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Balleans of topological groups

Salvador Hernández, Igor V. Protasov

Abstract. A subset S of a topological group G is called bounded if,

for every neighborhood U of the identity of G, there exists a finite subset

F such that S ⊆ FU , S ⊆ UF . The family of all bounded subsets of G

determines two structures on G, namely the left and right balleans Bl(G)
and Br(G) , which are counterparts of the left and right uniformities of G.

We study the relationships between the uniform and ballean structures

on G, describe all topological groups admitting a metric compatible both

with uniform and ballean structures, and construct a group analogue of

Higson’s compactification of a proper metric space.
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Introduction

A ball structure is a triple B = (X,P,B), where X,P are non-empty
sets and, for every x ∈ X and α ∈ P,B(x, α) is a subset of X which is
called a ball of radius α around x. It is supposed that x ∈ B(x, α) for all
x ∈ X and α ∈ P . The set X is called the support of B, P is called the
set of radii.

Given any x ∈ X, A ⊆ X, α ∈ P , we put

B∗(x, α) = {y ∈ X : x ∈ B(y, α)}, B(A,α) =
⋃

α∈A

B(a, α).

A ball structure B is called

• lower symmetric if, for any α, β ∈ P , there exist α′, β′ ∈ P , such
that, for every x ∈ X,
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B∗(x, α′) ⊆ B(x, α), B(x, β′) ⊆ B∗(x, β);

• upper symmetric if, for any α, β ∈ P , there exist α′, β′ ∈ P such
that, for every x ∈ X,

B(x, α) ⊆ B∗(x, α′), B∗(x, β) ⊆ B(x, β′);

• lower multiplicative if, for any α, β ∈ P , there exists γ ∈ P such
that, for every x ∈ X,

B(B(x, γ), γ) ⊆ B(x, α)
⋂

B(x, β),

• upper multiplicative if, for any α, β ∈ P , there exists γ ∈ P such
that, for every x ∈ X.

B(B(x, α), β) ⊆ B(x, γ).

Let B = (X,P,B) be a lower symmetric and lower multiplicative ball
structure. Then the family

{

⋃

x∈X

B(x, α) ×B(x, α) : α ∈ P

}

is a base of entourages for some (uniquely determined) uniformity on X.
On the other hand, if U ⊆ X × X is a uniformity on X, then the ball
structure (X,U , B) is lower symmetric and lower multiplicative, where
B(x, U) = {y ∈ X : (x, y) ∈ U}. Thus, the lower symmetric and lower
multiplicative ball structures can be identified with the uniform topolog-
ical spaces.

We say that a ball structure B is a ballean if B is upper symmetric
and upper multiplicative.

The balleans are coming from many different areas: group theory [4,5],
coarse geometry [12] and asymptotic topology [2], combinatorics [8]. A
ballean can also be defined in terms of entourages. In this case, it is called
a coarse structure. In this paper we follow terminology from [9].

Let B1 = (X1, P1, B1), B2 = (X2, P2, B2) be balleans. We say that a
mapping f : X1 → X2 is a ≺-mapping if, for every α ∈ P1, there exists
β ∈ P2 such that, for every x ∈ X1,

f(B1(x, α)) ⊆ B2(f(x), β),

and note that ≺-mapping is a counterpart of a uniformly continuous
mapping between the uniform topological spaces.
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We say that B1 and B2 are asymorphic if there exists a bijection
f : X1 → X2 such that f and f−1 are ≺-mappings.

If B1, B2 are balleans with common support X and the identity map-
ping id : X → X is an asymorphism, we identify B1 and B2 , and write
B1 = B2.

A ballean B = (X,P,B) is called connected if, for any x, y ∈ X, there
exists α ∈ P such that y ∈ B(x, α). We note that connectedness can
be considered as a counterpart of Hausdorffness of a uniform topological
space.

