$\mathcal{Y}_{\mathcal{M}}$

Balleans of topological groups

SALVADOR HERNÁNDEZ, IGOR V. PROTASOV

Abstract. A subset S of a topological group G is called bounded if, for every neighborhood U of the identity of G , there exists a finite subset F such that $S \subseteq FU$, $S \subseteq UF$. The family of all bounded subsets of G determines two structures on G , namely the left and right balleans $B_l(G)$ and $B_r(G)$, which are counterparts of the left and right uniformities of G. We study the relationships between the uniform and ballean structures on G, describe all topological groups admitting a metric compatible both with uniform and ballean structures, and construct a group analogue of Higson's compactification of a proper metric space.

2010 MSC. 22A05, 22A10, 54E15, 54A25, 54D35.

Key words and phrases. Bounded subset, uniformity, ballean, slowly oscillating functions.

Introduction

A ball structure is a triple $\mathcal{B} = (X, P, B)$, where X, P are non-empty sets and, for every $x \in X$ and $\alpha \in P$, $B(x, \alpha)$ is a subset of X which is called a *ball* of radius α around x. It is supposed that $x \in B(x, \alpha)$ for all $x \in X$ and $\alpha \in P$. The set X is called the *support* of B, P is called the set of radii.

Given any $x \in X$, $A \subseteq X$, $\alpha \in P$, we put

$$
B^*(x, \alpha) = \{ y \in X : x \in B(y, \alpha) \}, \quad B(A, \alpha) = \bigcup_{\alpha \in A} B(a, \alpha).
$$

A ball structure β is called

• lower symmetric if, for any $\alpha, \beta \in P$, there exist $\alpha', \beta' \in P$, such that, for every $x \in X$,

Received 12.11.2010

 $B^*(x, \alpha') \subseteq B(x, \alpha), \quad B(x, \beta') \subseteq B^*(x, \beta);$

• upper symmetric if, for any $\alpha, \beta \in P$, there exist $\alpha', \beta' \in P$ such that, for every $x \in X$,

$$
B(x, \alpha) \subseteq B^*(x, \alpha'), \quad B^*(x, \beta) \subseteq B(x, \beta');
$$

• lower multiplicative if, for any $\alpha, \beta \in P$, there exists $\gamma \in P$ such that, for every $x \in X$,

$$
B(B(x,\gamma),\gamma) \subseteq B(x,\alpha) \bigcap B(x,\beta),
$$

• upper multiplicative if, for any $\alpha, \beta \in P$, there exists $\gamma \in P$ such that, for every $x \in X$.

$$
B(B(x, \alpha), \beta) \subseteq B(x, \gamma).
$$

Let $\mathcal{B} = (X, P, B)$ be a lower symmetric and lower multiplicative ball structure. Then the family

$$
\left\{ \bigcup_{x \in X} B(x, \alpha) \times B(x, \alpha) : \alpha \in P \right\}
$$

is a base of entourages for some (uniquely determined) uniformity on X. On the other hand, if $\mathcal{U} \subseteq X \times X$ is a uniformity on X, then the ball structure (X, \mathcal{U}, B) is lower symmetric and lower multiplicative, where $B(x, U) = \{y \in X : (x, y) \in U\}.$ Thus, the lower symmetric and lower multiplicative ball structures can be identified with the uniform topological spaces.

We say that a ball structure β is a *ballean* if β is upper symmetric and upper multiplicative.

The balleans are coming from many different areas: group theory [4,5], coarse geometry [12] and asymptotic topology [2], combinatorics [8]. A ballean can also be defined in terms of entourages. In this case, it is called a coarse structure. In this paper we follow terminology from [9].

Let $\mathcal{B}_1 = (X_1, P_1, B_1), \mathcal{B}_2 = (X_2, P_2, B_2)$ be balleans. We say that a mapping $f: X_1 \to X_2$ is a \prec -mapping if, for every $\alpha \in P_1$, there exists $\beta \in P_2$ such that, for every $x \in X_1$,

$$
f(B_1(x,\alpha)) \subseteq B_2(f(x),\beta),
$$

and note that ≺-mapping is a counterpart of a uniformly continuous mapping between the uniform topological spaces.

We say that \mathcal{B}_1 and \mathcal{B}_2 are *asymorphic* if there exists a bijection $f: X_1 \to X_2$ such that f and f^{-1} are \prec -mappings.

If \mathcal{B}_1 , \mathcal{B}_2 are balleans with common support X and the identity mapping $id: X \to X$ is an asymorphism, we identify \mathcal{B}_1 and \mathcal{B}_2 , and write $\mathcal{B}_1 = \mathcal{B}_2$.

