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Adaptive scheme of discretization for one
semiiterative method in solving
ill-posed problems
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Abstract. In the paper we consider a new algorithm to solving linear
ill-posed problem with operators of finite smoothness. The algorithm
uses one semiiterative method for the regularization of original problem
in combination with an adaptive strategy of discretization. For the ope-
rators the algorithm achieves the optimal order of accuracy. Moreover,
it is more economic in the sense of amount of used discrete information
compare with standard methods.

2010 MSC. 47A52.

Key words and phrases. Ill-posed problems, regularization, semiiter-
ative methods, discrepancy principle.

1. Introduction

In a Hilbert space X with inner product (-,-) and generated by it
norm ||z|| = y/(x, x) consider an operator equation of the first kind

Az = f. (1.1)

Assume that A is a linear and compact operator with Range(A) #
Range(A). We will construct a finite-dimensional approximations to nor-
mal solution of (1.1), i.e. to solution with minimal norm in X that
satisfies the Holder-type source condition

e Myy(A) = fuzu=|AP", ol <p}, p=1, 0<p<l, (12)

where |A| = (A*A)Y/2, A* is adjoint to A and parameter p is supposed
to be unknown.
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It is very often instead of exact right-hand side in (1.1) we know
only some its perturbation fs: ||f — fs|| < 0. Then the best accuracy of
recovering the minimal-norm solutions of (1.1) that fill up the set M, ,(A)
can be lower estimated by p'/(t+D§H/ (141 (see, for example, [14, p. 14]).

Following [9] we introduce into consideration class H", r = 1,2,...,
of compact linear operators A, ||A|| < 1, such that for any m = 1,2,...
following conditions

(I =Pu)All<m™, AU = Pp) |[<m™"

hold, where P,, is ortoprojector on linear span of first m elements of
some orthonormal basis E = {e;}°, in space X. As the example of (1.1)
with operator A € H" in space X = L9(0,1) one can consider Fredholm
integral equation of the first kind

1
Az(l) = / k(t, 7)a(r) dr = F(1),
0

where maxo< r<1 |k(t,7)| < 1, operators A and A* act from Ly(0,1) to
Sobolev space W3[0,1] and as a basis E can be chosen, for example,
orthonormal in [0, 1] system of Legendre polynomials or (if » = 1) the
orthonormal system of Haar functions. It is clearly that the class H"
includes Fredholm integral operator with the kernels from Sobolev class
of smoothness.

To solve (1.1) we will consider projection methods which use Galerkin
information as the discrete information about (1.1). Recall that by
Galerkin information about equation (1.1) one usually mean a set of the
inner products

(Aej,ei),  (fs,€i), (1.3)

where the indexes (7,j) are selected from some bounded domain € of
coordinate plane.

It possible to characterize economic properties of the corresponding
projection method by the volume of inner products (1.3) required to
construct approximate solution of (1.1).

In the first time the problem of construction of economic projection
methods for solving (1.1) with operators from H" and solutions zf €
M, ,(A) was investigated in [9] in the framework of traditional Galerkin
discretization scheme with Q = [1,m] x [1,n]. It is follows from [9] that
to guarantee the optimal order of accuracy we need to choose n < m =
O(5=Y7), i.e. to compute at least O(6~2/7) inner products (1.3).

Our aim is to construct an algorithm for solving (1.1) which uses
adaptive choice of discretization level for some modified Galerkin scheme.



S. G. SOLODKY, E. A. VOLYNETS 555

The algorithm on the same classes of equations will guarantes the optimal
order of accuracy for solutions x' (1.2) and is be more economic in the
sense of using Galerkin information compare with methods considered
in [9].

The idea of employment such adaptive discretization strategy to solve
ill-posed problems was proposed in [6] and further was investigated in
[11-13].

