УДК 517.55

©2011. Ю. С. Коломойцев

ОБ ОДНОМ ДОСТАТОЧНОМ УСЛОВИИ ДЛЯ МУЛЬТИПЛИКАТОРОВ В ПРОСТРАНСТВАХ ХАРДИ

В работе показана точность теоремы, дающей достаточное условие для мультипликаторов степенных рядов в пространствах Харди $H_p(D)$, 0 , в терминах совместного убывания функциимультипликатора и ее производных на бесконечности.

Ключевые слова: мультипликатор, пространства Харди $H_p(D)$, 0 , неравенство Бернитейна.

1. Введение. Пусть $D = \{ z \in \mathbb{C} : |z| < 1 \}$ – единичный круг. Аналитическая в единичном круге D функция f принадлежит пространству $H_p(D)$, если

$$||f||_{H_p} = \sup_{0 < \rho < 1} \left(\int_0^{2\pi} |f(\rho e^{it})|^p dt \right)^{\frac{1}{p}} < \infty.$$

Хорошо известно, что каждая функция $f \in H_p(D), p > 0$, имеет некасательный предел $f(e^{it})$ для почти всех $t \in [0,2\pi)$, принадлежащий пространству $L_p(0,2\pi)$, т.е. пространству измеримых, 2π -периодических функций с конечной (квази-)нормой

$$||f||_p = ||f(e^{it})||_p = \left(\int_0^{2\pi} |f(e^{it})|^p dt\right)^{\frac{1}{p}}.$$

Имеет место равенство: $||f||_{H_p} = ||f||_p$ (см. [1]).

Любая функция из $H_p(D), p > 0$, раскладывается в круге D в абсолютно сходящийся степенной ряд

$$f(z) = \sum_{k=0}^{\infty} c_k z^k,$$

где c_k – коэффициенты ряда Тейлора функции f.

Числовая последовательность $\{\lambda_k\}_{k=0}^{\infty}$ называется мультипликатором в $H_p(D)$, если для любой функции $f \in H_p(D)$ с коэффициентами Тейлора $\{c_k\}$

$$(\Lambda f)(z) = \sum_{k=0}^{\infty} \lambda_k c_k z^k \in H_p(D)$$

и существует константа γ такая, что для любой функции $f \in H_p(D)$

$$\|\Lambda f\|_{H_p} \le \gamma \|f\|_{H_p}, \quad \|\{\lambda_k\}\|_{M_p} = \inf \gamma.$$

Если $\varphi: [0,\infty) \to \mathbb{C}$, то будем писать $\varphi \in M_p$, если

$$\|\varphi\|_{M_p} = \sup_{\varepsilon>0} \|\{\varphi(\varepsilon k)\}\|_{M_p} < \infty.$$

Приведем здесь несколько свойств мультипликаторов (см., например, [2], [3, гл. 7]): $M_p \subset M_q$ при $0 ; <math>\|\{\lambda_k \mu_k\}\|_{M_p} \le \|\{\lambda_k\}\|_{M_p} \|\{\mu_k\}\|_{M_p}$, p > 0; $\|\{\lambda_k + \mu_k\}\|_{M_p}^p \le \|\{\lambda_k\}\|_{M_p}^p + \|\{\mu_k\}\|_{M_p}^p$, $p \in (0, 1]$.

В работе [2] Р.М. Тригубом была доказана следующая теорема, дающая достаточное условие для мультипликаторов степенных рядов в пространствах Харди $H_p(D)$, 0 , в терминах совместного убывания функции-мультипликатора и ее производных на бесконечности.

Теорема А. Пусть $0 , а <math>\varphi \in C^r[0,\infty)$ при некотором натуральном r > 1/p - 1/2. Если

$$|\varphi(x)| \le \frac{c}{1+x^{\gamma_0}}, \quad \gamma_0 > 0, \quad |\varphi^{(r)}(x)| \le \frac{c}{1+x^{\gamma_r}}, \quad \gamma_r > 0,$$

где

$$\min(\gamma_r - \gamma_0 - r, 0) + \frac{2\gamma_0 rp}{2 - p} > 0, \tag{1}$$

 $mo \varphi \in M_p$.

Данная теорема имеет применения при доказательстве целого ряда теорем для аналитических функций из пространства Харди (см., например, [3, гл. 7] и [4]).

