn, .I'l,...,-%'neG, new}

The function || - || is an integer valued norm on G such that ||z|| = ||z~

for every z € G, so we put d(x,y) = ||z~ y]|.
A metric d on a set X is called an ultrametric if
d(z,y) < max{d(z, 2),d(z,y)}

for all z,y,z € X. If G is a left invariant metric on a group G , then the
set {z € G : d(x,e) <r} is a subgroup for every r € R,
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Theorem 2.2. For a topological group G, the following statements are
equivalent

(1) there is a left invariant ultrametric d on G compatible both with left
uniformity and left ballean structure of G;

(ii) there is a family {V,, : n € Z} of open subgroups of G such that
Vie € Vg, [Vag1 : Vol < o0, Upey Vo =G and {V,, : n <0} is a
base at the identity for the topology of G.

Proof. (i) = (ii). For every n € Z, we put
Vo ={rx € G:d(xz,e) <2"}.

Since d determines B;(G), U~y Vo = G and each subgroup V;, is
bounded, then | V41 : V,, |< oco. Since d is compactible with the left
uniformity of G, {V,, : n < 0} is a base at the identity for the topology
on G.

(ii) = (7). Given any z,y € G , we put

|zl = min{n : x € Vi},  d(z,y) = 27"yl

and note that d is a desired ultrametric on G. O

3. Determinability of topology by the balleans

It follows directly from the definitions that the balleans B;(G) and
B,.(G) of a topological group G are uniquely determined by the topology
of G. In which respect the balleans B;(G) and B,(G) determine the
topology of G7 Let us try to specify this general question.

Let (G, T) be a topological group, Z, be the ideal of bounded subsets
of G. We denote by 77 the strongest group topology on G such that
T.+ = I,, and say that (G, 7) is b-determined if 7% = 7. Clearly, every
discrete group is b-determined. A totally bounded group (G,7) is b-
determined if and only if 7 is the maximal totally bounded topology on

G.

Question 3.1. Given a topological group G, how to detect whether G is
b-determined?

Question 3.2. Let 11, 72 be group topologies on G such that I, =1,.
Which topological properties (in particular, topological cardinal invari-
ants) are common for (G,11) and (G,12)?

We say that the topological groups G and Go are b-equivalent if the
balleans B;(G) and B,(G) are asymorphic.
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Question 3.3. Which properties of a topological group are invariant
under b-equivalence?

Question 3.4. Given a group ideal T on G, how to detect whether there
exists a group topology T on G such that T is the ideal of all bounded
subsets of (G, T)?

The following theorem is related to Question 3.1.

Theorem 3.1. No b-determined topological Abelian group (G,T) may
contain a non-trivial convergent sequence. Every Abelian metrizable b-
determined group is discrete.

Proof. We denote by # the strongest totally bounded topology on G.
Since G is Abelian, (G, #) is Hausdorff. By [1], (G, #) has no convergent
sequences. Since Zry4x = Z,, we have T# C 4. O

Remark 3.1. The Abelian condition is essential in Theorem 3.1. Indeed,
let G be a semi-simple connected compact group Lie group. Clearly, G
is metrizable, but G admits only one totally bounded (in fact, compact)
group topology, so G is b-determined.

Remark 3.2. Let 7, 7 be a group topologies on a group G. Following
[10], we say that 7o is totally bounded with respect to 7 if, for every
neighbourhood U of e in 79, there exists a finite subset F' such that FU
is a neighbourhood of e in 7. Equivalently, every Cauchy ultrafilter in
(G, 12) is a Cauchy ultrafilter in (G, ;). For every group topology 7 on
G, there exists the largest topology 7 totally bounded with respect to 7.
Clearly, Z, = Z; so # C 7. If (G,7) is totally bounded, then 7 = 77,
But we cannot state that 7 = 77 for every group topology 7. Indeed,
let (G,7) be a non-discrete topological group with only finite bounded
subsets (see Example 3.1). Then 77 is discrete, but 7 is non-discrete.
On the other hand, for every topological Abelian group (G, ), we have
# C 7, so (G, 7) has no non-trivial convergent sequences.

