PAANOPUINKA TBEPAOTO TEAA U TMAA3SMbI

UDC 535.42:537.8

S.S. Apostolov'?, D. A. lakushev!, N. M. Makarov* ® A. A. Shmat’ko? and V. A. Yampol’skii' ?
!A. Ya. Usikov Institute for Radiophysics and Electronics NASU, 61085 Kharkov, Ukraine

2V. N. Karazin Kharkov National University, 61077, Kharkov, Ukraine

*Benemérita Universidad Auténoma de Puebla, Puebla, Pue. 72000, México

E-mail: yam@ire.kharkov.ua

TERAHERTZ TRANSVERSE-MAGNETIC-POLARIZED WAVES
LOCALIZED ON A LAYERED SUPERCONDUCTOR DEFECT IN PHOTONIC CRYSTALS

We theoretically study eigenstates of electromagnetic field inside a one-dimensional photonic crystal containing a defect slab
of layered superconductor. Basing on the transfer matrix formalism along with the electrodynamics of Josephson plasma, we obtain
the dispersion relations describing the THz electromagnetic modes localized on defect. We consider both symmetric and antisymmetric
configuration of defect in photonic crystal. The comparison of the dispersion spectra of the localized states for the layered-superconducting
defect and the pure insulating defect reveals the features of the studied system. Fig. 3. Ref.: 14 title.
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During recent years, layered supercon-
ductors attract great attention due to their special
electrodynamic  properties. These media are
composed of superconducting films with thicknesses
~ 0.2 nm, which are separated by thicker dielectric
slabs with thicknesses ~1.5nm and dielectric
constant ~ 16. As was shown in experiments [1, 2],
the superconducting layers are electrodynamically
coupled because of the intrinsic Josephson effect
giving rise to emerging a peculiar type of plasma, so
called Josephson plasma, in such strongly anisotropic
materials.

The anisotropy results in the existence of the
specific electromagnetic excitations in such layered
media, known as the Josephson plasma waves (JPWSs),
see, e.¢. [3, 4] and references therein. A distinctive
feature of the layered superconductors is that, due to
the Josephson effect, the weak current across the
layers is formed, whereas the strong electric current
flowing along the layers has the same origin as in
bulk superconductors. It is important that the typical
frequencies of JPWs belong to the terahertz (THz)
frequency range. This makes layered super-
conductors to be promising materials for various
optical applications, see, e. g. [5].

In works [6,7] it was theoretically
demonstrated that the surface Josephson plasma
waves (SJPWs) can propagate along interfaces
between layered superconductors and vacuum,
similarly to the surface plasmon-polaritons in the
case of usual plasmas. It is interesting that the
Josephson plasma represents a medium in which
some famous electromagnetic phenomena have been
observed. Among them one can mention the Wood
anomalies and the Anderson localization. Thus, the
excitation of SJPWs give rise to various resonant
phenomena [7-9] that are similar to the Wood
anomalies well-known in optics, see, e. g.[10-12]. A
noticeable difference with respect to usual plasmas is
that SIPWs can propagate with frequencies not only
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below the Josephson plasma frequency «; but also

above it [7]. As was shown in [13], the phenomena
similar to the Anderson localization and the
formation of a transparency window for THz electro-
magnetic waves can be observed in layered
superconductors with randomly-fluctuating value of
the maximum Josephson current. Also it is important
to mention that the Josephson plasma can have
properties intrinsic to the left-handed media. In
particular, one can observe a negative refractive
index for THz waves at the boundaries of layered
superconductors [7, 14].

Because of unusual electromagnetic proper-
ties of layered superconductors, it is of interest to
examine photonics of various structures containing
components made of layered superconductors. In the
present work we analyze photonic spectrum of one-
dimensional periodic photonic crystal with an extra
slab of layered superconductor.