1. Balleans on groups

Let G be a group with the identity e, FG be a family of all finite
subsets of G, I be an ideal in the Boolean algebra of all subsets of G. We
say that I is a group ideal if FG ⊆ I and A,B ∈ I → AB−1 ∈ I. Every
group ideal I determines two balleans (see [9, Chapter 6]) Bl(G, I) and
Br(G, I) on G, where Bl(G, I)=(G, I, Bl), Br(G, I)=(G, I, Br) and, for
all A ∈ I, g ∈ G,

Bl(g,A) = g(A
⋃

{e}), Br(g,A) = (A
⋃

{e})g.

Now let G be finitely generated, S be a finite system of generators of
G. The left (right) Cayley graph Cayl(G,S) (Cayr(G,S)) is a graph with
the set of vertices G and the set of edges El = {{x, y} : x−1y ∈ S} (Er =
{{x, y} : xy−1 ∈ S}). Clearly, these graphs are connected. Given any
x, y ∈ G, we denote by dl(x, y) (dr(x, y)) the length of a shortest path in
Cayl(G,S) (Cayr(G,S)) between x, y. The metric spaces (G, dl), (G, dr)
are an effective tool in geometrical group theory [4,5]. Every metric space
can be considered as a ballean (see Section 2), and the balleans Bl(G,FG)
Br(G,FG) are asymorphic to the balleans determined by (G, dl), (G, dr).

In what follows, all topological groups are supposed to be Hausdorff.
A subset A of a topological group G is called bounded if, for every neigh-
borhood U of the identity, there exists F ∈ FG such that A ⊆ FU ,
A ⊆ UF . We note that A is bounded if and only if its closure in the
completion of G by two-sided uniformity is compact.

A topological group G is said to be totally bounded (σ-bounded, locally
bounded), if G is a bounded subset (G is a countable union of bounded
subset, there is a bounded neighborhood of e).

Given a topological group (G, τ), the family Iτ of all bounded subsets
of G is a group ideal. A subject of this paper is the balleans Bl(G) =
Bl(G, Iτ ), Br(G) = Br(G, Iτ ), which are called the left and right ballean
of topological group G. For a locally compact group, these balleans were
introduced and studied in [3].
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Let G be a group with the identity e, B = (G,P,B) be a ballean
on G. Following [9, Chapter 6], we say that B is

• left (right) invariant if all the shifts x 7→ gx (x 7→ xg) are ≺-
mappings;

• uniformly left (right) invariant if, for every α ∈ P, there exists
β ∈ P such that gB(x, α) ⊆ B(gx, β) (B(x, α)g ⊆ B(xg, β)) for all
x, g ∈ G.

If B is uniformly left (right) invariant, then B is left (right) invariant,
but the converse statement does not hold [9, Example 6.1.1].

Proposition 1.1. For a connected ballean B on a group G, the following
statements are equivalent

(i) B is uniformly left (right) invariant;

(ii) there exists a group ideal I on G such that B = Bl(G, I) (B =
Br(G, I)).

Proof. See [9, Section 6.1].

Given any x ∈ G, A ⊆ G, we put

xG = {g−1xg : g ∈ G}, AG =
⋃

a∈A

aG.

We say that a group ideal I on G is uniformly invariant if AG ∈ I
for every A ∈ I.

Proposition 1.2. Let I be a group ideal on a group G. Then the fol-
lowing statements are equivalent

(i) Bl(G, I) = Br(G, I);

(ii) I is uniformly invariant;

(iii) the mapping x 7→ x−1 : Bl(G, I) → Bl(G, I) is a ≺-mapping;

(iv) the mapping (x, y) → xy : Bl(G, I) × Bl(G, I) → Bl(G, I) is a
≺-mapping.

Proof. See [9, Section 6.1].
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Proposition 1.3. For a topological group G, the following statements
are equivalent

(i) Bl(G) = Br(G);

(ii) a subset AG is bounded for every bounded subset A;

(iii) the mapping x 7→ x−1 : Bl(G) → Bl(G) is a ≺-mapping;

(iv) the mapping (x, y) 7→ xy : Bl(G)×Bl(G) → Bl(G) is a ≺-mapping.

