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ABOUT ONE MODULUS INEQUALITY OF THE ORDER p > 1

The present paper is devoted to the study of space mappings which are more general than quasiregular.
The so-called modulus inequalities of the order p, p > 1, and it’s connections with space mappings are
investigated. The analogue of the well-known Poletskii inequality has been proved for the mappings
having N, N ~! and L;(,Q)fproperty
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1. Introduction. Here we give some definitions. Everywhere below, D is a domain
in R™ n > 2, m is the Lebesgue measure in R™, m; is the linear Lebesgue measure in R.
The notation f: D — R™ assumes that f is continuous.

Recall that a mapping f : D — R is said to have the N-property (of Luzin) iff
m (f (S)) = 0 whenever m(S) = 0 for all measurable sets S C R". Similarly, f has the
N~t-property iff m (f ~1(S)) = 0 whenever m(S) = 0.

A curve v in R” is a continuous mapping v : A — R"™ where A is an interval in
R. Its locus y(A) is denoted by |v|. Given a family of curves I' in R", a Borel function
p:R"™ — [0,00] is called admissible for T', abbr. p € admT, if

[ plaids] =1

Y

for each (locally rectifiable) v € I'. Let p > 1. The p-modulus My(I") of T" is defined as

My(T) = inf / () dm(x)

pcadmI’
R

interpreted as +o0 if admI' = @. Note that M,(@) = 0; M,(I'1) < M,(I'2) whenever
[e.¢] o0

I't c I'y, and M, <U Fi> < > My(I;), see Theorem 6.2 in [8].
i=1 i=1

We say that a property P holds for p-almost every (p-a.e.) curves « in a family T" if
the subfamily of all curves in ' for which P fails has p-modulus zero.

If v: A — R” is a locally rectifiable curve, then there is the unique nondecreasing
length function [, of A onto a length interval A, C R with a prescribed normalization
ly(to) = 0 € Ay, to € A, such that [, (t) is equal to the length of the subcurve |, , of v if
t > 1o, t € A, and [,(t) is equal to —length (y|j4,) if t <to,t € A. Let g: |[y| = R" be a
continuous mapping, and suppose that the curve ¥ = go-y is also locally rectifiable. Then
there is a unique non-decreasing function L, : Ay — Ay such that L, 4 (I4(t)) = l5¢)
for all t € A. A curve v in D is called here a (whole) lifting of a curve ¥ in R™ under
f:D—->R"ify=fon.
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We say that a mapping f : D — R" satisfies the L](L;Q)—property for p-a.e. curve ¥ in
f(D), if each lifting ~ of 7 is locally rectifiable and the function L. ¢ has the N~!-pro-
perty.

Set

) B . |f(x)h]
L) = hermo} ||

[ (z,f)]
()P J(z, f) #0,
Kip(z, f) = 1, f'(x)=0,

o, otherwise

On of the main results proved in the paper is the following.
Statement 1. Let a mapping f : D — R™ be differentiable a.e. and satisfies N, N~!
and LZ(;Q)-p'ropertz‘es. Then

My(f(T)) < / Kip(x, ) - 0P(x) dm(z) (1)
D

for every family of curves T in D and p € admT.

Remark that an analog of the Statement 1 for p = n was proved in [4], see Theorem
8.6 (see also [1] and [3]).

2. Proof of the main result. Let I = [a,b]. Given a rectifiable path v : I — R”
we define a length function [, (t) by the rule I,(¢t) = S (v, [a,t]) , where S(v,[a,]) is the
length of the path 7|, 4. Let a : [a,b] — R" be a rectifiable curve in R", n > 2, and /(«)
be its length. A normal representation o of « is defined as a curve o : [0,1(a)] — R"
which can be got from o by change of parameter such that a(t) = a® (S («, [a,t])) for
every t € [0,l(a)].

Suppose that a and 3 are curves in R™. Then a notation o C 3 denotes that « is a
subpath of 3. In what follows, I denotes an open, a closed or a semi-open interval on the
real axes. The following definition can be found in the section 5 of Ch. II in [6].

Let f : D — R™ be a mapping such that f~1(y) does not contain a non-degenerate
curve, 8 : Iy — R™ be a closed rectifiable curve and « : I — D such that foa C 6. If
the length function lg : Iy — [0,1()] is a constant on J C I, then 3 is a constant on J
and consequently a curve a to be a constant on J. Thus, there exists a unique function
a* :1g(I) — D such that o = a* o (Ig|r). We say that a* to be a f-representation of «
by the respect to B if 8= f o .

REMARK 1. Given a closed rectifiable curve v : [a,b] — R"™ and ty € (a,b), let 1,(t)
denotes the length of the subcurve |y, 4 of v if t > to, t € (a,b), and I,(t) is equal to
—l(V|[t,t0)) if t < to, t € (a,b). Then we observe that properties of the L, ; connected with
the length functions [(t) and I5(t), ¥ = f oy, do not essentially depend on the choice of
to € (a,b). Moreover, we may consider that in this case ty = a because given ty € (a,b),
S(7,la,t]) = S(v, [a, to]) + 1,(t). Further, we use the notion I, (t) for I,(t) = S (v, [a,t]),
where S(v, [a,t]) is the length of the path v[(, 4, and consider that to = 0 whenever a
curve +y is closed.
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2)

The following statement gives the connection between Lz(7
properties of curves meaning above.