1. Problem formulation. We explore
eigenstates of the electromagnetic field inside a one-
dimensional dielectric photonic crystal with a defect.
The unit cell of the photonic crystal is composed of
two non-magnetic dielectric layers with thicknesses
d, and d,, see Fig. 1. The size of the whole unit cell

is d =d,+d,. The permittivities of the layers with
sizes d, and d, are & and &,, respectively.

The defect is an extra layer of thickness D
which can be inserted between two basic layers of the
photonic-crystal unit-cell or replace one of them (see,
respectively, upper and lower panel of Fig. 1). The
defect consists of alternating slabs of dielectric and
superconductor arranged orthogonally to the layers of
photonic crystal and occupies the spatial region
0<x<D.

The interaction of an electromagnetic wave
of frequency @ with the defect of layered super-
conductor can be described by the effective
permittivity tensor that has the following components
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ex(Q) = gyy(Q) = 5[1_é]1
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£,(Q)= g(l—izj,

Q

where Q is the wave frequency normalized to the
Josephson plasma frequency ;,
Q=0/w;,
wy =(87ed d, /ne)'?; 3. is  the
Josephson current density; and d; are the dielectric

constant and the thickness of the insulator
components of layered super conductor, respectively;
e is the elementary charge. In addition, the
electrodynamics of the layered superconductor is
characterized by the London penetration depth A,

2

maximal

along the superconducting layers, A, =c/a)J51’2,

and the London penetration depths A, across the
layers. In the paper we assume A, <<A, e.g. the

anisotropy parameter y = A1,/ 4,, is great, y >>1.

z )
y |

g = n
e . N k.
TN N

b)

Fig. 1. (Color Online) A sketch of the structure. Upper and lower
panels demonstrate the non-symmetric (a) and symmetric (b)
setups, correspondingly

In the present study we focus on TM-pola-
rized electromagnetic waves. Their electric E and

magnetic H components are determined by the
following expressions,

78

E(x,2,t) = {E, (x),0, E, (x)}exp[i(k,z - t)],
H(x,2,t) = {0,H, (x),0}expli(k,z - wt)),
where the z-component k, of the total wave vector k

an independent parameter of the problem
characterizing the wave propagation angle with
respect to the stratification of the dielectric photonic
crystal.

®3)

11. Propagation matrices of the system

A. Propagation matrix of the photonic
crystal unit-cell. The electric and magnetic fields on
the opposite boundaries of the photonic crystal unit-
cells are related by

(Hy(x=(n+l)d)J=M[Hy(x:nd)J @
E,(x=(n+1)d) E,(x=nd)

with n being the unit-cell number and d being its size,
d =d; +d,. The elements of the propagation matrix M
are given by

Kiy . .
My = COS @, COS @ — 22X 5in oy sin gy,
1Koy
Myp = —i-22L sin g, COS @, — i ~—22-sin @, COS g,
1X 2% (5)
'Cle . 'CkZX 1
M,, =—i—=sin g, cosg, —i—=sin ¢, cOS ¢,
a)€1 a)gz
M., = C0S _ kg i
22 = COS ¢, COS @, SN g, SN @, .
&Ky
Here
o =K dy, @ =Ky,d5, ©)
Kix =\/k§51—kz2’ Kox :\/kggz _kzz,
and ky, =w/c.
In the absence of defect, due to the

translation symmetry of photonic crystal, the electric
and magnetic fields, in addition to Eq. (4), should
satisfy the Bloch relation,

(H y(x=(n +1)d)J _ exp(J_rin)(H y(x= nd)} "
E,(x=(n+1)d) E,(x=nd)
where ug is the Bloch phase associated with the
Bloch wave number xas ug= «d.

Equations (4) and (7) lead to dispersion
relation  2cosug =M;;+M,,,  which, after

substitution of the matrix elements, transforms to the
well known dispersion relation of dielectric bi-layer
array,

_l ‘92k1x
2\ &kyy

(®)

+‘91k—2XJsin<plsin ?,.
&2K1x

Note that the wave numbers kg, k,, and
phase shifts ¢, ¢,, which are given by Egs. (6), can

be either strictly real or strictly imaginary. Therefore
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the right-hand side of Eq. (8) and, as a consequence,
cosug are always of strictly real values. Thus,

equation (8) has an infinite number of solutions for
the Bloch phase ug. If we confine them within the
first Brillouin zone (-7 <Reug <x), then ug is
(for (for
cos ug > 1), or complex with the real part equal £z
(for cos ug < —1).