Proof. Apply Proposition 1.2 to the group ideal I of all bounded subsets
of G.

Remark 1.1. By [13], for a locally compact group G, the condition (ii)
of Proposition 1.3 is equivalent to the following one: xG is bounded for
every x ∈ G. We show that this statement does not hold for locally
bounded groups. For each n ∈ ω, we consider the semidirect product
An = BnλCn, where Bn ≃ Z3, Cn ≃ Z2 and put G =

⊗

n∈ω An.

We endow G with the topology whose base at identity is formed by the
subsets {

⊗

m≥nCn : m ∈ ω}. Then G is a group with finite conjugated

classes, the subset C =
⊗

n∈ω Cn is bounded, but CG is unbounded.

2. Metrizability

A metric d on a set X determines the metric ballean B(X, d) =
(X,R+, Bd), where R+ = {r ∈ R : r ≥ 0}, Bd(x, r) = {y ∈ X : d(x, y) ≤
r}. A ballean B is called metrizable if B is asymorphic to some metric
ballean. By [9, Theorem 2.1.1], a ballean B = (X,P,B) is metrizable
if and only if B is connected and cfB 6 ℵ0, where cofinality cfB is the
minimal cardinality of cofinal subsets of P . A subset P ′ ⊆ P is cofinal
if, for every α ∈ P , there exists α′ ∈ P such that B(x, α) ⊆ B(x, α′) for
every x ∈ X.

Proposition 2.1. Let d be a left invariant metric on a group G with the
identity e, Vr = {x ∈ G : d(x, e) ≤ r}, r ∈ R+. Then the family {Vr : r ∈
R+} is a base for some group ideal Id on G, and B(G, d) = Bl(G, Iα).

Proof. Given any x, y ∈ G, we have d(x, e) = d(e, x−1) and d(xy, e) =
d(y, x−1) ≤ d(y, e)+d(x−1, e) = d(y, e)+d(x, y), so Vr = V −1

r and VrVs ⊆
Vr+s for all r, s ∈ R+. Clearly, every finite subset of G is contained in
some ball Vr. Thus, Id is a group ideal.

Since d(x, y) ≤ r if and only if y ∈ xVr, B(G, d) = Bl(G, Id).
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Proposition 2.2. Let I be a group ideal with a countable base on a
group G. Then there exists a left invariant metric d on G, taking integer
values, such that Bl(G, I) = B(G, d).

Proof. Since I has a countable base, we can choose a base {Vn : n ∈ ω}
for I such that V0 = {e} and Vn = V −1

n , VnVn ⊆ Vn+1 for each n ∈ ω.
Given any x ∈ X, we put

‖x‖ = min{n ∈ ω : x ∈ Vn}.

By the choice of {Vn : n ∈ ω}, we have

‖x‖ =‖ x−1 ‖, ‖xy‖ ≤ ‖x‖ + ‖y‖.

We define a metric d on G by the rule d(x, y) = ‖x−1y‖, and note that
B(G, d) = Bl(G, I).

Now let G be a topological group. If G is first countable, by [6,
Theorem 8.3], the left uniformity of G can be determined by some left
invariant metric. If G is σ-bounded, by Proposition 2.2, the left ballean
Bl(G) can also be determined by a left invariant metric. In the next
theorem we stick together these two statements.

Theorem 2.1. For every topological group G, the following statements
are equivalent

(i) there is a left invariant metric d on G compatible both with left
uniformity and left ballean structure of G;

(ii) G is first countable, locally bounded and σ-bounded.

Proof. (ii) ⇒ (i). If G is discrete, by Proposition 2.2, there exists a
left invariant metric d on G taking integer values and determining left
ballean structure of G. Clearly, d determines the discrete uniformity.

