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CONDITIONS OF SOLVABILITY OF THE DIRICHLET PROBLEM
FOR DEGENERATE ANISOTROPIC ELLIPTIC SECOND-ORDER
EQUATIONS WITH L!-DATA

In this article, we deal with the Dirichlet problem for a class of degenerate anisotropic elliptic second-
order equations with L!-right-hand sides in a bounded open set of R™ (n > 2). This class is described by
the presence of a set of exponents ¢, ..., ¢, and of a set of weighted functions v1, ..., v, in growth and
coercivity conditions on coefficients of the equations under consideration. On the basis of general theorems
obtained in one of our recent work, we establish conditions of existence of T-solutions and W-solutions
of the given problem for model cases where n is an even number, g1 = ... = ¢n/2 < qnj241 = ... = G
and v; are some power weights.

Keywords: degenerate anisotropic elliptic second-order equations, L' -data, Dirichlet problem, T-solution,
W -solution, conditions of existence of solutions.

1. Introduction. In [8], the Dirichlet problem was studied for a class of degenerate
anisotropic elliptic second-order equations with L!-right-hand sides in a bounded open set
Q of R™ (n > 2). This class is described by the presence of a set of exponents q1,...,q,
and of a set of weighted functions vq,...,v, in growth and coercivity conditions on
coefficients of the equations under consideration. The exponents ¢; charac-terize the rates
of growth of the coeflicients with respect to the corresponding derivatives of unknown
function, and the functions v; characterize degeneration or singularity of the coefficients
with respect to the spatial variable. This is the most general situation in comparison
with works of other authors (cf. [1-6, 9]).

Observe that the initial assumptions on the exponents ¢; and the functions v; in [§|
are as follows: ¢; € (L,n), v; : @ - R, 1 > 0in Q, 1 > 0 a.e. in Q, v; € L (D)
and (1/1;)Y(@=1) ¢ L1(Q). On the basis of results obtained in [7], in [8] we proved, in
particular, theorems on the existence of T-solutions and W-solutions to the investigated
Dirichlet problem. The statements of these theorems contain additional conditions on
the numbers ¢; and the exponents of increased summability of functions 1/v; and v;.

In the present article, we give equivalent formulations of the mentioned additional
conditions on g; and v; for model cases where n is an even number, g1 = ... = ¢, /3 <
Inj24+1 = - .- = qn and v; are some power weights with degeneration or singularity in .

2. Preliminaries. Let n € N, n > 2, Q be a bounded open set of R”, and let for
every i € {1,...,n} we have ¢; € (1,n). Weset q={¢; :i=1,...,n}.

Let for every i € {1,...,n}, v; be a nonnegative function on 2 such that v; > 0 a.e.
in €,
1\ Y(@i—1)
werha, (1) er'@. )
7

We set v = {v; : i = 1,...,n}. We denote by W14(v, Q) the set of all functions
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u € LY(Q) such that for every i € {1,...,n} there exists the weak derivative D;u and
l/i’DZ‘u|qi S Ll(Q)
Let || - [l1,4» be the mapping from W14(r, Q) into R such that for every function

u€ Whi(y, Q),
n 1/qi
ol = [ Jado+ 3 ([ wiDatrac) .
Q = \Jo
The mapping || - [|1,4» is @ norm in W14(v,Q), and, in view of the second inclusion of
(1), the set Wh4(r,Q) is a Banach space with respect to the norm | - [|1,4,,. Moreover,

by virtue of the first inclusion of (1), we have C§°(Q) ¢ Whi(v, Q).
We denote by Wh4(1,Q) the closure of the set C§°(Q2) in the space W14(v,Q).

o
Obviously, the set Wh4(v, ) is a Banach space with respect to the norm induced by
o
the norm | - ||1,4.,. We observe that C§(Q) € Whe(v, Q).

We define
(1)
q=1|- -
no— G
and for every m € R™ such that m; > 0,7=1,...,n, we set
n —
1+mi )
Pm =N -1
" <Z m;q;

i=1
Observe that if m € R™ and for every ¢ € {1,...,n}, m; > 1/(¢g; — 1), then p,, > 1.
Moreover, if m € R™ and for every i € {1,...,n} we have m; > 1/(¢; — 1) and 1/y; €

L™i(2), then the space I/?/Lq(z/, 2) is continuously imbedded into the space LPm(€2). This
fact follows from Proposition 2.8 of [7]. In turn, the mentioned proposition was established
with the use of an imbedding result for the nonweighted anisotropic case [10].

Further, let for every £ > 0, Ty : R — R be the function such that

Ti(s) = s if |s| <k,
K= ksigns if |s| > k.

We denote by T14(v, Q) the set of all functions u : 2 — R such that for every k > 0,
Ti(u) € WHa(v, Q). Note that Wh4(v, Q) C T19(v, Q).

For every u : 2 — R and for every x € {2 we set

k(u,z) =min{l € N : Ju(z)| <}

DEFINITION 1. Let u € 749(v, Q) and i € {1,...,n}. Then d;u : Q — R is the function
such that for every z € Q, d;u(r) = DTy q)(u)().