A ballean $\mathcal{B} = (X, P, B)$ is called *connected* if, for any $x, y \in X$, there exists $\alpha \in P$ such that $y \in B(x, \alpha)$. We note that connectedness can be considered as a counterpart of Hausdorffness of a uniform topological space.

1. Balleans on groups

Let G be a group with the identity e, \mathcal{F}_G be a family of all finite subsets of G, \mathcal{I} be an ideal in the Boolean algebra of all subsets of G . We say that *I* is a group ideal if $\mathcal{F}_G \subseteq \mathcal{I}$ and $A, B \in \mathcal{I} \to AB^{-1} \in \mathcal{I}$. Every group ideal I determines two balleans (see [9, Chapter 6]) $\mathcal{B}_l(G,\mathcal{I})$ and $\mathcal{B}_r(G,\mathcal{I})$ on G, where $\mathcal{B}_l(G,\mathcal{I})=(G,\mathcal{I},B_l), \mathcal{B}_r(G,\mathcal{I})=(G,\mathcal{I},B_r)$ and, for all $A \in \mathcal{I}, g \in G$,

$$
\mathcal{B}_l(g,A) = g(A \cup \{e\}), \ \mathcal{B}_r(g,A) = (A \cup \{e\})g.
$$

Now let G be finitely generated, S be a finite system of generators of G. The left (right) Cayley graph $Cay_1(G, S)$ (Cay_r(G, S)) is a graph with the set of vertices G and the set of edges $E_l = \{ \{x, y\} : x^{-1}y \in S \}$ ($E_r =$ $\{\{x, y\} : xy^{-1} \in S\}$. Clearly, these graphs are connected. Given any $x, y \in G$, we denote by $d_l(x, y)$ $(d_r(x, y))$ the length of a shortest path in $Cay_l(G, S)$ $(Cay_r(G, S))$ between x, y. The metric spaces $(G, d_l), (G, d_r)$ are an effective tool in geometrical group theory [4,5]. Every metric space can be considered as a ballean (see Section 2), and the balleans $\mathcal{B}_l(G, \mathcal{F}_G)$ $\mathcal{B}_r(G, \mathcal{F}_G)$ are asymorphic to the balleans determined by $(G, d_l), (G, d_r)$.

In what follows, all topological groups are supposed to be Hausdorff. A subset A of a topological group G is called *bounded* if, for every neighborhood U of the identity, there exists $F \in \mathcal{F}_G$ such that $A \subseteq FU$, $A \subseteq UF$. We note that A is bounded if and only if its closure in the completion of G by two-sided uniformity is compact.

A topological group G is said to be *totally bounded* (σ -bounded, *locally* bounded), if G is a bounded subset $(G$ is a countable union of bounded subset, there is a bounded neighborhood of e).

Given a topological group (G, τ) , the family \mathcal{I}_{τ} of all bounded subsets of G is a group ideal. A subject of this paper is the balleans $\mathcal{B}_l(G)$ = $\mathcal{B}_l(G,\mathcal{I}_{\tau}), \mathcal{B}_r(G) = \mathcal{B}_r(G,\mathcal{I}_{\tau}),$ which are called the left and right ballean of topological group G . For a locally compact group, these balleans were introduced and studied in [3].

Let G be a group with the identity $e, \mathcal{B} = (G, P, B)$ be a ballean on G. Following [9, Chapter 6], we say that β is

- left (right) invariant if all the shifts $x \mapsto gx$ ($x \mapsto xg$) are \prec mappings;
- uniformly left (right) invariant if, for every $\alpha \in P$, there exists $\beta \in P$ such that $gB(x, \alpha) \subseteq B(qx, \beta)$ $(B(x, \alpha)g \subseteq B(xg, \beta))$ for all $x, g \in G$.

If β is uniformly left (right) invariant, then β is left (right) invariant, but the converse statement does not hold [9, Example 6.1.1].

Proposition 1.1. For a connected ballean $\mathcal B$ on a group G , the following statements are equivalent

- (i) β is uniformly left (right) invariant;
- (ii) there exists a group ideal $\mathcal I$ on G such that $\mathcal B = \mathcal B_l(G, \mathcal I)$ ($\mathcal B =$ $\mathcal{B}_r(G,\mathcal{I})$).

Proof. See [9, Section 6.1].

Given any $x \in G$, $A \subseteq G$, we put

$$
x^G = \{g^{-1}xg : g \in G\}, \quad A^G = \bigcup_{a \in A} a^G.
$$

We say that a group ideal $\mathcal I$ on G is $\it uniformly$ $\it invariant$ if $A^G \in \mathcal I$ for every $A \in \mathcal{I}$.