We assume that G is non-discrete and modify a construction of metric
from [6, Theorem 8.3]. We fix a bounded symmetric neighborhood U0

of the identity e of G and choose a family {Un : n ∈ Z} of bounded
symmetric neighborhoods of e such that

UnUn ⊂ Un+1,
⋃

n∈Z

Un = G,

and {Un : n ∈ Z} is a base of neighborhoods of e. For each n ∈ Z, we
put V2n = Un. Given any r = 2l1 + 2l2 + · · · + 2ln , l1 > l2 > · · · > ln,
li ∈ Z, we put

Vr = V2l1 V2l2 · · · V2ln .
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Repeating the arguments proving Theorem 8.3 from [6], we conclude
that

(1) r < s⇒ Vr ⊂ Vs;

(2) VrV2l ⊂ Vr+2l+2 .

Then we define a function ϕ(x) = inf{r : x ∈ Vr} and note that
ϕ(x) = 0 if and only if x = e. We put

d(x, y) = sup{|ϕ(zx) − ϕ(zy)| : z ∈ G},

and note that d is a left invariant metric on G.

By (1), (2) and [6, Theorem 8.3], d determines a left uniformity of G.

If d(x, e) < 2l then x ∈ V2l. On the other hand, let x ∈ V2l. If z ∈ Vr,
by (2), zx ∈ Vr+2l so ϕ(zx) ≤ ϕ(z) + 2l+2. Analogously, if zx ∈ Vr then
VrV

−1

2l
e ⊂ V l+2

r+2 and ϕ(z) ≤ ϕ(zx) + 2l+2. It follows that d(x, e) ≤ 2l+2

so d determines the left ballean structure of G.

(i) ⇒ (ii). Since the left uniformity of G is compactible with d , G
is first countable. Since Bl(G) is metrizable, by [5, Theorem 2.1.1], G is
σ-bounded. Since B(G, d) = Bl(G), each ball Bd(x, r) is bounded, so G
is locally bounded.

Remark 2.1. In the discrete case, Theorem 2.1 guarantees a left in-
variant metric on a countable group G such that every ball B(g, r) is
finite. If G is finitely generated, then the word metric is appropriate.
In the general case, we enumerate G = {gn : n ∈ ω} so that g0 = l
and if gn 6= g−1

n then either gn+1 = g−1
n or gn−1 = g−1

n . We define a
weight function w on G inductively. Put w(g0) = 0 and assume that we
have defined w(g0), . . . , w(gn). If gn+1 = g−1

n we put w(gn+1) = w(gn),
otherwise w(gn+1) = w(gn) + 1. Then, for every g ∈ G, we put

‖g‖ = min{w(x1) + · · · + w(xn) : g = x1 · · ·xn, x1, . . . , xn ∈ G, n ∈ ω}

The function ‖ · ‖ is an integer valued norm on G such that ‖x‖ = ‖x−1‖
for every x ∈ G, so we put d(x, y) = ‖x−1y‖.

A metric d on a set X is called an ultrametric if

d(x, y) 6 max{d(x, z), d(z, y)}

for all x, y, z ∈ X. If G is a left invariant metric on a group G , then the
set {x ∈ G : d(x, e) ≤ r} is a subgroup for every r ∈ R+.
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Theorem 2.2. For a topological group G, the following statements are
equivalent

(i) there is a left invariant ultrametric d on G compatible both with left
uniformity and left ballean structure of G;

(ii) there is a family {Vn : n ∈ Z} of open subgroups of G such that
Vn ⊆ Vn+1, |Vn+1 : Vn| < ∞,

⋃∞
n=1 Vn = G and {Vn : n < 0} is a

base at the identity for the topology of G.

Proof. (i) ⇒ (ii). For every n ∈ Z, we put

Vn = {x ∈ G : d(x, e) ≤ 2n}.

Since d determines Bl(G),
⋃∞

n=1 Vn = G and each subgroup Vn is
bounded, then | Vn+1 : Vn |< ∞. Since d is compactible with the left
uniformity of G, {Vn : n < 0} is a base at the identity for the topology
on G.

(ii) ⇒ (i). Given any x, y ∈ G , we put

‖x‖ = min{n : x ∈ Vn}, d(x, y) = ‖x−1y‖,

and note that d is a desired ultrametric on G.

