PLASMA EXPANSION INTO GAS
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An initial problem of the low-temperature plasma expansion in an unbounded gaseous medium is considered. It
is assumed that the plasma had been created locally in the background gas by a source of ionization which acts
during the small enough time. The ions have a temperature of the background gas, the ionization degree is small and
the macroscopic gas dynamics is neglectable. We assume the electrons are Maxwellian. The mathematical model
and the numerical method for the problem treatment are elaborated. The problem can be interesting in the plasma

afterglow studies and for the tasks of laser pumping by a short pulse.

PACS: 52.25.Fi, 52.27.Aj
1. PROBLEM STATEMENT

Investigations of the low temperature plasma, which
freely expands into the gaseous medium or a vacuum,
have a long history (see, e.g, [1-3] and references
therein). There are a wide set of astrophysical,
spacecraft, technological problems, which lead to the
necessity of such studies.

The system under consideration is shown on the
Fig. 1. The plasma density spatial distribution is radially
symmetrical. The cases of the flat layer, the cylinder
and the sphere are considered. The fast electrons run
away of the plasma and the radial ambipolar electric
field arises. The last leads to the ion drift through the
background gas and to the plasma expanding. So, our
model consists of the ambipolar field equation, the ion
movement equation, and the balance conditions for the
power and the energy
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Fig. 1. The configuration of the problem
2. AMBIPOLAR FIELD EQUATION

We start from the equation for the divergence of the
ambipolar electric field E

VE =4ne(n—n,), (1)

where n, is the electrons density, n is the ions density,

summarized by components with the charge of the ion
Z,, (in elementary charge e units) and density n,,:
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n=>y 27.n,. )

The characteristic time of the changing of the electron
density is significantly less compared with the
characteristic time of the ions, so it is helpful for the
robust numerical calculations to exclude n, from (1).
For this purpose let us consider the equation of the
movement of the electron fluid [4]:

m,n V. _ -TVn, —en,. (3)
ot

e e

Here, m,, n,, V., T are the electron mass, the

density, the velocity and the temperature of the electron
fluid, correspondingly. We confine ourselves to the case
when the inertial term is neglectable compared with
other two terms in (3). Let us to introduce the
dimensionless variables r', n', E' as follows:

r=rrpe, 4
n=n'ny, ®)
E=E_0 ®)
erpe
T
r2=—>=9 7
P 4ze’n, ™

Here n, and T, are the electron density and the

electron temperature in the center of the plasma in the
initial moment of time. Under the above assumption the
equations (1), (3) pass to

v'n,'+n,'E'=0, 8
V'E'=n'-n,', (9)
and we obtain the equation for the ambipolar electric

field with the spatial distribution density n' of ions
given:

V(V'E-n")+E(V'E-n)=0. (10)
In the case of the radial symmetry we have
E'=E'E,, (11)
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on'
Vin'=—=8&,, 12
op o (12)
e 10 L,
VE'=—_—r“"E" (13)
" or

where parameter a=0,1,2 denotes the case of the flat

layer, the cylinder and the sphere, correspondingly.
Then, the equation (10) transforms to

i[E+WE'j+AE':ﬂ, (14)
or'{ or' or'
w=2,1g, (15)
r 2
A:%E'—n'. (16)
The obvious boundary condition is
El =o0. 17

r'—o

3. DRIFT OF THE IONS

The movement equation of the ion of the kind o reads

[4]:

ov, Z, -
mn, S yyy =g (18)
ot 3
Here m,, v, v, are the ion mass, the ion velocity
and the ion-neutral collision frequency,

correspondingly. The dimensionless values t', v, v,
are determined as follows:

t=t/am, (19)
v, =v, o, (20)
Va :Va |V0’ (21)
where
2
0 = /4“9_”0 22)
My

is the plasma frequency of the ion component with the
smallest ion mass m,. The corresponding Bohm

velocity plays the role of the wvelocity scaling
coefficient:

vO:rDea)O:va"/iolmo. (23)
Generally, the law of the ion movement (18) supports
multistream solutions. We avoid them for simplicity,
and suppose the inertia term small enough:

m, =0. (24)
So, the movement of the ion of the kind o is
determined only by the ion mobility p,. In
dimensionless variables we have