Question 3.5. Given a topological group (G, T), how to detect whether
F=TH? 1 =779

We construct a countable non-discrete topological group with only
finite bounded subsets.

Example 3.1. Let G = ), ., Gn be the direct product of finite groups
Gn, |Gp| > 1 with the identities e,, n € w. For every g € G, we put

supp(g9) = {g € G : prang # en}.
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We fix an arbitrary free ultrafilter ¢ on w and, for every ® € ¢, put

[®] = {g € G : supp(y) C ®}.

The family {[®] : ® € ¢} forms a base at the identity e for some non-
discrete group topology 7 on G.

We show that (G, 7) is complete. Let 1 be a ultrafilter Cauchy on
G with respect to the left uniformity on (G, 7) (which coincides in this
case with the right uniformity). To show that 1 converges in (G, T), we
endow each group G, with the discrete topology, and consider G as a
subgroup of the Cartesian product H = [], . G,. Since H is compact
in the product topology, ¥ converges in H to some element h. We put

X={necw: proh#en},

and consider two cases.

Case: X is infinite. We choose an infinite subset Y C X such that
w\Y € ¢. Since v is an ultrafilter Cauchy in (G, 7), there exists ¥ € 9
such that supp(g=t¢’) C Y \w for all g,¢' € ¥. We fix an arbitrary
element k € Y. Since v converges to h in H, there exists ¥’ € 1) such that
U C ¥ and k € supp(g) for every g € ¥/. We fix an arbitrary element
xz € W', Since Y is infinite, we can take an element m € Y \ supp(z).
Since 1 converges to h in H, there exists ¥” € 1) such that ¥’ C ¥’
and m € supp(g) for every g € U”. We fix an arbitrary element y € ¥”.
Then m € supp(z~y), so supp(z~ly) € w\ 'Y, contradicting the choice
of W. Thus, this case is impossible.

Case: X is finite. Replacing 1 to 71, we may suppose that h = e.
We assume that ¢ does not converge to e in 7, and choose an infinite
subset Y C w such that w \ Y € ¢. Repeating the arguments from the
previous case, we get a contradiction, so ¥ converges to k.

At last, we assume that (G, 7) contains an infinite closed bounded
subset A. Since (G, T) is complete, A is compact. Since A is countable,
there exists an injective sequence (ay)new converging to some element a.
We may suppose that a = e. Passing to a subsequence, we also suppose
that max(a,) < min(a,41) for every n € w, where min(z) and max(x) are
the first and the last non-zero coordinates of x. We put M = {min(a,) :
n € w} and choose and infinite subset Y C M such that Y ¢ ¢. Then
[w\ Y] is a neighbourhood of e in 7, but infinitely many members of
(an)new are outside of this neighbourhood, This contradiction shows that
A is finite.
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Question 3.6. Let (G, 1) be a topological group such that T is mazimal
in the class of all non-discrete group topologies on G. Is every bounded

subset of (G,T) finite?

4. Slowly oscillating function

Every ballean B = (X, P, B) has a compact Hausdorff satellite, the
corona B. To describe B, we endow X with the discrete topology and
consider the Stone-Cech compactification 8X of X. We take the points
of 68X to be the ultrafilters on X with the points of X identified with the
principal ultrafilters. The topology of 3X can be defined by stating that
the sets of the form A = {p € BX : A € p}, where A is a subset of X,
form a base for the open sets.

We denote by X* the set of all ultrafilters r on X such that every R € r
is unbounded in B. A subset V is called bounded in B if V' C B(z, «) for
some z € X and a € P. Clearly, X* is a closed subset of 5X.

Given any r,q € X! we say that r,q are parallel (and write r || ¢)
if there exists a € P such that B(R,«) € g for each R € r. It is easy
to see that || is an equivalence on X*. We denote by ~ the minimal (by
inclusion) closed (in X* x X*) equivalence on X* such that ||C~. The
quotient X* / ~ is a compact Hausdorff space. It is called a corona of B
and is denoted by B.

To clarify the virtual equivalence ~ determining B, we use the slowly
oscillating functions.