3. Determinability of topology by the balleans

It follows directly from the definitions that the balleans Bl(G) and
Br(G) of a topological group G are uniquely determined by the topology
of G. In which respect the balleans Bl(G) and Br(G) determine the
topology of G? Let us try to specify this general question.

Let (G, τ) be a topological group, Iτ be the ideal of bounded subsets
of G. We denote by τ# the strongest group topology on G such that
Iτ# = Iτ , and say that (G, τ) is b-determined if τ# = τ . Clearly, every
discrete group is b-determined. A totally bounded group (G, τ) is b-
determined if and only if τ is the maximal totally bounded topology on
G.

Question 3.1. Given a topological group G, how to detect whether G is
b-determined?

Question 3.2. Let τ1, τ2 be group topologies on G such that Iτ1 = Iτ2.
Which topological properties (in particular, topological cardinal invari-
ants) are common for (G, τ1) and (G, τ2)?

We say that the topological groups G1 and G2 are b-equivalent if the
balleans Bl(G) and Br(G) are asymorphic.
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Question 3.3. Which properties of a topological group are invariant
under b-equivalence?

Question 3.4. Given a group ideal I on G, how to detect whether there
exists a group topology τ on G such that I is the ideal of all bounded
subsets of (G, τ)?

The following theorem is related to Question 3.1.

Theorem 3.1. No b-determined topological Abelian group (G, τ) may
contain a non-trivial convergent sequence. Every Abelian metrizable b-
determined group is discrete.

Proof. We denote by # the strongest totally bounded topology on G.
Since G is Abelian, (G,#) is Hausdorff. By [1], (G,#) has no convergent
sequences. Since Iτ∨# = Iτ , we have τ# ⊆ #.

Remark 3.1. The Abelian condition is essential in Theorem 3.1. Indeed,
let G be a semi-simple connected compact group Lie group. Clearly, G
is metrizable, but G admits only one totally bounded (in fact, compact)
group topology, so G is b-determined.

Remark 3.2. Let τ1, τ2 be a group topologies on a group G. Following
[10], we say that τ2 is totally bounded with respect to τ1 if, for every
neighbourhood U of e in τ2, there exists a finite subset F such that FU
is a neighbourhood of e in τ1. Equivalently, every Cauchy ultrafilter in
(G, τ2) is a Cauchy ultrafilter in (G, τ1). For every group topology τ on
G, there exists the largest topology τ̂ totally bounded with respect to τ .
Clearly, Iτ = Iτ̂ so τ̂ ⊆ τ#. If (G, τ) is totally bounded, then τ̂ = τ#.
But we cannot state that τ̂ = τ# for every group topology τ . Indeed,
let (G, τ) be a non-discrete topological group with only finite bounded
subsets (see Example 3.1). Then τ# is discrete, but τ̂ is non-discrete.
On the other hand, for every topological Abelian group (G, τ), we have
# ⊆ τ̂ , so (G, τ̂) has no non-trivial convergent sequences.

Question 3.5. Given a topological group (G, τ), how to detect whether
τ̂ = τ#? τ = τ̂?

We construct a countable non-discrete topological group with only
finite bounded subsets.

Example 3.1. Let G =
⊗

n∈ω Gn be the direct product of finite groups
Gn, |Gn| > 1 with the identities en, n ∈ ω. For every g ∈ G, we put

supp(g) = {g ∈ G : prng 6= en}.
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We fix an arbitrary free ultrafilter ϕ on ω and, for every Φ ∈ ϕ, put

[Φ] = {g ∈ G : supp(g) ⊂ Φ}.

The family {[Φ] : Φ ∈ ϕ} forms a base at the identity e for some non-
discrete group topology τ on G.

We show that (G, τ) is complete. Let ψ be a ultrafilter Cauchy on
G with respect to the left uniformity on (G, τ) (which coincides in this
case with the right uniformity). To show that ψ converges in (G, τ), we
endow each group Gn with the discrete topology, and consider G as a
subgroup of the Cartesian product H =

∏

n∈ω Gn. Since H is compact
in the product topology, ψ converges in H to some element h. We put

X = {n ∈ ω : prnh 6= en},

and consider two cases.