2. Semiiterative method

To construct stable approximations we need to regularize original
problem (1.1). For this purpose we use one semiiterative method, so-
called v-method (see, for example, |3, Chapter 6.3]) for fixed parameter
v = 1. The method is the procedure of the following type

acg =0; in = m(lifl"i_gk(xifl_x272)+ka*(f5_szfl)7 k=12,...,
(2.1)

o1 =0, w1 = 6/5,
(k—1)(2k —3)(2k+ 1) B (2k + 1)k . (2.2)
kT DEE+3)2k-1) 7 kr )2k +3) :

O —

In the case § = 0 in (2.1) we will use notation xy instead of x9.

Remind that v-methods were introduced by Brakhage in [1] to obtain
theoretical estimations of the conjugate gradient method. Later they were
studied as alternative of the method. In [8] was investigated 1/2-method,
also known as Chebyshev method.

Rewrite (2.1) as following

2} = gr(A*A)A* f5, zp = gp(ATA)A*f.

So-called generating function gx(A) in the framework of v-method is the
polynomial of the exact degree k. It determines value of the error gene-
rated by perturbation in input data

o — 1) = gr(A"A)A(f — f5).
Polynomial r(A) connected with generating function by the relation
re(l) =1 —lgi(l) (2.3)
determines approximation error of the v-method

at —ap, = rp(A*A)al.
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For v =1 the polynomial 7 () has the form (see [8])

1 =T (1 —2))
k() = 20k + 1)2x

(2.4)

where Tj(A) = cos(karccos(A)) are the Chebyshev polynomials of the
first kind.
The following estimates can be found in [3]:

3, p. 167
[re(N)] < 1, A€ 0,1], keN, (2.5)
3, p. 163
sup gr(\) = (Irk(V)|) =2k, A€ [0,1], k€N, (2.6)
0<A<1

[3, Theorem 6.12]
NN < wpk™ Xe0,1], keN, 0<pu<l, (2.7)

where r,, is the some positive constant.
It is follows from (2.3), (2.5) and (2.6) that

Mg\ =1—r,(\) <14 |r (M) < 2, (2.8)

A (N) = Age(Ngr(N) = (1 — 76 (X)gr(N) < 47,

and hence
sup VAge(\) < 2k. (2.9)
0<iI<1
Besides we will use Markov’s inequality for the polynomials T of
degree k defined on the interval [a,b] with norm equal 1 in metric of
space C (see, e.g., |7, Chapter 7]):

2k2
T! < . 2.10
Th(a)] < 7— (2.10)

3. Auxiliary statements

Let A be singular values of A and ¢, ¥, be the corresponding sin-
gular elements. Then operator A can be written as

A= Z Aii (- i),
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and herewith following relations
= |A]"v = (A*A)"y Zm Wi(3i,v)
fi= Azt = A|A]"w = ZMM di(i, v)

are true. Hence we obtain the decompositions of x; and Axy:

ok = gr(ATA)A*F =" g\l 20 (i, v),

Ary =3 Aoy (w }jmAjP)rAj\””wj,v))
i J
= § i E NP2 (04, 0) gk (N1 (i, 5)
) J
—§ Aol A" T2 g (A1) i (i, v).

Let © be a bounded set of coordinate plane [1;00] x [1;00] which we
use to discretize coefficients of the original problem (1.1). Then in the
framework of the projection scheme one need to switch from A and f5 to
finite-dimensional coefficients Ag and Pq fs

Ag = Z (Aej7€i)('7ej)ei7 Pﬂf5 = Z (f(s,ei)ei.

(4,5)€Q i:(2,5) €N

Specific form of © and Aq we will indicate below (see (3.14) and (3.15)).
Error of the discretized version of the 1-method on k-th step can be
written in the form

ot — gr(AfAQ)Ab fs = (21 — z1) + gr(A[AQ) AL (f — f5)
+ (o — gr(AGAQ)AGf). (3.2)

We need to estimate all items in right-hand side of (3.2). Due to above
the first item can be written as

ot — ), = (I — gp(A"A)A* A)at
=3l = (2D (v, 1)

= 3 IO, ).
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Then
o — 2 ]|* = ZV“ R (v, ;)

or in other form

ot —al® = k72 1 (0),

where 2, (v) = K2 37, Ar2(A2) (v, 1)
Now let us write followmg representation

Az — f = A(zy — :cT)
== > i > Pl (XD (85,90 (v, 1)
7 7

== [l ark(X

Then
1Azy, — fII? = 3 A2 (02) (0,42,

or the same
| Az, — fI|? = k~20+0d2 ) (v)

with a2, (v) := k200HD) 32, N2 (02 (0, 42,

)@i(v, ).