-property and some

Lemma 1. A mapping f : D — R™ has Ly(f) -property if and only if f~(y) does not

contain a nondegenerate curve for everyy € R™, and the f-representation v* is rectifiable
and absolutely continuous for p-a.e. closed curves 5y = f o-~.

Proof. Suppose that f has L1(92)—property. Then ~* is rectifiable for p-a.e. closed curves
5 whenever 5 = f o~ because (7*)? = v°, see Theorem 2.6 in [8]. Moreover, we observe
that f~1(y) does not contain a nondegenerate curve for every y € R" because L,yis
well-defined and has N ~!-property for p-a.e. closed curves ¥ and all v with 7 = f o .
For such ~ and 7, we have

V() =7 o l5(t) =7 o ly(t) =7 0 L7 (15(1))

and, denoting by s := [5(t) we obtain
v (s) =" 0L (s).

So v* is absolutely continuous because Lv_, }(s) is absolutely continuous, see section
2.10.13 in [2], and

7%(s1) = 7%(s2)] < Is1 — 52|
for all s1,s2 € [0,1()].

Inversely, let f~!(y) does not contain a nondegenerate curve for every y € R™. Then
L; } is well-defined for p-a.e. closed curve 4 and all v with v = f o 7, By assumption
curve 7 * is rectifiable for p-a.e. closed curve ¥ = fo-~; in particular, v*° = 70 Moreover,
for all such 4, v and v*, ly+(s) = L ]lc( s), and absolutely continuity of L f( s) follows
from Theorem 1.3 in [§|. Let I'1 be a famlly of all closed curves @ = f o v in f(D) such
that a* either is not rectifiable or L - o f ( ) is not absolutely continuous. Let I' be a family

of all curves ¥ = f o~ in f(D) such that v either is not locally rectifiable or L }(s) is
not locally absolutely continuous. Then I' > I'; and, thus, M,(I") < M,(I'1) = 0 that
implies desired equality M,(I") = 0. O
A mapping ¢ : X — Y between metric spaces X and Y is said to be a Lipschitzian
provided
dist (p(z1), p(z2)) < M - dist(z1, x2)
for some M < oo and for all 1 and zo € X. The mapping ¢ is called bi-lipschitz if, in

addition,
M*dist (x1,z2) < dist (¢ (1), ¢ (z2))

for some M* > 0 and for all 71 and xo € X. Later on, X and Y are subsets of R" with
the Euclidean distance.

The following proposition can be found in [3], see Lemma 3.20, see also Lemma 8.3
Ch. VIII in [4].

Lemma 2. Let f : D — R” be a differentiable a.e. in D, and have N- and N~ -pro-
perties. Then there is a countable collection of compact sets Cy; C D such that m(By) = 0
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where By = D\ U Cy and flc: is one-to-one and bi-lipschitz for every k = 1,2,....

Moreover, f is dzﬁerentmble at Cy and J(z, f) # 0.
Given a set F in R™ and a curve v : A — R", we identify v N E with v (A) N E. If v
is locally rectifiable, then we set

Ly N E) =mi(Ey),

where E, = L, (y"'(E)); here [, : A — A, as in the previous section. Note that
E, = 'yal (E), where 79 : A, — R" is the natural parametrization of v and

10 E) = [ e () dal = [ e, (5)ds.

A A,

The bellow statement can be found in Chapter IX of [4], see Theorem 9.1.

Lemma 3. Let E be a set in a domain D C R™, n > 2, p > 1. Then E is measurable
if and only if v N E is measurable for p-a.e. curve vy in D. Moreover, m(FE) = 0 if and
only if

I(vNE)=0

on p-a.e. curve y in D.

The following result is a generalization of the known Poletskii inequality for
quasiregular mappings, see Theorem 1 in [5] and Theorem 8.1 Ch. IT in [6]. It’s analog
was also proved in [3-4] for the case p = n, see also [1].

Theorem 1. Let a mapping f : D — R" be a differentiable a.e. in D, have N- and
N~L-properties, and L](f) -property, too. Then the relation (1) holds for every curve family
' in D and a function p € admT.

Proof. Let By and C}, k = 1,2,..., be as in Lemma 2. Setting by induction By = CT,
BQZCS\Bl,..., and

k—1

B, =Ci\ | B (2)

I=1
we obtain the countable covering of D consisting of mutually disjoint Borel sets By, k =
0,1,2,... with m(By) =0, By = D\ U By.. By the assumption, f has N-property in D
and, consequently, m(f(By)) = 0. Let ,0 € admI' and

p(y) = Xf(D\Bo) * sup p*(x),
z€f~1(y)ND\Bo

where

p*(x):{p(a:)/l(f’(x)), for x € D\ By,

0, otherwise.
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Note that p(y) = sup pr(y) where

keN
pi(y) = p*(fk_l(y))a for y € f(Bx),
k 0, otherwise,
and every fi = f|B,, k =1,2,..., is injective. Thus, the function p is Borel, see section

2.3.2 in [2].