Case: X is infinite. We choose an infinite subset Y ⊂ X such that
ω \ Y ∈ ϕ. Since ψ is an ultrafilter Cauchy in (G, τ), there exists Ψ ∈ ψ
such that supp(g−1g′) ⊆ Y \ ω for all g, g′ ∈ Ψ. We fix an arbitrary
element k ∈ Y . Since ψ converges to h inH, there exists Ψ′ ∈ ψ such that
Ψ′ ⊆ Ψ and k ∈ supp(g) for every g ∈ Ψ′. We fix an arbitrary element
x ∈ Ψ′. Since Y is infinite, we can take an element m ∈ Y \ supp(x).
Since ψ converges to h in H, there exists Ψ′′ ∈ ψ such that Ψ′′ ⊂ Ψ′

and m ∈ supp(g) for every g ∈ Ψ′′. We fix an arbitrary element y ∈ Ψ′′.
Then m ∈ supp(x−1y), so supp(x−1y) * ω \ Y , contradicting the choice
of Ψ. Thus, this case is impossible.

Case: X is finite. Replacing ψ to x−1ψ, we may suppose that h = e.
We assume that ψ does not converge to e in τ , and choose an infinite
subset Y ⊂ ω such that ω \ Y ∈ ϕ. Repeating the arguments from the
previous case, we get a contradiction, so ψ converges to k.

At last, we assume that (G, τ) contains an infinite closed bounded
subset A. Since (G, τ) is complete, A is compact. Since A is countable,
there exists an injective sequence (an)n∈ω converging to some element a.
We may suppose that a = e. Passing to a subsequence, we also suppose
that max(an) < min(an+1) for every n ∈ ω, where min(x) and max(x) are
the first and the last non-zero coordinates of x. We put M = {min(an) :
n ∈ ω} and choose and infinite subset Y ⊂ M such that Y /∈ ϕ. Then
[ω \ Y ] is a neighbourhood of e in τ , but infinitely many members of
(an)n∈ω are outside of this neighbourhood, This contradiction shows that
A is finite.
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Question 3.6. Let (G, τ) be a topological group such that τ is maximal
in the class of all non-discrete group topologies on G. Is every bounded
subset of (G, τ) finite?

4. Slowly oscillating function

Every ballean B = (X,P,B) has a compact Hausdorff satellite, the
corona B̌. To describe B̌, we endow X with the discrete topology and
consider the Stone-Čech compactification βX of X. We take the points
of βX to be the ultrafilters on X with the points of X identified with the
principal ultrafilters. The topology of βX can be defined by stating that
the sets of the form Ā = {p ∈ βX : A ∈ p}, where A is a subset of X,
form a base for the open sets.

We denote byX♯ the set of all ultrafilters r onX such that everyR ∈ r
is unbounded in B. A subset V is called bounded in B if V ⊆ B(x, α) for
some x ∈ X and α ∈ P . Clearly, X♯ is a closed subset of βX.

Given any r, q ∈ X♯, we say that r, q are parallel (and write r ‖ q)
if there exists α ∈ P such that B(R,α) ∈ q for each R ∈ r. It is easy
to see that ‖ is an equivalence on X♯. We denote by ∼ the minimal (by
inclusion) closed (in X♯ × X♯) equivalence on X♯ such that ‖⊆∼. The
quotient X♯/ ∼ is a compact Hausdorff space. It is called a corona of B
and is denoted by B̌.

To clarify the virtual equivalence ∼ determining B̌, we use the slowly
oscillating functions.

A function h : X → R is called slowly oscillating if , for every ε > 0
and every α ∈ P , there exists a bounded subset V of X such that

diamh(B(x, α)) < ε

for every x ∈ X \ V , where diamA = sup{|a− b| : a, b ∈ A}.