(3.4)

Lemma 3.1. For the functions c,j(v) and d,,(v) following estimates

K 1
e (V)] < [y ()P o]=7, 0 du gk (0)] < R |l]

are true.

Proof. Using Hélder’s inequality with p = (u+1)/p, ¢ = p+1 and (2.5)

we have

=
i

e (@) = 37 (R2EHDAZEFIR2 (32 (0, 457)?)
1

(rE (A7) (v, 97)%) 41

2p T 2p 2
< a0 (T 00?) ™ = a0l ol 1,

7

Now taking into account (2.7) we obtain

d Z k2 (p+1) (()\2)M;1Tk()\2)) ( ’wi)Q
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< p2ptD) (ﬁ%ﬂk*(uﬂ))? Z(iji)z

)

= 52%1 Z(Uﬂ/)i)2 = ﬁ@HUHZ-

(2

Lemma is proved. O

To estimate the third item in right-hand side of (3.2) we need following
lemma.

Lemma 3.2. For the polynomials ri(\) defined as (2.4) at any \,p €
[0,1] the estimates

7k (X) = ()] < 2K X = pl, (3.5)

[Ark(A) — prg ()] < A — pf (3.6)
are true.

Proof. For the case of A = p the estimates are obvious. Now consider

the case of A # u. According to Mean Value Theorem there is a point
X € [0,1] such that

ri(A) — ri(p)

pp— =r.(\).

Using (2.6) we obtain
< sup |rp(N)] < 2k%

ri(A) — r(p)
A—p Coo<N<1

Thus
rk(A) = ()| < 22X — pl.

Now let us prove inequality (3.6). Due to definition (2.3) we have

Ar(A) — prg(p) = Ty (1 — 22?21?;{;1(1 — 2)\).

Again according to the Mean Value Theorem there is a point A" € [0, 1]
such that
Tpr1(1 = 2p) = Tiqa (1 = 2))
2(A —p)
Since Ti4+1(1 — 2)) is a polonomial of degree k + 1 defined in interval
[—1, 1] then using (2.10) we obtain

T (1 — 2p) — Thopr (1 — 2
a2 20 “ T =20 gy 7y, () < (b 1)2,
2|\ — pl 1<l

= T} ().
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Hence we have

2
) = )| < 3 A -kl =Rl (3)

Lemma is proved. O
Corollary 3.1. For any L, € [0, 1] the inequalities
A(ri(A) = 72 () < 2[A = pl, (3.8)
VAIrR(A) = i ()] < 2K(A — pl (3.9)
are true.

Proof. Due to (2.5) and (3.6) we have

A(rr(A) = re()] < Are(X) — pr()] + A = pllre ()| < 2|4 — 4

and estimate (3.8) is proved. From (3.5) and (3.8) it immediately follows
that
Alri(A) = ri(p)[? < 4k X = pf?,

and we have (3.9). O

Let us denote as i‘i = gx(AHAq) AL f5 an approximate solution ob-
tained by discretized version of 1-method on k-th iteration step.

Lemma 3.3. The error of the 1-method can be estimated by

2T =23 < B #leun ()| +2k5+2k2 27| (|| A Ao — A" Al +[| A (Ao — A)])-
(3.10)

Proof. Recall (see (3.2)) that we make use of following error representa-
tion

ol — 25 = (27 — z1) + ge(A[AQ)AG(f — f5) + (zi — gr(AfAQ) AL S).