Observe that if u € 759(v,Q) and i € {1,...,n}, then for every k > 0, D;Ty(u) =
it - Lgjy|<ky a-e. in Q (see [7, Proposition 2.4]).
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DEFINITION 2. If u € ’5’1"1(1/, Q), then du :  — R™ is the mapping such that for every
x € Q and for every i € {1,...,n}, (du(x)); = diu(z).

3. General theorems on solvability of the Dirichlet problem. Let ¢q,co > 0,
91,92 € LY(Q), g1,92 > 0 in Q, and let for every i € {1,...,n}, a; : Q@ x R®" — R be a
Carathéodory function. We suppose that for almost every x € 2 and for every £ € R",

n

> (/)i (@) ai (e, )4/ 47 < Clz vi(2)[&i] " + g1(2),

=1 =1
n
Z az z,€)&; CZZ Vz |€z’ql - 92( )
=1

Moreover, we assume that for almost every z € Q and for every &, & € R", £ # ¢/,
n

> lai(,6) —ailz, ))& - €) > 0.
i=1
Let f € L'(£2). We consider the following Dirichlet problem:

u=0 on 0N. (3)

DEFINITION 3. A T-solution of problem (2), (3) is a function v € 719(v, Q) such that:
(i) for every i € {1,...,n}, a;(z,du) € L*(Q);
(i) for every function w € C}(9), / { Z ai(x,(Su)Diw}dx = / fwdz.
o i Q
Theorem 1. Suppose that there exist m,o € R™ such that the following conditions
are satisfied:

Vie{l,...,n}, m; > 1/(¢; — 1), 1/v; € L™ (Q), (4)
: 1 (¢ —1)q :

Vie{l,...,n}, 0,>0, —<1—-—"—"22 1y eL%Q). 5

(L....n) L1 (ool @ )

Then there exists a T-solution of problem (2), (3

)-
DEFINITION 4. A W-solution of problem (2), (3) is a function v € W1(Q) such that:
(i) for every i € {1,...,n}, a;(z, Vu) € LY(Q);

n
(i) for every function w € C}(9), / { Z a;(z, Vu)Diw}dx = / fwdz.
o Ui Q
Theorem 2. Suppose that there exist m,o € R™ with positive coordinates such that
the following conditions are satisfied:

Vie{l,...,n}, ﬁ —1—7; 1/v; € L™i(Q), (6)
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: 1 (@ —1)g
Vie{l,...,n}, —<1l-——==
{ J 0; pm(q—1)
Then there exists a W-solution of problem (2), (3).
Theorems 1 and 2 were proved in [8].
4. Equivalent statements of conditions of solvability of the Dirichlet problem
for some model cases. We suppose that n = 2] where [ € N, and let o and § be numbers

such that

, v € L7(Q). (7)

l<a<p<n. (8)
We assume that
g =ca if i€{1,...,1}, 9)
Ga=pif ie{l+1,...,n} (10)
Since n > 2 and 8 > 1, we have
n
1< <

and since, by (8), a < f, from (9) and (10) it follows that
Vie{l,...,n}, a<gqg</p. (11)

Moreover, in view of the definition of the number § and (9) and (10), we have

L_1/1 1 12)
7 2\a B)
Finally, if m € R, and m; > 0, i = 1,...,n, from the definitions of p,, and g it follows
that
1 1 1
— > - ——. (13)
Pm q n

Proposition 1. Suppose that for every i € {1,...,n}, v; = 1. Then the following
assertions are equivalent:

(a) there exist m,o € R™ such that conditions (4) and (5) are satisfied,

(b) the inequality

On

Wn_2 < (14)
15 valid.

Proof. Suppose that assertion (a) holds. Then, by virtue of condition (5) and assumption

(10)7

-1 1
pzt L (15)
DPm
Since, in view of condition (4), m; > 0,7 =1,...,n, using (13) and (15), we obtain
n n—1
- <1+ . 16
. 3 (16)
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Hence, using equality (12), we conclude that inequality (14) is valid. Thus, assertion (b)
holds.

Conversely, let assertion (b) hold. Then from (12) and (14) we obtain that inequality
(16) is valid, and therefore, (g — 1)/(8 — 1) > (n — q)/n. Taking this inequality into
account, we fix a number ¢ such that

1
t> 17
T a—-1’ (17)
1 9g-1 n-—g
S - S 18
t -1 n (18)
From (18) it follows that
7 1\B-1
1-(1—-—=4+-|——>0.
< n+t)q—1
Taking this inequality into account, we fix s > 0 such that
1 7 1\8-1
-<1l1—-{l—-=4-]—. 19
s ( n+t>q—1 (19)
Now, let m,o € R™ be such that
m;=t, i=1,...,n, (20)
oi=s, 1=1...,n. (21)

Using (11), (17) and (20) along with the fact that v; =1, i =1,...,n, we establish that
condition (4) is satisfied. At the same time, using (20), we find that g/p,, = 1—g/n+1/t.
This and (19) imply that
Loy B-la
S Pm(q—1)
Using (11), (21) and (22) along with the fact that v; = 1,7 =1,...,n, we establish that
condition (5) is satisfied. Thus, assertion (a) holds. The proposition is proved.
Proposition 2. Suppose that for every i € {1,...,n}, v; = 1. Then the following
assertions are equivalent:
(a) there exist m,o € R™ with positive coordinates such that conditions (6) and (7)
are satisfied,
(b) the inequality

(22)

Bn (3n-2)8
max{2ﬁ+n_2, (2ﬁ—1)n}<a (23)

1s valid.