Proposition 1.2. Let I be a group ideal on a group G . Then the following statements are equivalent

- (i) $\mathcal{B}_l(G, \mathcal{I}) = \mathcal{B}_r(G, \mathcal{I});$
- (ii) *I* is uniformly invariant;
- (iii) the mapping $x \mapsto x^{-1} : \mathcal{B}_l(G, \mathcal{I}) \to \mathcal{B}_l(G, \mathcal{I})$ is a \prec -mapping;
- (iv) the mapping $(x, y) \rightarrow xy : \mathcal{B}_l(G, \mathcal{I}) \times \mathcal{B}_l(G, \mathcal{I}) \rightarrow \mathcal{B}_l(G, \mathcal{I})$ is a \prec -mapping.

Proof. See [9, Section 6.1].

□

Proposition 1.3. For a topological group G, the following statements are equivalent

- (i) $\mathcal{B}_l(G) = \mathcal{B}_r(G);$
- (ii) a subset A^G is bounded for every bounded subset A:
- (iii) the mapping $x \mapsto x^{-1}$: $\mathcal{B}_l(G) \to \mathcal{B}_l(G)$ is a \prec -mapping;
- (iv) the mapping $(x, y) \mapsto xy : \mathcal{B}_l(G) \times \mathcal{B}_l(G) \to \mathcal{B}_l(G)$ is a \prec -mapping.

Proof. Apply Proposition 1.2 to the group ideal $\mathcal I$ of all bounded subsets of G. □

Remark 1.1. By [13], for a locally compact group G , the condition (ii) of Proposition 1.3 is equivalent to the following one: x^G is bounded for every $x \in G$. We show that this statement does not hold for locally bounded groups. For each $n \in \omega$, we consider the semidirect product $A_n = B_n \lambda C_n$, where $B_n \simeq \mathbb{Z}_3$, $C_n \simeq \mathbb{Z}_2$ and put $G = \bigotimes_{n \in \omega} A_n$.

We endow G with the topology whose base at identity is formed by the subsets $\{\bigotimes_{m\geq n} C_n : m \in \omega\}$. Then G is a group with finite conjugated classes, the subset $C = \bigotimes_{n \in \omega} C_n$ is bounded, but C^G is unbounded.

2. Metrizability

A metric d on a set X determines the metric ballean $\mathcal{B}(X,d) =$ (X, \mathbb{R}^+, B_d) , where $\mathbb{R}^+ = \{r \in \mathbb{R} : r \geq 0\}$, $\mathbb{B}_d(x, r) = \{y \in X : d(x, y) \leq 0\}$ r}. A ballean B is called *metrizable* if B is asymorphic to some metric ballean. By [9, Theorem 2.1.1], a ballean $\mathcal{B} = (X, P, B)$ is metrizable if and only if B is connected and $cfB \leq \aleph_0$, where *cofinality cfB* is the minimal cardinality of cofinal subsets of P. A subset $P' \subseteq P$ is cofinal if, for every $\alpha \in P$, there exists $\alpha' \in P$ such that $B(x, \alpha) \subseteq B(x, \alpha')$ for every $x \in X$.

Proposition 2.1. Let d be a left invariant metric on a group G with the *identity e*, $V_r = \{x \in G : d(x, e) \leq r\}$, $r \in \mathbb{R}^+$. Then the family $\{V_r : r \in G\}$ \mathbb{R}^+ is a base for some group ideal \mathcal{I}_d on G, and $\mathcal{B}(G,d) = \mathcal{B}_l(G,\mathcal{I}_\alpha)$.

Proof. Given any $x, y \in G$, we have $d(x, e) = d(e, x^{-1})$ and $d(xy, e) =$ $d(y, x^{-1}) \le d(y, e) + d(x^{-1}, e) = d(y, e) + d(x, y)$, so $V_r = V_r^{-1}$ and $V_r V_s \subseteq$ V_{r+s} for all $r, s \in \mathbb{R}^+$. Clearly, every finite subset of G is contained in some ball V_r . Thus, \mathcal{I}_d is a group ideal.

Since
$$
d(x, y) \le r
$$
 if and only if $y \in xV_r$, $B(G, d) = B_l(G, \mathcal{I}_d)$. \square

Proposition 2.2. Let I be a group ideal with a countable base on a group G. Then there exists a left invariant metric d on G, taking integer values, such that $\mathcal{B}_l(G,\mathcal{I}) = \mathcal{B}(G,d)$.