B. Propagation matrix of superconducting
defect. In this subsection we concentrate our attention

on the case when the z-projection of the wave vector
k, ~w/c and the wave frequency o ~ @;. Due to

these restrictions, in the Maxwell equations, the
terms of the order of »2 originated from the

effective permittivity tensor (1), prevail over the
others. Solving the Maxwell equations in the layered
superconductor we obtain the tangential components
of the electromagnetic field in the following form

real |cosug|<1), pure imaginary

E,(£) =~ (Cie™ +Cre ),

7

H, (&) =iQ(Cie™ —Cpe ),

)

where the normalized x-projection of the wave vector
is denoted as

Q=+v0%-1. (10)

Here we introduced the dimensionless coordinate &
and the normalized thickness o of the layered-
superconductor slab,

g= X, s-P (11)
A A

In correspondence with Eq. (9), the propagation

matrix M) for the defect of layered superconductor

of thickness D, relating the electric and magnetic

fields on the opposite boundaries of the defect,
H, (x=D) IO H,(x=0)
E,(x=D) E,(x=0) )

can be written as

(12)

e _
_ cos(5QY) (WeQiQ)sin(sQ) (13)
(QieQ)sin(6Q) cos(5Q) ’

For the symmetric setup it is convenient to assume
that the localized states are symmetric with respect to
the center of the defect, x =D/2. In this geometry
the fields in the center, x=D/2, are related to the

fields at the interface, x=D, by the propagation

matrix M2,

Hy(x =D) _ s Hy(x =D/2) (19)
E,(x=D) ) E,(x=D/2) |
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The elements of matrix M®? are analogous to
Eq. (13), but with 5changed by &/2,

N (52 —

B cos(5§/2)
Qi eQ)sin(6Q/2)
3. The localized states
A. Non-symmetric setup. Here we derive the
dispersion relation for the states localized on the
defect for non-symmetric setup (see panel (a) in
Fig. 1). To this end, we assume that the frequency Q
is within a spectral gap of the photonic crystal
without defect. In this case, in the representation of
extended Brillouin zones, the Bloch phase upg, see
Eg. (8) and speculations after, has the imaginary part
and its real part equals msz with integer m,
Hg =mz+iy, w>0. Then the -eigenvalues

exp(igg) of the propagation matrix (5) are

WeQliQ)sin(6Qy2) ) (15)
cos(o §/2) '

(-)™exp(Fy) and their absolute values are not

equal to one.
To proceed further, we need to introduce the
Jordan decomposition of the propagation matrix,

M =S"AS where the eigenmatrix A and the
transformation matrix S read

~ _1\Ma ¥
Ao -D)"e 0 ’
0 (-1)™e¥
_[ My -(-D)"e” My,
()" =My -My, .
If we know the fields at the right surface of

the defect (at x = D), then, by applying N times the

propagation matrix M to them, we can get the fields
on the right interface of the N-th unit cell (at

x =D+ Nd),

Hy(x=D+Nd) _ N Hy(x:D) B
E,(x=D+Nd) ) E,(x=D) )

—ymafe 0 1gfHy(x=D))
0 eV E,(x=D)
In the limit N — oo the fields at x = D + Nd

tends to zero because they are assumed to be
localized on the defect. So, we get

(16)

(17)

[0 Ojé(H y(x= D)J _o, a9)
0 1) (E,(x=D)

that is

H y(x =D) B M, (19)

E,(x=D) D"V -My,

Analogously, the fields on the left surface of
the defect (at x = 0) can be expressed via the fields on
the surface of the (—N)-th cell (at x =—Nd),
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{Hy(x:—Nd)J:MN(Hy(x:O)j:
E,(x=-Nd) E,(x=0)