Proof. Suppose that assertion (a) holds. Then, by virtue of condition (6) and assumption

9), pm(g—l) < a — 1. Hence, using (13), we get % <1—2=1 This and (12) imply that

(B3n —2)B < (26 — 1)na. (24)
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Moreover, by condition (7) and assumption (10), we have (6 —1)/pm, < 1 —1/q. Hence,
using (12) and (13), we obtain that fn < (28 + n — 2)a. This and (24) lead to the
conclusion that inequality (23) is valid. Thus, assertion (b) holds.

Conversely, let assertion (b) hold. Then from equality (12) and the inequality (3n —
2)3 < (28 — 1)na we deduce that

— < a— 1. 25
n(g—1) 25)
Moreover, from equality (12) and the inequality fn < (26 + n — 2)a we infer that
n/q < 1+ (n —1)/8. Therefore, (n —q)/n < (g —1)/(8 — 1). Taking into account this
inequality and (25), we fix ¢ > 0 such that

1 g-1 —-q
<Q[a_1_nq], (26)
t 7 n(q—1)
1 9g-1 n-—g
Z < B 27
t -1 n (27)
From (26) it follows that
11 1 q 1
(G-1+3)- Ly <a-1-1. (28)
g n qt/)q-—1 t
and from (27) we get
g 1 -1
1—<1—q >ﬂ>0
n t)qg—1
Taking the latter inequality into account, we fix s > 0 such that
1 g 1\p-1
- <1l—-|1l—=4+-)—. 29
s < n * t) qg—1 (29)
Now, let m,o € R™ be such that
m;=1t, 1=1,...,n, (30)
oi=s, i1=1,...,n. (31)

Using (30), we obtain that
1 1 1 1

— =-——+ . 32
pm ¢ m g (3)
This along with (11), (28) and (30) implies that for every i € {1,...,n},
q 1
— = <¢—1-—,
Pm(q—1) my
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and obviously, for every i € {1,...,n} we have 1/v; € L™(Q). Therefore, condition (6) is
satisfied. Moreover, from (11), (29), (31) and (32) we derive that for every i € {1,...,n},

1 i —1)q
1 _le-1g 7
oy pm(q - 1)
and obviously, for every i € {1,...,n} we have v; € L7 (). Therefore, condition (7) is

satisfied. Thus, assertion (a) holds. The proposition is proved.
REMARK 1. The necessary requirements for the validity of inequality (23) are as

follows:
5n —4

n?+2n—2"
In fact, from (23) and the initial assumption o < 3 it follows that (3n —2)/n < 26 — 1.
Hence, § > 2 —1/n. Moreover, by virtue of (23), we have n/a < 2+ (n—2)/3. This and
the inequality 3 > 2 — 1/n imply that a > 2 — (5n — 4)/(n? + 2n — 2).

REMARK 2. Observe that if 5 > 2 — 1/n, then

6>2—-1/n, a>2-—

n 3n—2 1
maX{25+n—2’ (26—1)71} <

Taking this into account, we obtain that if 5 > 2 —1/n,

n 3n — 2 ce<
max e <
284+n—-2" (26—1)n

and o = (e, then inequality (23) is valid.
Let 6 denote the origin in R™, i.e. § € R™, and for every i € {1,...,n}, 6; =0.
Proposition 3. Let 0 € Q, v, 7 > 0, and suppose that the following assertions hold:

if 1e{l,...,l}, then for every x € Q we have v;(x) = |z|7, (33)
if te{l+1,...,n}, then for every x € Q we have v;(x) = |z| . (34)
Then the following assertions are equivalent:

(a) there exist m,o € R™ such that conditions (4) and (5) are satisfied,
(b) the inequalities

y<nla—1), 71<n(f-1), (35)

Y, T _a28+n-2)—pPn
a f a(f—1)

are valid.

Proof. Suppose that assertion (a) holds. Let i € {1,...,{}. From condition (4) and
assumption (9) it follows that m; > 1/(a — 1) and 1/v; € L™i(R2). The latter inclusion
along with the inclusion § € Q and (33) implies that m; < n/7. From the given
inequalities for m; we deduce that the first inequality of (35) is valid. Now, let ¢ €
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{l+1,...,n}. From condition (4) and assumption (10) it follows that m; > 1/(8 — 1)
and 1/v; € L™i(§2). The latter inclusion along with the inclusion 6 € € and (34) implies
that m; < n/7. From the inequalities obtained for m; we infer that the second inequality
of (35) is valid. Moreover, owing to the above considerations, we have

. 1 v
v 1,...,1 — > — 37
ZG{? ’}7 m’L >n’ ( )
Vie{l+1 o T (38)
i el >
Using (9), (10), (37) and (38), we get
1 1 1 1/~ 7
pm>q_n+2n<a+ﬂ> (39)

Next, from condition (5) and assumption (10) it follows that (3 —1)/pm < 1 —1/g. This

and (39) imply that
1 1 1 /v 7 1
B Y P (0 A 1--.
(6 )[q n+2n<a+ﬁ)]< =

Hence, using (12), we deduce that inequality (36) is valid. Thus, assertion (b) holds.