We need to estimate the expression in right-hand side. For the first item
due to (3.3) we have

" — x| < k7 e (0)].
To estimate the second item we use(2.9):

l9x (A5 A0)AG(f = fo)ll < |If = fsll sup AM2gr(X) < 2ks.
0<A<1
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Rewrite the third item in the form

2, — g (A AQ) AL S = gr(ATA) A" At — g, (An Ag) AGAat = (T + Tp)a',

(3.11)
where
Ty = ge(A"A)A™ A — gr(AgAa) Ag Ag,
Ty = gr(AnAa)Ap(Ag — A).
Taking into account (3.5) and (2.6) we have
ITl = llre(AgAa) — re(A*A)| < 2k? | Aj Aq — A A, (3.12)

1T2]| < llgr(AqA) (|l Aq(Aq — Al
< [[Aa(Aa — A)|| sup gr(A)
0<A<1

< 22| A5 (Aq — A)]|. (3.13)
Hereby

k. — gk (AGAQ) AL f|| < T + ol
< 2k% |l (|| AH Aq — A™All + A (Aq — A)])

and Lemma is proved. O

Let I';, be the domain

2n(k)
D= [ @752 x L2200 U {1y < 1,220 (314

=1

of coordinate plane connected with basis E which is used in formulation
of the class H". To construct discretized operators Ar, = App), k =
1,2,..., we will choose the indexes (i, j) of inner products (Aej, e;) from
domain I'y, i.e.

2n(k)
An(k) = A = Z (Pyi — Pyi—1)APyangky—i + PLAPyon). (3.15)
i=1

Assume that this discretization satisfies the conditions

) )
* . * < . * . * < . .
44 Aal < AT - ADAlS o (316)
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N 0 0 \1/2
I(A-ApAl < A=A < (1)
P 5 4o (3.17)
A—ApALl < —.
I(A— 4043 < 1
Without lost of generality we will consider that
5k < 1. (3.18)

It should be noted that in the first time the scheme (3.14)—(3.17)
was considered in [5], where as the regularization was used the Tikhonov
method.

Lemma 3.4. For any k > 0 following inequality
| Az = fIl < | Akah — fll + 26
holds with ¢; = %.
Proof. Let us represent expression Azy — f in the form
Az — f = Ag(A"A)A f — f=Z1+ Zo+ Zs+ Zy + Zs, (3.19)

where

Zy = Agr(A"A)A™(f — f5); Zy = (A — Ap) A% gr(AA") fs;
Zs = —(A— Ap)(ge(A*A)A* f5 — 20);  Zs = A(gp(A*A)A* f5 — 23);
Zs = Agil — f.

We need to estimate the elements Z; — Z4. Taking into account (2.8) we
obtain

1Z0]] < Ngr(AA)AA*[|f = foll <& sup ge(A*)A* < 24.
0<A<1
Using (2.6), (2.9) and (3.16)—(3.17) we have

1Z2]l < (A = AR)A*[[(lgw (A A) AT || + [l g (A" AN f — f5])
< [I(A — AR A*[| (2K ||| + 2523)

< 2k[[(A — AR A%|| ([l + k) < =5 < s,
Now

123]] = I(A = Ag)(gx (A" A) A" f5 — ge (A Ar) Ay S5
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= [I(A — Ag)(gr (A" A)A*(fs — ) — gr(ApAx) Ak (fs — f)
+ ge (AT A)A* f — g (AR Ar) AL )l
<A = Ap) (g (A" A)A™ (fs — f) — g (AL AR) AL(f5s — 1))l
+ [1(A = A) (ge (A" A) A f — g (AL Ar) AL L)l

Let us estimate right-hand side term by term. For the first item due to
(2.6) and (3.17) we have

(A = Ak)(ge (A" A)A*(f5 = f) — ge(Ap A) A (fs — )]
< (A = A) A% [[llge (AA) | + 1 (A = Ag) Axllllgx (Ar AR IDI1Lf5 — [l

< M55
P

The second item one can estimate using (3.11)—(3.13) and (3.16)—(3.17):
I(A = Ap)(gr(A"A)A"f — gr (AR AR) ALS)|
< JA = Agllllzr — ge (AR Ax) AL |
< 2k2|| A — Agllllt]| (| Af Ax — A* Al + | AL (A — A))