Proof. Since I has a countable base, we can choose a base $\{V_n : n \in \omega\}$ for *I* such that $V_0 = \{e\}$ and $V_n = V_n^{-1}$, $V_n V_n \subseteq V_{n+1}$ for each $n \in \omega$. Given any $x \in X$, we put

$$
||x|| = \min\{n \in \omega : x \in V_n\}.
$$

By the choice of $\{V_n : n \in \omega\}$, we have

$$
||x|| = ||x^{-1}||, \quad ||xy|| \le ||x|| + ||y||.
$$

We define a metric d on G by the rule $d(x, y) = ||x^{-1}y||$, and note that $\mathcal{B}(G,d) = \mathcal{B}_l(G,\mathcal{I}).$ \Box

Now let G be a topological group. If G is first countable, by $[6, 6]$ Theorem 8.3, the left uniformity of G can be determined by some left invariant metric. If G is σ -bounded, by Proposition 2.2, the left ballean $\mathcal{B}_l(G)$ can also be determined by a left invariant metric. In the next theorem we stick together these two statements.

Theorem 2.1. For every topological group G, the following statements are equivalent

- (i) there is a left invariant metric d on G compatible both with left uniformity and left ballean structure of G ;
- (ii) G is first countable, locally bounded and σ -bounded.

Proof. (ii) \Rightarrow (i). If G is discrete, by Proposition 2.2, there exists a left invariant metric d on G taking integer values and determining left ballean structure of G. Clearly, d determines the discrete uniformity.

We assume that G is non-discrete and modify a construction of metric from [6, Theorem 8.3]. We fix a bounded symmetric neighborhood U_0 of the identity e of G and choose a family $\{U_n : n \in \mathbb{Z}\}\$ of bounded symmetric neighborhoods of e such that

$$
U_n U_n \subset U_{n+1}, \quad \bigcup_{n \in \mathbb{Z}} U_n = G,
$$

and $\{U_n : n \in \mathbb{Z}\}\$ is a base of neighborhoods of e. For each $n \in \mathbb{Z}$, we put $V_{2^n} = U_n$. Given any $r = 2^{l_1} + 2^{l_2} + \cdots + 2^{l_n}$, $l_1 > l_2 > \cdots > l_n$, $l_i \in \mathbb{Z}$, we put

$$
V_r = V_{2^{l_1}} V_{2^{l_2}} \cdots V_{2^{l_n}}.
$$

Repeating the arguments proving Theorem 8.3 from [6], we conclude that

- (1) $r < s \Rightarrow V_r \subset V_s$;
- $(2) V_r V_{2^l} \subset V_{r+2^{l+2}}.$

Then we define a function $\varphi(x) = \inf\{r : x \in V_r\}$ and note that $\varphi(x) = 0$ if and only if $x = e$. We put

$$
d(x,y) = \sup\{|\varphi(zx) - \varphi(zy)| : z \in G\},\
$$

and note that d is a left invariant metric on G.

By (1) , (2) and $[6,$ Theorem 8.3, d determines a left uniformity of G. If $d(x, e) < 2^l$ then $x \in V_2l$. On the other hand, let $x \in V_2l$. If $z \in V_r$, by (2), $zx \in V_{r+2}$ l so $\varphi(zx) \leq \varphi(z) + 2^{l+2}$. Analogously, if $zx \in V_r$ then $V_r V_{\mathfrak{I}l}^{-1}$ $Z_2^{r-1}e \subset V_{r+2}^{l+2}$ and $\varphi(z) \leq \varphi(zx) + 2^{l+2}$. It follows that $d(x, e) \leq 2^{l+2}$ so d determines the left ballean structure of G.

 $(i) \Rightarrow (ii)$. Since the left uniformity of G is compactible with d, G is first countable. Since $B_l(G)$ is metrizable, by [5, Theorem 2.1.1], G is σ-bounded. Since $\mathcal{B}(G, d) = \mathcal{B}_l(G)$, each ball $B_d(x, r)$ is bounded, so G is locally bounded. П

Remark 2.1. In the discrete case, Theorem 2.1 guarantees a left invariant metric on a countable group G such that every ball $B(q, r)$ is finite. If G is finitely generated, then the word metric is appropriate. In the general case, we enumerate $G = \{g_n : n \in \omega\}$ so that $g_0 = l$ and if $g_n \neq g_n^{-1}$ then either $g_{n+1} = g_n^{-1}$ or $g_{n-1} = g_n^{-1}$. We define a weight function w on G inductively. Put $w(g_0) = 0$ and assume that we have defined $w(g_0), \ldots, w(g_n)$. If $g_{n+1} = g_n^{-1}$ we put $w(g_{n+1}) = w(g_n)$, otherwise $w(g_{n+1}) = w(g_n) + 1$. Then, for every $g \in G$, we put

$$
||g|| = min{w(x_1) + \cdots + w(x_n) : g = x_1 \cdots x_n, x_1, \ldots, x_n \in G, n \in \omega}
$$

The function $\|\cdot\|$ is an integer valued norm on G such that $\|x\| = \|x^{-1}\|$ for every $x \in G$, so we put $d(x, y) = ||x^{-1}y||$.