Proposition 4.1. Let B = (X,P,B) be a connected ballean, q, r ∈ X♯.
Then q ∼ r if and only if hβ(q) = hβ(r) for every slowly oscillating
function h : X → [0, 1], where hβ is the extension of h to βX.

Proof. See [11, Proposition 1].

Let X be a topological space. A pair (ϕ, Y ) is called a compactifica-
tion of X if Y is a compact space, ϕ : X → Y is a continuous mapping
and ϕ(X) is dense in Y . If in addition ϕ is an embedding, (ϕ, Y ) is called
a topological compactification. In this case we can identify X with ϕ(X),
Y \ϕ(X) is called the remainder of compactification.

Let X be a topological space and let A be a norm closed subalgebra of
CR(X) which contains all constant function. By [7, Lemma 21.39], there
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are a compact space Y and a continuous mapping ϕ : X → Y with the
property that ϕ(X) is dense in Y and A = {f ∈ CR(X) : f = g ◦ ϕ for
some g ∈ CR(Y )}. The mapping ϕ is an embedding if, for every closed
subset E of X and every x ∈ X \E, there exists f ∈ A such that f(x) = 1
and f |E≡ 0.

For a metric space (X, d), the set S(X, d) of all bounded continu-
ous slowly oscillating real functions on X is a norm closed subalgebra
of CR(X, d). Applying [7, Lemma 21.39], we get some compactification
(χ, χ(X, d)) which is called the Higson’s compactification and its re-
minder, the Higson’s corona (see [12, Section 2.3]).

A metric space (X, d) is called proper if every closed ball in X is
compact.

Proposition 4.2. For a proper metric space (X, d), the following state-
ments hold

(i) (χ, χ(X, d)) is a topological compactification;

(ii) (χ(X, d) \ (X, d) is homeomorphic to B̌(X, d)).

Proof. See [11, pp. 154–155].

For a topological group G, a function f : G → R is said to be left
(right) slowly oscillating if, for every ε > 0 and every bounded subset
F of G, there exists a bounded subset V such that | f(yx) − f(x) |< ε
(| f(xy) − f(x) |< ε) for all x ∈ G \ V, y ∈ F . Clearly, f is left (right)
slowly oscillating if and only if f is slowly oscillating with respect to the
ballean Bl(G) (Br(G)).

The families Sl(G) and Sr(G) of all bounded continuous left and
right slowly oscillating functions on G are the norm closed subalgebras
in CR(G). Applying [7, Lemma 21.39], we get two compactifications
(χl, χl(G)) and (χr, χr(G)) of G.

Proposition 4.3. For a topological group G, the following statements
hold

(i) if G is locally bounded, then (χl, χl(G)), and (χr, χr(G)) are topolo-
gical compactifications;

(ii) if G is not locally bounded, then χl(G) and χr(G) are singletons.

Proof. (i) In view of [7, Lemma 21.39], it suffices to show that any closed
subset E of G and x ∈ G\E can be separated by left (right) bounded
continuous slowly oscillating function. Since G is locally bounded, we
can choose an open bounded neighborhood U of x such that U

⋂

E = ∅.
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Since the space of G is completely regular, there is a continuous function
f : G → [0, 1] such that f(x) = 1 and f |G\U≡ 0. Clearly, f is left and
right slowly oscillating.

(ii) We show that every continuous left slowly oscillating function
f : G → R is constant. Let a, b ∈ G. Given any ε > 0, we choose
a bounded subset V of G such that diam f({ba−1, e}x) < ε for each
x ∈ G \ V . Since G is not locally bounded, for every neighbourhood U
of a, there exists x ∈ U ∩ (G \ V ). It follows that | f(a) − f(b) |≤ ε.

Remark 4.1. If G is locally compact, we can identify the remainders
χl(G) \G and χr(G) \G with B̌l(G) and B̌r(G) respectively.

Remark 4.2. Let G be a countable non-discrete group G with finite
bounded subsets. By Proposition 4.3 (ii), χl(G) is a singleton. On the

other hand, by [11, Proposition 3], |B̌l(G)| = 22ℵ0 .
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