Вит.В. Волчковым в [5] была показана точность теоремы A для некоторых значений γ_0 и γ_r . В частности, был получен следующий результат:

Теорема В. Для любого $\gamma \in (0,1/2)$ и $r \in \mathbb{N}$ найдется функция $\varphi \in C^r[0,\infty)$ такая, что $\varphi(x) = O(\frac{1}{x^{\gamma}})$, $\varphi^{(r)}(x) = O(\frac{1}{x^{\gamma}})$ при $x \to +\infty$, но $\varphi \not\in M_p$ ни при каком $p \in (0,1]$.

Наша цель показать точность условия (1) теоремы A при каждом фиксированном $p \in (0,1]$. Имеет место:

Теорема 1. Пусть 0 , натуральное <math>r > 1/p - 1/2 и положительные числа γ_0 и γ_r таковы, что

$$\min(\gamma_r - \gamma_0 - r, 0) + \frac{2\gamma_0 rp}{2 - p} < 0.$$
 (2)

Тогда найдется функция $\varphi \in C^r[0,\infty)$ такая, что

$$|\varphi(x)| \le \frac{c}{1+x^{\gamma_0}}, \quad |\varphi^{(r)}(x)| \le \frac{c}{1+x^{\gamma_r}},$$

но $\varphi \notin M_p$

Всюду в статье через c и C_j , $j=1,2,\ldots$, будем обозначать некоторые положительные константы, зависящие от указанных параметров.

2. Вспомогательные утверждения. Прежде чем перейти к формулировке вспомогательных утверждений введем необходимое обозначения.

Преобразование Фурье функции $f \in L(\mathbb{R})$ обозначим через

$$\mathcal{F}f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(y)e^{-ixy}dy,$$

через \mathcal{F}^{-1} обозначим обратное преобразование Фурье, т.е. $\mathcal{F}^{-1}f(x) = \mathcal{F}f(-x)$.

Контрпример в теореме 1 будем строить с помощью специальной функции-мультипликатора

 $m_{\alpha,\beta}(x) = \psi(x) \frac{e^{i|x|^{\alpha}}}{|x|^{\beta}},$

где $\psi \in C^{\infty}(\mathbb{R})$, $\psi(x) = 0$ при |x| < 1/2 и $\psi(x) = 1$ при $|x| \ge 1$. Отметим, что функция $m_{\alpha,\beta}$ была предметом специального изучения в работах [6]-[8] и [9, гл. 4]. Доказательство следующей леммы см. в [7].

Лемма 1. Пусть $0 < \alpha < 1, \beta > 0$ и

$$F_{\alpha,\beta;\varepsilon}(x) = \mathcal{F}^{-1}\{e^{-\varepsilon|x|}m_{\alpha,\beta}(x)\}, \quad \varepsilon > 0.$$

Tог ∂a

- 1. $F_{\alpha,\beta}(x) = \lim_{\varepsilon \to 0} F_{\alpha,\beta;\,\varepsilon}(x)$ существует для каждого $x \neq 0$ и $F_{\alpha,\beta} \in C(\mathbb{R} \setminus \{0\});$
- 2. $|F_{\alpha,\beta}(x)| \approx |x|^{\frac{\beta-1+\frac{\alpha}{2}}{1-\alpha}} + \gamma(x)$ при $|x| \to 0$, где γ некоторая непрерывная функция;
- 3. Для каждого $r \in \mathbb{N}$, $|F_{\alpha,\beta;\varepsilon}(x)| = O(|x|^{-r})$ равномерно по ε при $|x| \to \infty$;

В частности, $F_{\alpha,\beta} \in L_p(\mathbb{R})$, $0 , если и только если <math>\alpha(\frac{1}{p} - \frac{1}{2}) < \beta + \frac{1}{p} - 1$.

При доказательстве теоремы 1 мы будем использовать неравенство типа Бернштейна для аналитических полиномов, которое было получено независимо Е.С. Белинским [10] и Вит.В. Волчковым [11]:

Лемма 2. Пусть $0 , <math>\lambda > 0$ и $N \in \mathbb{N}$. Тогда

$$\left\| \sum_{k=0}^{N} k^{\lambda} c_k e^{ikt} \right\|_p \le cN^{\lambda} \left\| \sum_{k=0}^{N} c_k e^{ikt} \right\|_p,$$

 $ede\ c$ – константа, зависящая только от p.

Заметим, что для полиномов с полным спектром данное неравенство имеет место только при $\lambda \in \mathbb{N} \cup (\frac{1}{p}-1,\infty)$ (см. [12]).

Доказательство следующей леммы см., например, в [3, гл. 4].