_ o amaafe" 0 yfHy(x=0)
- ()™§ (0 e‘N‘/’JS[EZy(x:O)j'

In the limit N — oo the fields at x=-Nd
tends to zero and we get

(20)

(1 OjéEHy(szJ:O’ 21)
0 0) \E,(x=0)

that is

Hy(x=0) _ My, . 22)
E,(x=0) (-)"e¥-My

With the use of equations (19), (22) and (12),
taking into account that M) =M{), we readily
derive the complemental to (8), dispersion relation
Sin 1o = i Mle;_i)‘*Man(;)
Mg =1 :

2m
By employing the explicit expressions (13) for the
propagation matrix of the layered superconductor and
that the Bloch phase are determined as
ug =mz+iy, this dispersion relation can be

rewritten as follows

(23)

J— m; O -~
2(_1)h' ‘EQMMJr \/g_{ My, |=cot(5Q).  (24)
sinhy eQ

Note that at the same values of the Bloch phase
ug =mz+iy, the initial dispersion relation (8) is
transformed to

(-1)" coshy == (Myy + M), (25)

and the elements of the propagation matrix M
defined in Egs. (5) can be presented in dimensionless
variables as

P2K1

M;; = COS¢, COS@, — sing, sing,,
Pk
Q . .
My, = T/Z[ﬂsm @, COS @, +P2sin ¥ COS(plj,
(26)
M, = . [Kl sing, cosg + 52 sing COS‘/’J
1= —>@ 2T AR P
Q\/; P P2
M, = cosg, cos@, — 52 sin g, sing,.
Paky
Here
@ =K%, ki =Ky =V92Pi -&%,
d; & . (27)
§i:—', K:kz/lc, piz—l, 1=1,2.
A g

Applying the expressions (26) for the
propagation matrix M in Egs. (24) and (25), we

80

finally get the following set of the dispersion
relations

QZ
— 4+ S sin g, cos g, +

~ 2
o 2, P2 sing, cosg, =
K, Q

=2(-1)"sinh t//cot(éfl),
(-1)™ coshy = cos ¢, cosp, —

_£(m+m
P2K1

(28)

jsin @ Sing,,
2\ piicy
where > 0 and m is integer.

B. Symmetric setup. Here we derive the
dispersion relation for the states localized on the
defect for symmetric setup (see panel (b) in Fig. 1).

As we have already calculated above, the
fields on the right interface of the defect are related
as

H,(x=D) B My,
E,(x=D) (-D)"e" -My,

In the case when the localized states are
symmetric with respect to the center x=D/2 of the
defect, there are two types of the states, specifically,
with symmetric or antisymmetric electric field, i. e.

H,(x=D/2)=0 or E,(x=D/2)=0. (30)

The fields in the center x=D/2 are related to the
fields at the interface, x =D, by the propagation
matrix MCG/2 given by Eg. (15). Therefore, the
dispersion relation for symmetric or antisymmetric
state, respectively, reads
M  _ [MGIME?,
My-(D"e”  [MEIME?.
Using Egs. (15), this dispersion relation can be
rewritten as
i(QIeQ)M,  [-tan(5Q/2),
M,, —em v cot(5Q/2),
for symmetric and antisymmetric localized states,
respectively.
In the dimensionless variables, with the use
of Egs. (26) and (27), Eq. (32) together with Eq. (8)
results in the required set of two dispersion relations,

(29)

(31)

(32)

Q% py P2 0
22| Pleotg, + £2 cot oQ
Q (Kl V2 K ” _ _tanT'
m .; O
1(,01’@ _ Pz’fljJr (—_1) S!nh 4 coté_Q,
2\ poxy  prxy ) singsing, 2
(-1)™ coshy = cos ¢, cos @, — (33)

—1(—p2’(1 + 22 Jsingplsin @,
2\ piky Py
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for symmetric and antisymmetric localized states,
respectively.