Let 7 be a closed rectifiable curve such that ¥ = f o, 3 be a normal representation
of ¥ and v* be f-representation of v by the respect to 7, see above. Since m(f(By)) = 0,
7°(s) & f(By) for p-a.e. curve 7 and a.e. s € [0,1(7)], see Lemma 3. For p-a.e. paths 5
and all v with 4 = f o -, we have that

1)

/ y)ldy| = /p ))ds =
0

1) z
_ ‘1 () ds pOY*(s) .
[ Bon %2 [ @

Since 7Y is rectifiable, 7 °(s) is differentiable a.e. Besides that, a curve y* is absolutely
continuous for p-a.e. ¥ by Lemma 1. Since 7°(s) € f(Bo) for a.e. s € [0,1(7)] and p-a.e.
curves 7, we have v*(s) € By at a.e. s € [0,1(¥)]. Thus, the derivatives f’(v*(s))
and v*(s) exist for a.e. s. Taking into account the formula of the derivative of the
superposition of functions, and that the modulus of the derivative of the curve by the
natural parameter equals to 1, we have

L= |(For™) ()] = 1/ (" ()7 (5)] =

7 (s)
17 *(s)]

=1f"(v*(s)) -

It follows from (4) that a.e.

I Z L () Iy ()] (4)

p(y*(s)) “(8)) -+ v (s
[ () > p(v"(s)) - Iy (s)]- (5)

By absolutely continuity of v*, definition of p and Theorem 4.1 in [8] we obtain
1)
1< /p(x)ldxl = / p(Y7(5)) - Iy (s)]ds. (6)
Y 0

It follows from (3), (5) and (6) that fp )|dy| > 1 for p-a.e. closed curve 5 in f(T"). The
gl
case of the arbitrary path 7 can be got from the taking of sup in [ p(y)|dy| > 1 over all
ﬁl
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closed subpaths 7' of 7. Thus, p(y) € adm f(T') \ I'g, where M,(I'y) = 0. Hence

<%WWS/W@M@- (7)
f(D)

Further, by 3.2.5 for m = n in [2] we have that

|J(, f)]
Kiple, 1) P@hm(a) = [ LD oy =
4 JWﬂD)
P (f' W) p
- /(g —1 5 dm(y) = Pﬁ(y)dm(@/)- (8)
f(B/k) (l (f (fk; (y)))) f(é)

Finally, by the Lebesgue theorem, see Theorem 12.3 §12 of Ch. I in [7], we obtain from
(7) and (8) the desired inequality

[ Kipla. ) @dmia) =3 [ Kiylo. ) a)dm(z) =
D
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P.P. Canumos, E. A. CeBocTbsIHOB

O6 ogHOM MOAYJIBHOM HEPABEHCTBe IOpsiaka p > 1.

Pabora nocssiiena u3y4eHNIo MPOCTPAHCTBEHHBIX OTOOpaYKeHUil Oojiee OOIIMX, UeM KBa3WPEryJIspHbIE.
IIpeamerom m3ydenusi paboOThI SIBJISIIOTCST TaK Ha3bIBaeMble MOJYJIbHBbIE HEPABEHCTBA MOPSAKA p > 1 u

" -1 (2)
MX B3aMMOCBSI3b C IPOCTPAHCTBEHHBIMU OoTOOpakeHusIMH. Jljis1 orobparkennit, umerormmux N, N =" u L, -

CBOICTBA JOKA3aHO XOPOIIO U3BECTHOE HEPABEHCTBO HOHGHKOFO.

Karouesnie caosa: 0m06pa0fceuuﬂ C KOHEYHBDIM U 02PAGHUYUYEHHBIM UCKAHCEHUEM, MO()y./L’b cemeticme

Kpuewxr, Hepasercmso lloreyxozo.

P. P. Cagimos, €. 0. CeBocTbsIHOB

ITpo oy MoaynbHY HepiBHIicTBb HmOpPsSIAKY p > 1.

PoGory npucBsiueHo BHUBUEHHIO IIPOCTOPOBHX BijgobparkeHb, OLIBIN 3arajbHUX, HiXK KBa3iperyssipHi.

IIpeamerom mociimzKeHHsT CTATTI € TaK 3BaHI MOJY/IbHI HEPIBHOCTI MOpPAAKY p > 1, Ta X B3a€MO3B’SI30K
. . -1 . 7(2) .

3 IPOCTOPOBUMH Biobpaskenusamu. Jjs Bimobparkens, mo Maors N, N~ i Ly~’-BiaacTuBocTi, 10BegeHO

aHaJor 106pe Bijomol HepiBHOCTI Ty [losenbkoro.

K408t cao8a: 81000pasicerts 3i CKIHYEHHUM & 0OMENCEHUM CNOMBOPEHHAM, MOOYAL CIM’T Kpusux,

nepienicmy Ioaeywvroezo.
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