Conversely, suppose that assertion (b) holds. From inequalities (35) and (36) it follows
that n(aﬂ’_l) <1, 7=y <1 and a(B—-1)(2 + %)[a(Zﬁ +n—2)—pn]"t <1
Taking these inequalities into account, we fix a number € < 1 such that

Y T
w1 "% a1 ~° (40)
v,T -1
a(f—-1) <a + ﬂ) [a(284+n—2)—pn]" <e. (41)

Using (12) and (41), we establish that

gs-1)1 1 1 (v 7
G e (R )] e

1 gqg—-17J1 1 1 ([~ 7
S - AR i AN 42
s< g—1 |g§g n 2ne a+6 (42)
Now, let m, o € R™ be such that
mi= "5 i=1,...,1, (43)
m;=—, 1=1+1,...,n, (44)
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o; = 8, i=1,...,n. (45)

Using (9), (10), (33), (34),(40), (43), (44) and the inequality ¢ < 1, we establish that
condition (4) is satisfied. At the same time, by virtue of (9), (10), (43) and (44), we have

1 1 1 1 (’y 7‘)
—=—-—-——+—=-+3)
Pm q N 2ne\a 0
Taking into account this equality and using (11), (33), (34), (42) and (45), we establish
that condition (5) is satisfied. Thus, assertion (a) holds. The proposition is proved.

REMARK 3. From the statements of Propositions 1 and 3 it follows that in the
nonweighted case and in the case of power weights with positive exponents, for the
existence of m, o € R™ satisfying conditions (4) and (5), the necessary requirement on «
and [ is the same, exactly o > n/(20 +n — 2).

Proposition 4. Let 0 € Q, v, 7 > 0, and suppose that assertions (33) and (34) hold.
Then the following assertions are equivalent:

(a) there exist m,o € R™ with positive coordinates such that conditions (6) and (7)
are satisfied,

(b) the inequalities

26—-1)y+71<an(26—-1)— (3n—2)8, (46)
v+ (2a—1)7 < a(26n — 3n+2) — fn, (47)
v, T _a28+n-2)—Pn

a+ﬁ< alG—1) (48)

are valid.
Proof. Suppose that assertion (a) holds. Let i € {1,...,l}. By condition (6) and
assumption (9), we have
q
- <a-1 om@—1)
Moreover, since, by condition (6), 1/v; € L™ (), from this inclusion and (33) we deduce
that ym; < n. This and (49) imply that

(49)

q
pm(q - 1) .

1<a—1—
n

(50)
Analogously, taking an arbitrary i € {l{+1,...,n}, by virtue of condition (6) and assump-
tion (10), we have
N <pf-1- 7 .
m; pm(q—1)
Furthermore, since, by condition (6), 1/v; € L™i(Q), from this inclusion and (34) we
derive that 7m; < n. This and (51) imply that

(51)

q

5<ﬁ_1_m' (52)
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From the above considerations it follows that assertions (37) and (38) holds, and then, in
view of (9) and (10), inequality (39) is valid. Using (12), (39) and (50), we establish that
inequality (46) is valid, and, by means of (12), (39) and (52), we find that inequality (47) is
valid. Finally, from condition (7) and assumption (10) it follows that (8—1)g < pm(g—1).
Hence, using (12) and (39), we establish that inequality (48) is valid. Thus, assertion (b)

holds.

Conversely, suppose that assertion (b) holds, Then, by virtue of inequalities (46)—(48),

we have

(28 = 1)y + rllan(28 - 1) - 3n - 2)5] " <1,
(v + (2 — 1)7][a(26n — 3n +2) — Bn] ! < 1,

VT -
a(ﬂ—l)(a+ﬁ)[a(2ﬂ+n—2)—ﬁn] L<1

Taking these inequalities into account, we fix a number € < 1 such that
(28 — 1)y +7][an(26 —1) — (3n —2)8] ! < ¢,
[y + (2o — D)7][a(26n — 3n+2) — Bn] ! < ¢,

7,7 -1
a(ﬂ—l)(a+ﬁ>[a(26+n—2)—6n} <eg,

1 1+1 7+T
,u—a n 2ne\a ()

Using (12), (53), (54) and (56), we obtain the inequalities

and set

#<O&—1—l, 7&</@_1_l7
q—1 ne q—1 ne

(53)
(54)

(55)

(57)

and using (12), (55) and (56), we get (8 —1)g < g — 1. Taking into account the latter

inequality, we fix s > 0 such that

1 —1)g
1o _mB-Ng
S q—1
Now, let m, 0 € R" be such that
mz:@a Z_la ala
m;=—, i=101+1,...,n,
o; = S, 1=1,....n

(58)
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From (9), (10), (56), (59) and (60) it follows that

Hpm = 1. (62)
Using (9), (10), (57), (59), (60) and (62), we establish that

7 1
b 1. (63)

VZG 1,...,”, e —
{ } pm(q—1) m;

Moreover, using (33), (34), (59), (60) and the inequality ¢ < 1, we obtain that for every
ie{l,...,n}, 1/y; € L™(Q). This and (63) imply that condition (6) is satisfied. Finally,
using (11), (33), (34), (58), (61) and (62), we establish that condition (7) is satisfied. Thus,
assertion (a) holds. The proposition is proved.