A metric d on a set X is called an *ultrametric* if

$$
d(x, y) \le \max\{d(x, z), d(z, y)\}
$$

for all $x, y, z \in X$. If G is a left invariant metric on a group G, then the set $\{x \in G : d(x, e) \le r\}$ is a subgroup for every $r \in \mathbb{R}^+$.

Theorem 2.2. For a topological group G, the following statements are equivalent

- (i) there is a left invariant ultrametric d on G compatible both with left uniformity and left ballean structure of G ;
- (ii) there is a family $\{V_n : n \in \mathbb{Z}\}\$ of open subgroups of G such that $V_n \subseteq V_{n+1}, |V_{n+1} : V_n| < \infty, \bigcup_{n=1}^{\infty} V_n = G \text{ and } \{V_n : n < 0\} \text{ is a}$ base at the identity for the topology of G.

Proof. (*i*) \Rightarrow (*ii*). For every $n \in \mathbb{Z}$, we put

$$
V_n = \{ x \in G : d(x, e) \le 2^n \}.
$$

Since d determines $\mathcal{B}_l(G)$, $\bigcup_{n=1}^{\infty} V_n = G$ and each subgroup V_n is bounded, then $|V_{n+1}: V_n | < \infty$. Since d is compactible with the left uniformity of $G, \{V_n : n < 0\}$ is a base at the identity for the topology on G.

 $(ii) \Rightarrow (i)$. Given any $x, y \in G$, we put

$$
||x|| = \min\{n : x \in V_n\}, \quad d(x, y) = ||x^{-1}y||,
$$

and note that d is a desired ultrametric on G.

3. Determinability of topology by the balleans

It follows directly from the definitions that the balleans $\mathcal{B}_l(G)$ and $\mathcal{B}_r(G)$ of a topological group G are uniquely determined by the topology of G. In which respect the balleans $\mathcal{B}_l(G)$ and $\mathcal{B}_r(G)$ determine the topology of G? Let us try to specify this general question.

Let (G, τ) be a topological group, \mathcal{I}_{τ} be the ideal of bounded subsets of G. We denote by $\tau^{\#}$ the strongest group topology on G such that $\mathcal{I}_{\tau^{\#}} = \mathcal{I}_{\tau}$, and say that (G, τ) is b-determined if $\tau^{\#} = \tau$. Clearly, every discrete group is b-determined. A totally bounded group (G, τ) is bdetermined if and only if τ is the maximal totally bounded topology on G.

Question 3.1. Given a topological group G, how to detect whether G is b-determined?

Question 3.2. Let τ_1 , τ_2 be group topologies on G such that $\mathcal{I}_{\tau_1} = \mathcal{I}_{\tau_2}$. Which topological properties (in particular, topological cardinal invariants) are common for (G, τ_1) and (G, τ_2) ?

We say that the topological groups G_1 and G_2 are b-equivalent if the balleans $\mathcal{B}_l(G)$ and $\mathcal{B}_r(G)$ are asymorphic.

 \Box

Question 3.3. Which properties of a topological group are invariant under b-equivalence?

Question 3.4. Given a group ideal $\mathcal I$ on G , how to detect whether there exists a group topology τ on G such that $\mathcal I$ is the ideal of all bounded subsets of (G, τ) ?

The following theorem is related to Question 3.1.

Theorem 3.1. No b-determined topological Abelian group (G, τ) may contain a non-trivial convergent sequence. Every Abelian metrizable bdetermined group is discrete.

Proof. We denote by $#$ the strongest totally bounded topology on G . Since G is Abelian, $(G, \#)$ is Hausdorff. By [1], $(G, \#)$ has no convergent sequences. Since $\mathcal{I}_{\tau\vee\#}=\mathcal{I}_{\tau}$, we have $\tau^{\#} \subseteq \#$. П

Remark 3.1. The Abelian condition is essential in Theorem 3.1. Indeed, let G be a semi-simple connected compact group Lie group. Clearly, G is metrizable, but G admits only one totally bounded (in fact, compact) group topology, so G is b-determined.