A function h : X — R is called slowly oscillating if , for every € > 0
and every a € P, there exists a bounded subset V' of X such that

diam h(B(z,a)) < &
for every z € X \ V, where diam A = sup{|a — b| : a,b € A}.

Proposition 4.1. Let B = (X, P, B) be a connected ballean, q,r € Xt
Then q ~ 7 if and only if hP(q) = hB(r) for every slowly oscillating
function h : X — [0, 1], where hP is the extension of h to BX.

Proof. See [11, Proposition 1]. O

Let X be a topological space. A pair (p,Y) is called a compactifica-
tion of X if Y is a compact space, ¢ : X — Y is a continuous mapping
and p(X) is dense in Y. If in addition ¢ is an embedding, (¢,Y") is called
a topological compactification. In this case we can identify X with ¢(X),
Y'\p(X) is called the remainder of compactification.

Let X be a topological space and let A be a norm closed subalgebra of
Cr(X) which contains all constant function. By [7, Lemma 21.39], there
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are a compact space Y and a continuous mapping ¢ : X — Y with the
property that ¢(X) is dense in Y and A = {f € Cr(X) : f = go ¢ for
some g € Cr(Y)}. The mapping ¢ is an embedding if, for every closed
subset E of X and every x € X \ E, there exists f € A such that f(z) =1
and f |g= 0.

For a metric space (X,d), the set S(X,d) of all bounded continu-
ous slowly oscillating real functions on X is a norm closed subalgebra
of Cr(X,d). Applying [7, Lemma 21.39|, we get some compactification
(x, x(X,d)) which is called the Higson’s compactification and its re-
minder, the Higson’s corona (see [12, Section 2.3|).

A metric space (X,d) is called proper if every closed ball in X is
compact.

Proposition 4.2. For a proper metric space (X,d), the following state-
ments hold

(1) (x,x(X,d)) is a topological compactification;
(i) (x(X,d)\ (X,d) is homeomorphic to B(X,d)).
Proof. See [11, pp. 154-155]. O

For a topological group G, a function f : G — R is said to be left
(right) slowly oscillating if, for every e > 0 and every bounded subset
F of G, there exists a bounded subset V' such that | f(yx) — f(z) |[< e
(| flzy) — f(x) |<¢) forallz € G\V, y € F. Clearly, f is left (right)
slowly oscillating if and only if f is slowly oscillating with respect to the
ballean Bj(G) (B,(G)).

The families S;(G) and S,(G) of all bounded continuous left and
right slowly oscillating functions on G are the norm closed subalgebras
in Cr(G). Applying |7, Lemma 21.39|, we get two compactifications

(x1, x1(G)) and (xr, xr(G)) of G.

Proposition 4.3. For a topological group G, the following statements
hold

(1) if G is locally bounded, then (xi, x1(G)), and (xr, xr(G)) are topolo-
gical compactifications;

(1) if G is not locally bounded, then x;(G) and x,(G) are singletons.

Proof. (i) In view of [7, Lemma 21.39], it suffices to show that any closed
subset E of G and x € G\E can be separated by left (right) bounded
continuous slowly oscillating function. Since G is locally bounded, we
can choose an open bounded neighborhood U of x such that U (N E = 0.
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Since the space of G is completely regular, there is a continuous function
f G —[0,1] such that f(z) =1 and f [o\py= 0. Clearly, f is left and
right slowly oscillating.

(7i) We show that every continuous left slowly oscillating function
f G — R is constant. Let a,b € G. Given any € > 0, we choose
a bounded subset V of G such that diam f({ba~!,e}x) < e for each
x € G\ V. Since G is not locally bounded, for every neighbourhood U
of a, there exists z € UN (G \ V). It follows that | f(a) — f(b) |[<e. O

Remark 4.1. If G is locally compact, we can identify the remainders
Xi1(G) \ G and x,(G) \ G with B;(G) and B, (G) respectively.

Remark 4.2. Let G be a countable non-discrete group G with finite
bounded subsets. By Proposition 4.3 (ii), x;(G) is a singleton. On the
other hand, by [11, Proposition 3], |B(G)| = 22™°.
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