REMARK 4. From the statements of Propositions 2 and 4 it follows that in the
nonweighted case and in the case of power weights with positive exponents, for the
existence of m, o € R™ with positive coordinates satisfying conditions (6) and (7), the
principal necessary requirement on « and [ is the same, exactly is inequality (23). To
see this, it is sufficient to note that by virtue of (46) and the initial inequality o < 3, we
have 3 > 2 — 1/n, and then, in view of (46), a(26n —3n+2) — Bn > 0.

Proposition 5. Let 0 € Q, v, 7 > 0, and suppose that the following assertions hold:

if ie{l,...,1}, then for every x € Q\ {0}, vi(x) =|z|77, (64)
if ie{l+1,...,n}, then for every v € Q\ {0}, vi(z) = |z|". (65)

Then the following assertions are equivalent:
(a) there exist m,o € R™ such that conditions (4) and (5) are satisfied,
(b) the inequalities

alf(n —2) — a(n - 26)] Ble(26 +n —2) — fn]
7S 208 —a—pf ’ T< 208 —a— 3 (66)
are valid.
Proof. First of all we observe that, in view of (12),
g (1 1\ n(a+p)—2ap
5 ) = Seas e o

Suppose that assertion (a) holds. Let ¢ € {1,...,l}. Then, by virtue of condition (5)
and assumption (9), we have o; > 0,
1 (a—1)g

— < 1-=

g; pm(q_ 1) <68)

and v; € L7(§2). From the latter inclusion and (64), taking into account that 6 € €2, we

deduce that yo; < n. Then, by (68), 1 <1 — p(,:(_qlf)% . This along with (13) and (67)
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implies that the first inequality of (66) is valid. Analogously, let i € {{+1,...,n}. Then,
by virtue of condition (5) and assumption (10), we have o; > 0,

1 (B—1)g (69)

and v; € L7(Q). From the latter inclusion and (65), taking into account that 8 € Q,
we derive that 70; < n. Then, by (69), Z < 1 — -C=U% This along with (13) and (67)
implies that the second inequality of (66) is valid. Thus, assertion (b) holds.

Conversely, suppose that assertion (b) holds. Then, by virtue of (66) and (67), we
have Dg/1 1 Dg/1 1

n g—1 \q n n qg—1 q n
Taking these inequalities into account, we fix s1, so > 0 such that
1 —-g/1 1
7<<1—(0‘)q<—>, (70)
n S qg—1 qg n
1 —g/1 1
T<<1—M<—>, (71)
n S qg—1 q n
and then we fix a number ¢ such that
1
t> , 72
1 (72)
a—1 (al)q(l 1) 1
— <1l—-— —— = - —, 73
(@— 1)t g—1 qg n S1 (73)
-1 —-g /1 1 1
ol 6 )q<—>—. (74)
(@— 1)t q-1 \q n) s
Now, let m, o € R™ be such that
m;=t, i=1,...,n, (75)
oi=¢81, i=1,...,1, (76)
o; =89, 1=1+1,...,n. (77)

Using (11), (64), (65), (72) and (75), we establish that condition (4) is satisfied. At the

same time, in view of (75), we have
— ==+ —. (78)
From (9), (10), (73), (74) and (76)—(78) it follows that

1 i — 1)q
Vie{l,...,n}, o; > 0, —<1—u.
g pm(q_l)
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Moreover, using (64), (65), (76), (77) along with the inclusion # € 2 and taking into
account that, in view of (70) and (71), vs1 < n and 7s2 < n, we establish that for every
ie{l,...,n}, v; € L7(Q). This and (79) imply that condition (5) is satisfied. Thus,
assertion (a) holds. The proposition is proved.

REMARK 5. From the statements of Propositions 3 and 5 it follows that, for the
existence of m, o € R" satisfying conditions (4) and (5), the necessary requirements on «
and @ in the case of power weights with negative exponents in general are stronger than
that in the case of power weights with positive exponents.

Proposition 6. Let 0 € Q, v, 7 > 0, and suppose that assertions (64) and (65) hold.
Then the following assertions are equivalent:

(a) there exist m,o € R™ with positive coordinates such that conditions (6) and (7)
are satisfied,

(b) the inequality

(3n —2)0

and inequalities (66) are valid.

Proof. Suppose that assertion (a) holds. Then, by virtue of condition (6) and assumption
(9), we have 1/p, < (a«—1)(g—1)/q. Hence, using (13), we get 1/g < 1— =1 This and
(12) imply that inequality (80) is valid. The validity of inequalities (66) is established in
the same way as in the proof of Proposition 5. Thus, assertion (b) holds.