C. Analysis of dispersion equations. Figure 2
shows the dispersion curves of the photonic crystal
with the defect of the layered superconductor for the
non-symmetric setup, Egs. (28), and the symmetric
setup, Egs. (33). The photonic crystal consists of the
two alternating layers of the silica glass (g =3.8)

and teflon (&,=2.04) with equal thicknesses, d;=
=d, =51, =2-10cm. The superconducting defect

of thickness d =31,=1.2107cm is made from

Bi,Sr,CaCu,0Og . 5, Whose insulating layers possess
dielectric constant &=16. The rest of the
characteristic parameters is w; /27 =0.3 THz,
A =2000A, A,=410"cm. The solid curves
describe the electromagnetic localized states in the
non-symmetric setup, while the dotted and dashed
curves present the symmetric and antisymmetric
localized states, correspondingly, in the symmetric

setup. The gray-filled areas corresponds to the
spectral gaps of the photonic crystal without defect.

Two straight lines show the light lines: @ =ck, /\/g

of the silica glass (solid line) and @ =ck, /,/e, of
teflon (dashed line).

2.0F

1.5¢
g 1o0f
S
0.5 S mmmmmees Symmetric modes
2 mmm—- Antisymmetric modes
Non-symmetric setup
0.0t . 1 1 . e
0.0 0.2 04 0.6 0.8 1.0
K. Ac

Fig. 2. (Color Online) Dispersion curves of the localized states in
the photonic crystal with the defect of the layered superconductor
for the non-symmetric setup (the solid curves) and the symmetric
setup (the dotted and dashed curves for the symmetric and
antisymmetric localized states, correspondingly)

To emphasize the features of the studied
localized states, we compare the dispersion spectra
for the layered-superconductor defect and the pure
insulating defect. The propagation matrix M@ of
the insulating defect with thickness D and dielectric
constant & can be written in the following form,

@ —

_ cos(5QY) (WeQliQ)sin(5Q) (34)
(Ui eQ)sin(5Q) cos(5Q) ’

where

Q=102 -2 (35)
in contrast to Eq. (10). This matrix has the similar
structure as the propagation matrix for the layered-

superconductor defect, Eq. (13), but the difference in

x-dependence of Q influences the dispersion curves
qualitatively. This difference appears due to the
strong anisotropy of the effective permittivity tensor
of layered superconductor.

Figure 3 shows the dispersion curves of the
photonic crystal with the defects of the layered
superconductor (solid curves) and of the pure
insulator (dashed curves) in the non-symmetric setup.
The parameters of the layer-superconductor defect
are the same as for Fig. 2 and the parameters of the
insulating defect are thickness d =34, and dielectric

constant ¢ =16.

Besides the quantitative differences between
curves there is the essential difference. It is easy to
see that for the first type of defect the dispersion
curves become nearly horizontal for sufficiently
large x; while the second type of defect produces
tilted up curves growing nearly as Q = . Thereby the
states localized on the superconducting defect can
possess sufficiently large z-projection of the wave
vector, while sufficiently small frequency.

Layered superconductor
————— Insulator

0.0 0.5 1.0 1.5 2.0
kZ]‘C

Fig. 3. (Color Online) Dispersion curves of the localized states in
the photonic crystal with the defects of the layered superconductor
(the solid curves) and the pure insulator (the dashed curves) for the
non-symmetric setup

Conclusions. We have considered problem
of eigenstates of the electromagnetic field inside
photonic crystal with the defect composed of the
layered superconductor. We have analyzed the cases
of both symmetric and non-symmetric configurations
of the defect in the photonic crystal. We have
obtained the dispersion relations that describe the
photonic spectrum of the localized electromagnetic
waves. The dispersion relations have been analyzed
numerically, compared to the case of the pure
insulating defect, and defined the qualitative
differences. Namely, the states localized on the
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superconducting  defect can propagate  with
sufficiently large z-projection of the wave vector,
while sufficiently small frequency.
Acknowledgements. N. M. Makarov acknow-
ledges partial support from the CONACYT (México).
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C. C. Anocromnos, /. A. fAxymes, H. M. Makapos,
A. A. lIlmateko, B. A. SIMnonsckuii