Remark 3.2. Let τ_1 , τ_2 be a group topologies on a group G. Following [10], we say that τ_2 is totally bounded with respect to τ_1 if, for every neighbourhood U of e in τ_2 , there exists a finite subset F such that FU is a neighbourhood of e in τ_1 . Equivalently, every Cauchy ultrafilter in (G, τ_2) is a Cauchy ultrafilter in (G, τ_1) . For every group topology τ on G, there exists the largest topology $\hat{\tau}$ totally bounded with respect to τ . Clearly, $\mathcal{I}_{\tau} = \mathcal{I}_{\hat{\tau}}$ so $\hat{\tau} \subseteq \tau^{\#}$. If (G, τ) is totally bounded, then $\hat{\tau} = \tau^{\#}$. But we cannot state that $\hat{\tau} = \tau^{\#}$ for every group topology τ . Indeed, let (G, τ) be a non-discrete topological group with only finite bounded subsets (see Example 3.1). Then $\tau^{\#}$ is discrete, but $\hat{\tau}$ is non-discrete. On the other hand, for every topological Abelian group (G, τ) , we have $\# \subseteq \hat{\tau}$, so $(G, \hat{\tau})$ has no non-trivial convergent sequences.

Question 3.5. Given a topological group (G, τ) , how to detect whether $\hat{\tau}=\tau^{\#}\,$? $\tau=\hat{\tau}\,$?

We construct a countable non-discrete topological group with only finite bounded subsets.

Example 3.1. Let $G = \bigotimes_{n \in \omega} G_n$ be the direct product of finite groups $G_n, |G_n| > 1$ with the identities $e_n, n \in \omega$. For every $g \in G$, we put

$$
supp(g) = \{ g \in G : pr_n g \neq e_n \}.
$$

We fix an arbitrary free ultrafilter φ on ω and, for every $\Phi \in \varphi$, put

$$
[\Phi] = \{ g \in G : \text{ supp}(g) \subset \Phi \}.
$$

The family $\{[\Phi] : \Phi \in \varphi\}$ forms a base at the identity e for some nondiscrete group topology τ on G .

We show that (G, τ) is complete. Let ψ be a ultrafilter Cauchy on G with respect to the left uniformity on (G, τ) (which coincides in this case with the right uniformity). To show that ψ converges in (G, τ) , we endow each group G_n with the discrete topology, and consider G as a subgroup of the Cartesian product $H = \prod_{n \in \omega} G_n$. Since H is compact in the product topology, ψ converges in H to some element h. We put

$$
X = \{ n \in \omega : pr_n h \neq e_n \},\
$$

and consider two cases.

Case: X is infinite. We choose an infinite subset $Y \subset X$ such that $\omega \setminus Y \in \varphi$. Since ψ is an ultrafilter Cauchy in (G, τ) , there exists $\Psi \in \psi$ such that $\text{supp}(g^{-1}g') \subseteq Y \setminus \omega$ for all $g, g' \in \Psi$. We fix an arbitrary element $k \in Y$. Since ψ converges to h in H, there exists $\Psi' \in \psi$ such that $\Psi' \subseteq \Psi$ and $k \in \text{supp}(g)$ for every $g \in \Psi'$. We fix an arbitrary element $x \in \Psi'$. Since Y is infinite, we can take an element $m \in Y \setminus \text{supp}(x)$. Since ψ converges to h in H, there exists $\Psi'' \in \psi$ such that $\Psi'' \subset \Psi'$ and $m \in \text{supp}(g)$ for every $g \in \Psi''$. We fix an arbitrary element $y \in \Psi''$. Then $m \in \text{supp}(x^{-1}y)$, so $\text{supp}(x^{-1}y) \nsubseteq \omega \setminus Y$, contradicting the choice of Ψ . Thus, this case is impossible.

Case: X is finite. Replacing ψ to $x^{-1}\psi$, we may suppose that $h = e$. We assume that ψ does not converge to e in τ , and choose an infinite subset $Y \subset \omega$ such that $\omega \setminus Y \in \varphi$. Repeating the arguments from the previous case, we get a contradiction, so ψ converges to k.

At last, we assume that (G, τ) contains an infinite closed bounded subset A. Since (G, τ) is complete, A is compact. Since A is countable, there exists an injective sequence $(a_n)_{n\in\omega}$ converging to some element a. We may suppose that $a = e$. Passing to a subsequence, we also suppose that $\max(a_n) < \min(a_{n+1})$ for every $n \in \omega$, where $\min(x)$ and $\max(x)$ are the first and the last non-zero coordinates of x. We put $M = \{ \min(a_n) :$ $n \in \omega$ and choose and infinite subset $Y \subset M$ such that $Y \notin \varphi$. Then $[\omega \setminus Y]$ is a neighbourhood of e in τ , but infinitely many members of $(a_n)_{n\in\omega}$ are outside of this neighbourhood, This contradiction shows that A is finite.