Conversely, suppose that assertion (b) holds. Then, taking into account (66) and (67),
we fix s1,s2 > 0 such that inequalities (70) and (71) are valid. Observe that, by (12) and
(80), =L (£ — 1) < o — 1. Taking into account this inequality and (70), (71), we fix a

1 g-1\g
q q 1 1
e I )

number ¢ > 0 such that

(-1t 7-1\7 n
and inequalities (73) and (74) are valid. Now, let m, 0 € R"™ be such that m; = t,
i=1,...,n0, =s1,t=1,...,l,and 0; = s, 1 =1+ 1,...,n. It is easy to see that

equality (78) is valid. Then, using (11), (64), (65) and (81), we establish that condition
(6) is satisfied. Moreover, using (9), (10), (64), (65), (73), (74), (78), the inclusion 6 € Q
and the inequalities ys; < n and 7s2 < n, we obtain that condition (7) is satisfied. Thus,
assertion (a) holds. The proposition is proved.

REMARK 6. From the statements of Propositions 4 and 6 it follows that, for the
existence of m, o € R™ with positive coordinates satisfying conditions (6) and (7), the
necessary requirements on « and J in the case of power weights with negative exponents
in general are stronger than that in the case of power weights with positive exponents.

Proposition 7. Let 0 € Q, v, 7 > 0, and suppose that the following assertions hold:

if ie{l,...,1}, then for every x € Q, vi(x) = |z|7, (82)
if ie{l+1,...,n}, then for every x € Q\ {6}, vi(z) = |z|™". (83)

Then the following assertions are equivalent:
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(a) there exist m,o € R™ such that conditions (4) and (5) are satisfied,
(b) the inequalities
v < n(a—1), (84)
YyB-1)+72a—-1-a/f) <al26+n—2)—pn (85)
are valid.

Proof. Suppose that assertion (a) holds. Let ¢ € {1,...,{}. Then, by condition (4)
and assumption (9), m; > 1/(a — 1) and 1/v; € L™ (). The latter inclusion along with
the inclusion 0 € 2 and (82) implies that ym; < n. From the given inequalities for m; we
deduce that inequality (84) is valid. Moreover, we conclude that for every i € {1,...,1},
1/m; > ~y/n. Using this fact and (9), we get

1 1 1
S T 86
Pm g N + 2an (86)
Next, let i € {{ +1,...,n}. By condition (5) and assumption (10),
1 —1)g
7<1_(B7 )7 (87)
a0 pm(7—1)

and v; € L7 (). The latter inclusion along with the inclusion # € 2 and (83) implies
that 7o; < n. From this and (87) it follows that T <1 — pf(;j% . Hence, using (12) and
(86), we establish that inequality (85) is valid. Thus, assertion (b) holds.

Conversely, suppose that assertion (b) holds. Then, by virtue of inequalities (84) and
(85), 1<n(a—1)/v, 1< m [a(26 +n—2) — n —71(2a — 1 — o/ 3)]. Taking these
inequalities into account, we fix a number £ > 0 such that

1 -1
1<7<M, (88)
£ 8l

1 1
g<W[O&(QB—FTL—Q)—,871—7'(204—1—(1/6)]

The latter inequality implies that 0 < «(264+n—2)—fn—72a—1—a/F)—v(5—1)/c.
Taking this inequality into account, we fix a number ¢ such that

t> 51_1’ (89)
(ﬁ_ﬁ?a”<a(25+n—2)—gn—T(za—1—a/ﬂ)—7“;”, (90)

and define L1 )
d==—=+4 " (91)

g n 2ane + 206t
From (12), (90) and (91) it follows that 7/n < 1—(8—1)dg/(g—1). Taking this inequality
into account, we fix s > 0 such that

(8 —1)dg.

<-<1-

: (92)

T
n
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Now, let m, o € R™ be such that

m;=—, i=1,...,1l, (93)
oy

m; = t, i=1+1,...,n, (94)

0; = s, i=1,...,n. (95)

Using (9), (10), (91), (93) and (94), we establish that
dpm =1, (96)
and from (9), (10), (88), (89), (93) and (94) we derive that
Vie{l,...,n}, m; = 1/(qi —1). (97)

Moreover, using (82), (83), (93), (94), the inclusion 6 € € and the inequality € < 1, we
establish that for every i € {1,...,n}, 1/1; € L™(Q). This and (97) imply that condition
(4) is satisfied. Finally, from (11), (92), (95) and (96) we deduce that

: 1 (¢ —1)q
Vie{l,...,n}, o; > 0, 0¢<1 @ —1)

and using (82), (83), (92), (95) and the inclusion 6 € 2, we establish that for every
i € {1,...,n}, v; € L7(R). Therefore, condition (5) is satisfied. Thus, assertion (a)
holds. The proposition is proved.

REMARK 7. From the statements of Propositions 1, 3 and 7 it follows that in the case
of power weights defined by assertions (82) and (83), for the existence of m, o € R”
satisfying conditions (4) and (5), the necessary requirement on « and (3 is the same as in
the nonweighted case and in the case of power weights with positive exponents, exactly
a>pn/(268+n—2).

Proposition 8. Let 0 € Q, v, 7 > 0, and suppose that assertions (82) and (83) hold.
Then the following assertions are equivalent:

(a) there exist m,o € R™ with positive coordinates such that conditions (6) and (7)
are satisfied,

(b) the inequality

a(26—1)n—(3n—2)p

v < 25 1 (98)

and inequality (85) are valid.