< (1) o<

Hence 5
1Zsll < 26,

At last we need to estimate Z4. So,
1 Zal = | A(gr(A* A)A* f5 — &) || < Bl + || Fll,

where

Fy = A(gp(A*A)A* — gr(A5AR) AL) AT,
Fy = A(gr(A"A)A™ — g (AR Ak) AL (f — [5)-
Rewrite the element F5 in the form
By = [Agp(A"A)A™ — AL g (A Ar) Akl (f — f5)
— (A — Ap)gr(ALAR) AL (f = f5) =1 G1 + Ga.
Taking into account (2.6), (2.9), (3.5) and (3.16)—(3.17) we obtain

0

Iy < k(A A) = ri (AR AR f = foll < 287 A"A = AF A6 < 5.

G2l < [ A= AR[lllf = fsll sup VAgr(A) < 6.
0<A<L1
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F'| can be represented as

Fi = A(gp(A*A)A* A — grp(AL AR AL ARz — Agrp(AfAR) AL (A — Azt
= A(gi(A*A)A* A — g1 (Af Ap) Ap Ar)a’ — Argi(AfAR) Af (A — Ap)a!
—(A- Ak)gk(AZ;Ak)AZ(A — Ak)xT =: Hy + Hs + Hjs.

Using (2.6), (2.9), (3.9) it is easy to obtain

1| < VAR = re(m)ll|27]] < 20k A*A — AfAL|| <

N >

| S

1H2|| < 1gr (M) VAL (A = Ap)lllla]] < 20k[| A7 (A = Ay <

1H3 ] < lge(MIIA — Akl 4%(A = Al
< 20k%|| A = AR[lIlAR(A = ARl <

> >

Collecting above estimates we have
5 3
Fi|| <=9 | < =9.
1E ] =< 20, Bl <5

Hence 1
|1Z4)) < 6.

Substituting obtained estimates for the elements Z; — Z4 in (3.19) we
find the required estimate. O

4. Finite-dimensional algorithm

Proposed finite-dimensional algorithm of solving (1.1) with operators
A € 'H" consist in combination of 1-method and adaptive discretization
strategy (3.14)—(3.17).

Algorithm

1. Given data: A € H", 9, fs, p.
2. Iteration by £k =1,2,3,...

e choosing discretization level n as minimal integer which satis-

fied 5
(1423272 < ok (4.1)
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e if n is changed then k := 1 and Galerkin information is com-
puted

(f67 ei); ie (22n(k—1), 22n(l<:)} ( )
4.2
(Aeja ei)v (27]) € Fn(k:) \Fn(k—l);

e computation of k-th approximation
3y =34 +oR(F_y — )_y) + we AL ) (fs — An(k)ji—ﬂv
where o, wy, are calculated by (2.2).
3. Stop rule by discrepancy principle
| An(ry % — Pyzncie) f5 || < b6,
| Angey2h — Pooni f5 |> 00, k < K,
where b > ¢; + 1+ V2.
d

4. Approximate solution: .

Lemma 4.1. If discretization level n is choosen from (4.1) then for ope-
rators A € H" and Ay (3.15) conditions (3.16)—(3.17) are satisfied.

Proof. Inequalities (3.16) were proven in [5, Lemma 1]. The first two
inequalities in (3.17) can be proven in the same way and the last one
follows from [10, Lemma 3.3] if we take into consideration that A* € H"
and domain I' is symmetrical with respect to the diagonal of coordinate
plane. O

To estimate accuracy of the proposed algorithm we need following
statement.

Lemma 4.2. Let K be a number of iteration such that (4.3) is hold.
Then there is a constant by > 0 such that

|Azg — f|| < bad.

1
At the same time, if K > @(Vﬁ, where ¢z = (p(1 4 2" )K a1 ) 3T

2
there is a constant by, 0 < by < by, such that

7

b16 < [[Azk — f]]-
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Proof. Taking into account (4.1) for any k < K and f = Ax', A € H",
ot € My,p(A)
I(L = Pozniy) f| < 6.