Лемма 3. Пусть $\varphi \in C^{\infty}(\mathbb{R})$, supp $\varphi \subset (-1,1)$ и $\varphi(0) = 1$. Тогда

$$\left\| \sum_{k=-N}^{N} \varphi\left(\frac{k}{N}\right) e^{ikt} \right\|_{p} \asymp \left(\frac{1}{N}\right)^{\frac{1}{p}-1},$$

 $z de \simeq - deycmopoннee$ неравенство с положительными константами, не зависящими от N.

Нам также понадобится формула суммирования Пуассона (см., например, [13, гл. 2]).

Лемма 4. Если $f \in L(\mathbb{R})$, то ряд $\sum_{k=-\infty}^{\infty} f(x+2\pi k)$ сходится абсолютно n.в. $\kappa \ 2\pi$ -периодической локально интегрируемой функции

$$\sum_{k=-\infty}^{\infty} f(x+2\pi k) \sim \sum_{k=-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} \mathcal{F}f(k) e^{ikx}.$$

3. Доказательство теоремы **1.** Заметим, что если $\gamma_r - \gamma_0 \ge r$, то $\gamma_0 < 0$, а это противоречит условиям теоремы. Поэтому далее полагаем $\gamma_r - \gamma_0 < r$.

Нетрудно видеть, что $|m^{(r)}(x)| \leq c/|x|^{\beta-r(\alpha-1)}$. Таким образом, если положить $\gamma_0 = \beta$, а $\gamma_r = \beta - r(\alpha - 1)$, то условие (2) будет эквивалентно неравенству $\beta < \alpha(\frac{1}{p} - \frac{1}{2})$.

Рассмотрим сначала случай $0 . Предположим, что функция <math>m \in M_p$ и выберем $\lambda \in (0, \frac{1}{p} - 1)$ так, чтобы $\beta + (\frac{1}{p} - 1) - \lambda < \alpha(\frac{1}{p} - \frac{1}{2})$. Поскольку функция e^{-x} является мультипликатором (см. теорему A), то

$$\left\| \sum_{k=-\infty}^{\infty} e^{-\varepsilon |k|} \psi(|k|) \frac{e^{i|k|^{\alpha}}}{|k|^{\beta-\lambda}} e^{ikt} \right\|_{p} \le C_{1} \left\| \sum_{k=1}^{\infty} k^{\lambda} e^{ikt} \right\|_{p}, \tag{3}$$

где C_1 – некоторая константа, не зависящая от ε .

Покажем, что в правой части неравенства (3), действительно, стоит конечная величина. Для этого нам понадобится следующее разбиение единицы. Пусть $h_0 \in C^{\infty}(\mathbb{R}), h_0(x) = 0$ при $x \leq -\frac{1}{2}, h_0(x) + h_0(-x) \equiv 1$, а $h_0(x) - \frac{1}{2}$ – нечетная функция. Положим

$$h_{\nu}(x) = h_0 \left(\frac{x+1}{2^{\nu-1}} - \frac{3}{2} \right) h_0 \left(\frac{3}{2} - \frac{x+1}{2^{\nu}} \right).$$

Очевидно, что при $\nu \in \mathbb{N}$ supp $h_{\nu} \subset [2^{\nu-1}-1, 2^{\nu+1}-1]$ и

$$h_0\left(\frac{1}{2}-x\right) + \sum_{\nu=1}^{\infty} h_{\nu}(x) = 1$$
 для всех $x \ge 0$.

Используя леммы 2 и 3, находим:

$$\left\| \sum_{k=1}^{\infty} k^{\lambda} e^{ikt} \right\|_{p}^{p} = \left\| \sum_{k=1}^{\infty} k^{\lambda} \left(\sum_{\nu=1}^{\infty} h_{\nu}(k) \right) e^{ikt} \right\|_{p}^{p} \le$$

$$\le \sum_{\nu=1}^{\infty} \left\| \sum_{k=1}^{\infty} k^{\lambda} h_{\nu}(k) e^{ikt} \right\|_{p}^{p} \le C_{2} \sum_{\nu=1}^{\infty} 2^{\nu \lambda p} \left\| \sum_{k=1}^{\infty} h_{\nu}(k) e^{ikt} \right\|_{p}^{p} \le$$

$$\le C_{3} \sum_{\nu=1}^{\infty} 2^{\nu \lambda p} \cdot \frac{1}{2^{(1-p)\nu}} < \infty.$$

Таким образом, согласно лемме 4,

$$\left\| \sum_{k=-\infty}^{\infty} F_{\alpha,\beta-\lambda;\varepsilon}(x+2\pi k) \right\|_{p} \le C_{4}$$

равномерно по ε . Следовательно, по лемме 1

$$||F_{\alpha,\beta-\lambda;\varepsilon}(x)||_p^p \le C_5 + \left\|\sum_{k\neq 0} F_{\alpha,\beta-\lambda;\varepsilon}(x+2\pi k)\right\|_p \le C_6,$$

также равномерно по ε .