Proof. Suppose that assertion (a) holds. Then assertion (a) of Proposition 7 holds.
Therefore, by virtue of Proposition 7, inequality (85) is valid, and, according to the first
part of the proof of Proposition 7, inequality (86) is also valid. Let 7 € {1,...,l}. By
condition (6) and assumption (9), we have

1
—<a-1-—"

m; pm(q - 1) (99)
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and 1/v; € L™i(Q). The latter inclusion along with (82) and the inclusion 6 € € implies
that ym; < n. From this and (99) we derive that 1 < a—1— ﬁ . Hence, using (12)
and (86), we infer that inequality (98) is valid. Thus, assertion (b) holds.

Conversely, suppose that assertion (b) holds. Then, by virtue of inequalities (98) and
(85), we have

/(28— 1)[a(28 = 1)n — (30— 28] < 1,
y(B—Da@264+n—-2)—Bn—72a—1-a/f)] ! < 1.

Taking these inequalities into account, we fix a number € < 1 such that
(28 = D[a(26 ~1)n - (3n = 2)8] 7 <,

Y(B—Da@2B+n—-2)—Bn—12a—1—-a/f)] ! <e.

In turn, taking into consideration the last two inequalities, we fix a number ¢ such that
t > ne/y, (100)

(26 -1)
S

%<a@ﬁ—nn—@n—mﬁ— (101)

and inequality (90) is valid. Defining the number d by (91), from (12) and (90) we
deduce that - <1 - % . Taking this inequality into account, we fix s > 0 such that
inequality (92) is valid. Now, let m, o € R™ be such that relations (93)—(95) hold. Using
(9), (10), (91), (93) and (94), we establish that equality (96) is valid, and using (9), (11),

(12), (91), (93), (94), (96), (100) and (101), we obtain that

q 1

Vie{l,....n), —1 41—,
L A -  E ey

(102)
Moreover, since 8 €  and € < 1, from (82), (83), (93) and (94) it follows that for
every i € {1,...,n}, 1/y; € L™ (Q). This and (102) imply that condition (6) is satisfied.
Finally, using (11), (82), (83), (92), (95), (96) and the inclusion 6 € Q, we establish that
condition (7) is satisfied. Thus, assertion (a) holds. The proposition is proved.

REMARK 8. From the statements of Propositions 2, 4 and 8 it follows that in the case
of power weights defined by assertions (82) and (83), for the existence of m, o € R™ with
positive coordinates satisfying conditions (6) and (7), the necessary requirement on o
and ( is the same as in the nonweighted case and in the case of power weights with
positive exponents, and exactly is inequality (23).

Proposition 9. Let 0 € Q, v, 7 > 0, and suppose that the following assertions hold:

if 1e{l,...,l}, then for every x € Q\ {0}, vi(z) = |z|77, (103)
if ie{l+1,...,n}, then for every x € Q, vi(z) = |z|". (104)

Then the following assertions are equivalent:
(a) there exist m,o € R™ such that conditions (4) and (5) are satisfied,
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(b) the inequalities

< min {n(ﬁ _y), Ble@8+n—2) -] }

a(f—1)
V(26 =1= /) +7(a—1) <B(n—2) —a(n - 20)

are valid.

The proof of this proposition is realized by analogy with the proof of Proposition 7.

REMARK 9. From the statements of Propositions 5 and 9 it follows that in the case
of power weights defined by assertions (64) and (65) and in the case of power weights
defined by assertions (103) and (104), for the existence of m, o € R"™ satisfying conditions
(4) and (5), the necessary requirements on « and [ are the same. At the same time, from
the statements of Propositions 7 and 9 it follows that in the case of power weights defined
by assertions (103) and (104), for the existence of m,o € R™ satisfying conditions (4)
and (5), the necessary requirements on « and 3 in general are stronger than that in the
case of power weights defined by assertions (82) and (83).

Proposition 10. Let 6 € Q, v,7 > 0, and suppose that assertions (103) and (104)
hold. Then the following assertions are equivalent:

(a) there exist m,o € R™ with positive coordinates such that conditions (6) and (7)
are satisfied,

(b) the inequalities

T<a28-1n—-CBn-2)3, (2a—-1)T<a26n—3n+2)—Fn,
T a(268+n—2)—pn

E aB-1)
V(26 —1=p6/a)+71(a—1) <fB(n—2) —a(n—20)

are valid.

The proof of this proposition is realized by analogy with the proof of Proposition 8.

REMARK 10. From the statements of Propositions 6 and 10 it follows that in the case of
power weights defined by assertions (64) and (65) and in the case of power weights defined
by assertions (103) and (104), for the existence of m,o € R™ with positive coordinates
satisfying conditions (6) and (7), the necessary requirements on o and (3 are the same (in
this connection see also Remark 4). At the same time, from the statements of Propositions
8 and 10 it follows that in the case of power weights defined by assertions (103) and (104),
for the existence of m, o € R™ with positive coordinates satisfying conditions (6) and (7),
the necessary requirements on « and 3 in general are stronger than those in the case of
power weights defined by assertions (82) and (83).