TEPATEPLIEBBIE TM-BOJIHBI,
JIOKAJIN3OBAHHBIE HA IE®@EKTE
13 CJIOUCTOT'O CBEPXIIPOBOJIHIUKA
B ®OTOHHOM KPUCTAIJIJIE

TeopeTnuuecku HCCIEOBaHBI COOCTBEHHBIE COCTOSHHS
3JIEKTPOMArHUTHOTO TIONS B OJHOMEPHOM (DOTOHHOM KpHCTAJLIC,
cozeprkamieM JeeKTHYIO IIACTHHY M3 CIIOHMCTOTO CBEPXIPOBOA-
Huka. OCHOBBIBAsICH HA METOZE TPaHC(EP-MaTPHUIBL, ¢ HCIIONb30-
BaHHEM 3JICKTPOJMHAMUKH JHKO3e()COHOBCKOM ILIa3MBbl, TTOTy4EeHbBI
JHCIEPCHOHHBIC COOTHOIICHUS, OINCBHIBAIOIINE TeparepreBble
JJIEKTPOMArHUTHBIE MOJBI, JIOKaIM30BaHHBIE Ha Jedexre. Pac-
CMOTpPEHBl CHMMETPUYHAsI M aHTHCHMMETPHYHAS KOHQHIypaLHu
nedexra B ¢GoToHHOM KpucTamie. CpaBHEHHE IUCIIEPCHOHHBIX
CIIEKTPOB JIOKAIN30BAHHBIX COCTOSHHI IJISI CBEPXIPOBOASIIEIO U
JIMDJIEKTPUYECKOTO J1eeKTOB IT03BOJSET BBUIBUTH OCOOCHHOCTH
H3y4aeMOll CHCTEMBI.

KiroueBble ciioBa: (hOTOHHBINM KpucTaul, Tpancdep-
MaTpHLa, CJIOUCTBI CBEPXIPOBOTHHK.

C. C. Anocromnos, [I. O. fkymes, H. M. Makapos,
A. A. llImaTeko, B. O. SIMnonbcbkuii

TEPATEPLIOBI TM-XBUJII, JIOKAJII30BAHI HA
JE®DEKTI 3 HIAPYBATOI'O HAATIPOBIJIHMKA
Y ®OTOHHOMY KPUCTAJII

TeopeTrvHO BUBYECHI BIACHI CTaHHU EICKTPOMArHITHOTO
TOJIsl B OTHOBUMIPHOMY (DOTOHHOMY KpHCTaJI, IO MICTUTH Aede-
KTHY IUIACTHHY 3 LIApyBAaTOrO HAANPOBIIHHKA. [ PYHTYIOUHCH Ha
MeToni TpaHcdep-MaTpHili, 3 BUKOPHCTAHHIM EJIEKTPOIMHAMIKA
IOK03e()COHIBCHKOT TIa3MHU, OTPUMAHI JUCIIEPCiHI CHiBBiIHO-
IICHHSI, SIKI ONMCYIOTh TeparepLOBi €IEKTPOMArHiTHI MOJH, IO
JIOKanizoBaHl Ha AedekTi. Po3risagaTbcs CUMETpUYHA 1 aHTHUCH-
MeTpuyHy KoHQirypauii nedexty B potoHHOMY KpucTati. [lopis-
HSHHS JUCIIEPCIHHUX CIIEKTpIB JIOKAII30BaHUX CTaHIB JUIsl Haj-
MPOBIJHOTO 1 JiCNEKTPHUYHOTO JAe(PEKTIB ITO3BOJMIO BUSBHTH
0COOJIMBOCTI CHCTEMH, IO TOCHIIKYETCSL.

KoarouoBi cioBa: QoroHHMid Kpucram,
MaTpHLIs, IIAPYBATHH HATPOBIJHHK.

TpaHcdep-