Question 3.6. Let (G, τ) be a topological group such that τ is maximal in the class of all non-discrete group topologies on G. Is every bounded subset of (G, τ) finite?

4. Slowly oscillating function

Every ballean $\mathcal{B} = (X, P, B)$ has a compact Hausdorff satellite, the corona β . To describe β , we endow X with the discrete topology and consider the Stone-Cech compactification βX of X. We take the points of βX to be the ultrafilters on X with the points of X identified with the principal ultrafilters. The topology of βX can be defined by stating that the sets of the form $\overline{A} = \{p \in \beta X : A \in p\}$, where A is a subset of X, form a base for the open sets.

We denote by X^\sharp the set of all ultrafilters r on X such that every $R\in r$ is unbounded in B. A subset V is called bounded in B if $V \subseteq B(x, \alpha)$ for some $x \in X$ and $\alpha \in P$. Clearly, X^{\sharp} is a closed subset of βX .

Given any $r, q \in X^{\sharp}$, we say that r, q are *parallel* (and write $r \parallel q$) if there exists $\alpha \in P$ such that $B(R, \alpha) \in q$ for each $R \in r$. It is easy to see that \parallel is an equivalence on X^{\sharp} . We denote by \sim the minimal (by inclusion) closed (in $X^{\sharp} \times X^{\sharp}$) equivalence on X^{\sharp} such that $\Vert \subseteq \sim$. The quotient X^{\sharp}/\sim is a compact Hausdorff space. It is called a corona of β and is denoted by \mathcal{B} .

To clarify the virtual equivalence \sim determining $\check{\mathcal{B}}$, we use the slowly oscillating functions.

A function $h: X \to \mathbb{R}$ is called *slowly oscillating* if, for every $\varepsilon > 0$ and every $\alpha \in P$, there exists a bounded subset V of X such that

$$
\text{diam } h(B(x, \alpha)) < \varepsilon
$$

for every $x \in X \setminus V$, where diam $A = \sup\{|a - b| : a, b \in A\}.$

Proposition 4.1. Let $\mathcal{B} = (X, P, B)$ be a connected ballean, $q, r \in X^{\sharp}$. Then $q \sim r$ if and only if $h^{\beta}(q) = h^{\beta}(r)$ for every slowly oscillating function $h: X \to [0,1]$, where h^{β} is the extension of h to βX .

Proof. See [11, Proposition 1].

Let X be a topological space. A pair (φ, Y) is called a compactification of X if Y is a compact space, $\varphi: X \to Y$ is a continuous mapping and $\varphi(X)$ is dense in Y. If in addition φ is an embedding, (φ, Y) is called a topological compactification. In this case we can identify X with $\varphi(X)$, $Y \setminus \varphi(X)$ is called the remainder of compactification.

Let X be a topological space and let A be a norm closed subalgebra of $C_{\mathbb{R}}(X)$ which contains all constant function. By [7, Lemma 21.39], there

 \Box

are a compact space Y and a continuous mapping $\varphi: X \to Y$ with the property that $\varphi(X)$ is dense in Y and $A = \{f \in C_{\mathbb{R}}(X) : f = g \circ \varphi \text{ for }$ some $g \in C_{\mathbb{R}}(Y)$. The mapping φ is an embedding if, for every closed subset E of X and every $x \in X \backslash E$, there exists $f \in A$ such that $f(x) = 1$ and $f |_{E} \equiv 0$.

For a metric space (X, d) , the set $S(X, d)$ of all bounded continuous slowly oscillating real functions on X is a norm closed subalgebra of $C_{\mathbb{R}}(X, d)$. Applying [7, Lemma 21.39], we get some compactification $(\chi, \chi(X, d))$ which is called the Higson's compactification and its reminder, the Higson's corona (see [12, Section 2.3]).

A metric space (X, d) is called *proper* if every closed ball in X is compact.

Proposition 4.2. For a proper metric space (X, d) , the following statements hold

- (i) $(\chi, \chi(X, d))$ is a topological compactification;
- (ii) $(\chi(X, d) \setminus (X, d)$ is homeomorphic to $\mathcal{B}(X, d)$).

Proof. See [11, pp. 154–155].