5. Theorems on solvability of the Dirichlet problem for some model cases.
On the basis of Theorems 1 and 2 and Propositions 1-10 one can obtain a set of theorems
on the existence of T-solutions and W-solutions of problem (2), (3) for model cases of
the exponents g; and the weighted functions v; considered in the previous section. For
instance, the following results hold true.
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Theorem 3. Suppose that n = 21 wherel € N, and let o and 3 be numbers such that
1< a<f<n. Assume that ¢ =« if i € {1,...,1}, and ¢ =0 if i € {l+1,...,n}.
Let 0 € Q, ~v,7 > 0, and suppose that assertions (33) and (34) hold and inequalities (35)
and (36) are valid. Then there exists a T-solution of problem (2), (3).

Theorem 4. Suppose that n = 21 wherel € N, and let o and 3 be numbers such that
l<a<pf<n Assumethat ¢; =« if i € {1,...,l},and ¢ = 3 if i € {l+1,...,n}. Let
0 € Q,~,7>0, and suppose that assertions (33) and (34) hold and inequalities (46)—(48)
are valid. Then there exists a W-solution of problem (2), (3).

Theorem 3 is a consequence of Proposition 3 and Theorem 1, and Theorem 4 follows
from Proposition 4 and Theorem 2.
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A. A. Kosanesckuii, FO. C. Topbaun
VYcnoBus paspemmumoctu 3agaun Jdupuxiie Jisi BbIPOXKJAIOMINXCS AHU3OTPOMHBIX 3JIJIUINTHU-

4eCKUX ypaBHeHHil BTOpOro mopsigka ¢ L'-mamasivm.

B crarbe paccmorpena 3anmada Jlupuxiie Ui Kacca BBIPOXKIAIONIUXCA aHU30TPOIHBIX SJUIAIITHIECKUX
yPaBHEHHH BTOPOrO TOPSKA ¢ L'-IpaBbIMy 4acTsSIMI B OTPaHHYEHHOM OTKPBITOM MHOYKECTBE IIPOCTPAH-
crBa R™ (n > 2). DTOT KI1acc XapaKTepu3yeTcs: HaJInIreM Habopa HoKasarTesei qi, . . . , ¢n 1 Habopa Beco-
BBIX (DYHKIHI V1, ..., V, B YCIOBUSIX POCTA W KOIPIUTUBHOCTH OTHOCUTEIBLHO KOX(DMUIIMEHTOB ypaBHe-
unit. Ha ocHOBe 061mx TeopeM, IOJIyYeHHBIX B OJHOM U3 HAIIMX HEJABHUX PabOT, yCTAHOBJIEHBI yCJIOBUS
cymectBoBaHust T-pemtennit u W-perennit JaHHON 3a/1a91 B MOJIEJIBHBIX CJIydastX, TJ€ 1 — YETHOE THCIIO,

q1=...=qns2 < Gnj241 = ... = qn U V; — HEKOTOPbIE CTEIICHHLIC Beca.

Karoueasbie ca08a: 6upostcOGOUUECS GHUOMPONHBLE IAAUNMUYECKUE YPABHEHUSA 8MOP020 NOPAJKG,

1 o
L -dannwie, 3adaua Jupuzxae, T-pewenue, W -pewenue, Ycaosua cyu,ecmeosarus peueHut.
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O. A. Kosanescokuii, FO. C. T'opbaunb
YmMmoBu pos3B’a3HocTi 3aga4i Jdipixiie 1Jisi BUPOJHUX aHI3OTPOIHUX EJIINTUYHUX PiBHAHDL ApPY-

roro nopaaxy 3 L'-gamumun.

VY crarTi po3riAryTO 3ama4y Jlipixsie njs Kjacy BEHPONHHX aHI30TPOIHHUX €INTHYHUX PIBHAHB JPYro-
ro nopsaky 3 Ll-mpasuMmum dacruHaMu B oOMerKeHiil Biaxpuriii muOxmHI mpocropy R” (n > 2). Leit
KJIaC XapaKTePU3yEThCs HASBHICTIO HAOOPY MOKA3HUKIB 1, . . ., ¢n 1 HAOOPY BArOBUX (PYHKILHA V1, . .., Uy
B YMOBaX 3POCTaHHsI Ta KOEPIMTUBHOCTI BiTHOCHO KoedilieHTiB piBHsaAHL. Ha OCHOBI 3arajibHUX TeopeM,
OTPUMAHWX B OJTHIl 3 HAIIKNX HEIABHIX PobiT, BCTAHOBJIEHO YMOBHU iCHyBaHHs T-po3B’s3KiB i W-po3B’sa3kiB
JlaHol 3a/1a4i B MOZAEIbHUX BUIAJKaX, Jie 1 — HapHe YHUCHO0, 1 = ... = Qn/2 < Qn/241 = -.. = Qn 1 Vi —

IesIKi CTeIleHeBl Baru.

Kao04086i caosa: 6upodii aHi3omponti esinmusmi pienanna opyzozo nopadky, L' -dani, 3adava Jipic-

se, T-pose’aszox, W -po3e’a30k, ymosu iCHY6aHHA PO36°A3KIE.
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