Далее, используя лемму Фату, получаем, что $F_{\alpha,\beta-\lambda} \in L_p(\mathbb{R})$, но это противоречит нашим предположениям, поскольку при $\beta - \lambda + (\frac{1}{p} - 1) < \alpha(\frac{1}{p} - 1)$ функция $F_{\alpha,\beta-\lambda} \notin L_p(\mathbb{R})$.

Теперь рассмотрим случай p=1. Предположим, что $m\in M_1$ и возьмем $\delta>0$ так, чтобы $\beta+\delta<\frac{\alpha}{2}$. В силу сделанных выше предположений,

$$\left\| \sum_{k=-\infty}^{\infty} e^{-\varepsilon |k|} \psi(|k|) \frac{e^{i|k|^{\alpha}}}{|k|^{\beta+\delta}} e^{ikt} \right\|_{1} \le C_{7} \left\| \sum_{k=1}^{\infty} \frac{e^{ikt}}{k^{\delta}} \right\|_{1}. \tag{4}$$

Таким образом, по аналогии с проделанными выше рассуждениями, мы получим противоречие, если покажем, что правая часть неравенства (4) конечна. Последнее сразу следует из теорем 1.5 и 1.14 в [13, гл.5].

Теорема полностью доказана.

- 1. Riesz F. Über die Randwerte einer analytischen Funktion // Math. Z. 1932. 18. P. 87-95.
- 2. Тригуб Р.М. Мультипликаторы в пространстве Харди $H_p(D^m)$ при $p \in (0,1]$ и аппроксимативные свойства методов суммирования степенных рядов // Матем. сб. 1997. **188**, №4. С. 145-160.
- 3. Trigub R.M., Belinsky E.S. Fourier Analysis and Approximation of Functions. Kluwer-Springer, 2004.
- Коломойцев Ю.С. О модулях гладкости и К-функционалах дробного порядка в пространствах Харди // Укр. мат. вісн. – 2011. – 8, №3. – С. 421–446.
- 5. Волчков Вит.В. О мультипликаторах степенных рядов в пространствах Харди // Укр. мат. журн. 1998. $\bf 50$, №4. С. 585–587.
- 6. Hirschman I.I. On multiplier transformations // Duke Math. J. 1959. 26. P. 221-242.
- 7. Wainger S. Special trigonometric series in k dimensions // Mem. Amer. Math. Soc. **59**. 1965.
- 8. Fefferman Ch. Inequalities for Strongly Singular Convolution Operators // Acta Math. 1970. 124 P. 9-36.
- 9. *Стейн И.М.* Сингулярные интегралы и дифференциальные свойства функций. М.: Мир, 1973.
- 10. Belinsky E. S. Strong summability for the Marcinkiewicz means in the integral metric and related questions // J. Austral. Math. Soc. (Series A). 1998. 65. P. 303-312.
- 11. Волчков Вит.В. Неравенсто Бернштейна в пространствах Харди H^p , 0 // Ряди Фур'є: теорія і застосування (Каменец-Подольский, 1997), Пр. Інст. Мат. Нац. Акад. Наук Укр. Мат. Застос. 1998. —**20**. С. 77-84.
- 12. Belinsky E., Liflyand E. Approximation properties in L_p , 0 // Functiones et Approximatio. 1993. –**XXII**. P. 189-199.
- 13. Зигмунд А. Тригонометрические ряды. Том 1. М.: Мир, 1965.

Yu. S. Kolomoitsev

On one sufficient condition for multipliers in Hardy space.

We show the sharpness of the theorem, which gives sufficient conditions for multipliers of power series in the Hardy spaces $H_p(D)$, 0 . These sufficient conditions are given in terms of the simultaneous behavior of a function and its derivatives at infinity.

Keywords: multiplier, Hardy space $H_p(D)$, 0 , Bernstein's inequality.

Ю.С. Коломойцев

Про одну достатню умову для мультиплікаторів у просторах Харді.

У роботі показано точність теореми, що дає достатню умову для мультиплікаторів степеневих рядів у просторах Харді $H_p(D)$, 0 , в термінах спільного спадання функції-мультиплікатора та її похідних на нескінченності.

Ключові слова: мультиплікатор, протір Харді $H_p(D)$, 0 , нерівність Бернштейна.

Ин-т прикл. математики и механики НАН Украины, Донецк kolomus10mail.ru

Получено 11.11.11