For a topological group G, a function $f: G \to \mathbb{R}$ is said to be left (right) slowly oscillating if, for every $\varepsilon > 0$ and every bounded subset F of G, there exists a bounded subset V such that $| f(yx) - f(x) | < \varepsilon$ $(| f(xy) - f(x) | < \varepsilon)$ for all $x \in G \setminus V$, $y \in F$. Clearly, f is left (right) slowly oscillating if and only if f is slowly oscillating with respect to the ballean $\mathcal{B}_l(G)$ $(\mathcal{B}_r(G))$.

The families $S_l(G)$ and $S_r(G)$ of all bounded continuous left and right slowly oscillating functions on G are the norm closed subalgebras in $C_{\mathbb{R}}(G)$. Applying [7, Lemma 21.39], we get two compactifications $(\chi_l, \chi_l(G))$ and $(\chi_r, \chi_r(G))$ of G.

Proposition 4.3. For a topological group G, the following statements hold

- (i) if G is locally bounded, then $(\chi_l, \chi_l(G))$, and $(\chi_r, \chi_r(G))$ are topological compactifications;
- (ii) if G is not locally bounded, then $\chi_l(G)$ and $\chi_r(G)$ are singletons.

Proof. (i) In view of [7, Lemma 21.39], it suffices to show that any closed subset E of G and $x \in G \backslash E$ can be separated by left (right) bounded continuous slowly oscillating function. Since G is locally bounded, we can choose an open bounded neighborhood U of x such that $U \cap E = \emptyset$.

□

Since the space of G is completely regular, there is a continuous function $f: G \to [0,1]$ such that $f(x) = 1$ and $f|_{G\setminus U} \equiv 0$. Clearly, f is left and right slowly oscillating.

(ii) We show that every continuous left slowly oscillating function $f: G \to \mathbb{R}$ is constant. Let $a, b \in G$. Given any $\varepsilon > 0$, we choose a bounded subset V of G such that $\dim f(\lbrace ba^{-1}, e \rbrace x) < \varepsilon$ for each $x \in G \setminus V$. Since G is not locally bounded, for every neighbourhood U of a, there exists $x \in U \cap (G \setminus V)$. It follows that $|f(a) - f(b)| \leq \varepsilon$. \Box

Remark 4.1. If G is locally compact, we can identify the remainders $\chi_l(G) \setminus G$ and $\chi_r(G) \setminus G$ with $\check{\mathcal{B}}_l(G)$ and $\check{\mathcal{B}}_r(G)$ respectively.

Remark 4.2. Let G be a countable non-discrete group G with finite bounded subsets. By Proposition 4.3 (ii), $\chi_l(G)$ is a singleton. On the other hand, by [11, Proposition 3], $|\check{\mathcal{B}}_l(G)| = 2^{2^{\aleph_0}}$.

References

- [1] E. K. van Douwen, The maximal bounded group topology on G and the biggest minimal G-space, for Abelian group G // Topol. Appl., 34 (1990), 65-91.
- [2] A. Dranishnikov, Asymptotic topology // Russian Math. Surveys, 55 (2000), 1085–1129.
- [3] M. Filaly, I. V. Protasov, Slowly oscillating functions on locally compact groups // Applied General Topology, 6 (2005), 67–77.
- [4] M. Gromov, Asymptotic invariants of infinite groups, in G. A. Niblo and M. A. Roller, editors, Geometric Group Theory, London Math. Soc. Lecture Note Ser., 182 (1993), 1–295.
- [5] P. Harpe, Topics in Geometrical Group Theory, University Chicago Press, 2000.
- [6] E. Hewitt, K. Ross, Abstract Harmonic Analysis, Vol. 1, Springer-Verlag, 1963.
- [7] N. Hindman, D. Strauss, Algebra in the Stone–Cech compactification Theory and Applications, Walter de Grueter, Berlin, New York, 1998.
- [8] I. Protasov, T. Banakh, Ball Structures and Colorings of Groups and Graphs, Math. Stud. Monogr. Ser., 11, VNTL, Lviv, 1998.
- [9] I. Protasov, M. Zarichnyi, General Asymptology, Math. Stud. Monogr. Ser., 12, VNTL, Lviv, 2007.
- [10] I. V. Protasov, Ultrafilters and topologies on groups // Sib. Math. J., 34 (1993), 983–952.
- [11] I. V. Protasov, *Coronas of balleans //* Topol. Appl., **149** (2005), 149–160.
- [12] J. Roe, Lectures on Coarse Geometry, AMS University Lecture Ser., 31, 2003.
- [13] V. I. Ušakov, A certain class of topological groups $//$ Soviet. Math., 3 (1962), 682–685.

CONTACT INFORMATION