Now we use representation
ARgy, = = Apig = Py fs + Ppnco (fs = ) + (Pyniwy = f. - (44)

Due to orthogonality of Pyong (fs — f) and (Pyeni) — I)f we have

| Poaneey (fs — f) + (Poznky — I)f|?
= || Pyoncry (f5s — F)II? + | (Pooncey — D f|I? < 262,

Then for k = K from (4.3) it follows that
lAkds — fI < (b+V2)s.
According to Lemma 3.4 we have
1(Azg — f)Il < b2,

where by = b+ ¢; + V2.
Now we have to obtain lower bound. Taking into account represen-

tation
Arpy — [ = (Azy — f) — (Azy, — Azgq)
we find
[Azp—1 = fIl < [[Azk — fIl + [[Alzr — zr-1)]- (4.5)

Using (2.3) we have

Ty — Tp_1 = (gu(ATA)A*A — g1 (A*A)A* Azt
= —(ri(A*A) — r_1 (A*A))zl.

Then

A(zr — zk1)|| = [ A(re(A* A) — 1y (A% A))| AlP0]|
<ol sup [re@I"F = ()1 |
0<i<1

§p< sup 1“7 (1) + sup Z#Tﬂrk—l(l))
0<I<1 0<i<1

< PRt (k=W 4 (k — 1)~ (D)

1
o ()
<p(14+2071) ki o~ 0D,

2
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Let K > @(Vﬁ, where ¢z = (p(1 + 2" )k 441 ) ¥+, Then
2
[AGzy — 1) <0
and due to (4.5)
[Azg = I = Az -1 = f]| =4 (4.6)
Using reverse triangle inequality to (3.19) for k = K — 1 we obtain

lAzk—1 = f1| 2 |Ax—1d% 1 = fIl = c10. (4.7)

Now we consider representation (4.4) for k = K — 1. Applying triangle
inequality to it we have

1Ak —13% 1 = fIl 2 | Ak—1@% 1 — Pyzai f5]] — V20
Than taking into consideration (4.6), (4.7) and (4.3) we obtain
[Azg — fIl = b1,

where by = b —¢; — (1 +V/2). O

5. Optimality of the algorithm.

Theorem 5.1. Algorithm (4.1)—(4.3) achieves the optimal order of ac-
curacy O(5*/ 1)) on the class of equations (1.1) with operators A € H"
and normal solutions x7 € M, ,(A).

Proof. Due to (3.4), Lemma 3.1 and the first inequality in Lemma 4.1
we have

[ Azk — [ |l

B
) ) < Pt (bad) e
H,

ek K = |ex(0)] (

1
It is follows from the second inequality in Lemma 4.1 (for K > cod™ #+1)
that

1 1
=i () S0 (FheR) e e
TK — 1

1 __1
where cg3 = (M(“b—tlm) #+1 . In other hand, for K < ¢od #+1 we immedi-
ately obtain
K
0K < codrtt,
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Substituting the estimates in (3.10) and taking into consideration (3.16)—
(3.17) we have

ot = dxc 1< P (b20) 75T + 20757+ aRiT = 67T,

1
where & = (pby)#+1 + 3n, n = max {cg, c3}. O

Corollary 5.1. To achieve the optimal order of accuracy on the consi-
dered class of equations in the framework of algorithm (3.15)—(4.3) it is
enough to calculate

O(6~ 1 log!*+1/7 51 (5.2)

of information functionals (4.2).

Proof. To prove this statement it is sufficiently to estimate volume of the
inner products that is equivalent to square of figure I',,, which is equal
to (n 4 1)22". Using (4.1) and (5.1) in this expression we have estimate
(5.2). O

As we remind in Section 1 to achieve the optimal order of accuracy
in traditional Galerkin discretization scheme it is necessary to calculate
O(672/7) inner products (4.2). Thus algorithm (4.1)-(4.3) is more eco-
nomic compare with the methods proposed in [9] which use traditional
Galerkin discretization scheme.
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