Vo' =1, E'. (25)
The use of the variable mobility model [4] gives:
, 20, Z,
My'= (26)
amy 'V, +T,

where the dimensionless mass m,', the temperature
T, . and the free pass length A" of the ions of the
kind o are
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(27)
(28)
(29)

m,'=m,/mgy,
T, =T, /Ty,
A=A Tpe-

4. PARTICLES AND ENERGY BALANCE
For the ion density we have the continuity equation:

on,' -
8t(? +Vln(xlvotlzviotl
where v;,' is the normalized ionization frequency. The

density of the plasma internal energy consists of the
electric field energy and the electron gas internal
energy:

Ne', (30)

(31)

The plasma expansion is accompanied with the
transformation of the total internal energy u to the
charged particles kinetic energy, the ohmic heating, and
the inelastic processes such as excitation and ionization:
ouU'

E - J(Plohm+Plinel)dv ) (32)
\Y%
U'= ju'dv, (33)
Vv
PlineI: I’]IZlegm|! (34)
m
PIOhm: E'zzoc'noclvoc" (35)
m
_.|2
w=EotZn, T (36)

where v.,' and g,,' are the frequency and the energy

loss of the inelastic process m . In the balance equation
(32) we neglect the ions Kinetic energy due to the
assumption (24). The dimensionless energies are
introduced by

u=u'ngyT .
5. NUMERICAL SOLUTION

The calculation procedure is organized in the form of
sequential solving of the equations (14), (30), (32) at the
each time step. Globally, the evolution of the system
can be represented as follows:

(37)

a j—
O =1x(), (38)

(39)

We approximate the derivation in (38) by the finite
difference

Qx(t)aixk ~ Xk, (40)
T

ot

where X, is the value of the x at the time t, =kt , and
T is the time step. The X, is achieved by the iterations
according to the relation:
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X =Xy +7(f(xHA-p)+ f(x.1)p)  (41)
where i is the iteration number, pis the convergence

i-1

parameter. For the calculation of x,~ we must find E',

v,' and T' with xi* (ie, n,' and U') given. The
ambipolar field only depends on the total ion density n'
and should be obtained from (10), the ions velocities

only depends on the ambipolar field (25), and the
temperature is found from (32), (36), (9):

1 3 1 [ 1 2 1
T JE”" dv'= U—JTdV . (42)
The ambipolar electric field equation (14) is
nonlinear and it is also solved iteratively:
1l . . . . '
OB witgt At 20N 43
or'{ or' or'

The iterations converge quickly, so the nonlinearity
doesn’t bring any troubles and allows us to avoid a
headache associated with the calculation of the electron
density. Partial derivative equation (43) belongs to the
convection-diffusion type and is solved by the
Scharfetter-Gummel scheme [5].

As for continuity equation (30), it can be solved by a
great variety of ways, but we do it in the spirit of Euler-
Lagrange scheme described in [6]. The calculation
domain is divided into set of cells with the impenetrable
walls which are occupied by the ions of the certain kind.
Between an adjacent moments of time (say, t,_; and
t, ), the walls move with the ion velocity (25). Before
the next time step the domain is covered by the new set
of cells and the ion density is redistributed. This scheme

is totally conservative, and has a moderate numerical
diffusion. But most importantly, it is helpful in the

numerical treatment of the shock wave near the ion core
boundary.

CONCLUSIONS

In this paper we consider the free diffusion of the
plasma into the background gas. The equation set of
plasma time-space evolution is formulated. The robust
and cost effective numerical method for the equations
solving is elaborated.
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PACUHIMPEHHME IIJIA3BMbI B I'A3
H.A. A3apenxoe, A.B. I'anon

PaccmoTpena HavallbHas 3ajada pacUIMPEHUs HU3KOTEMIIEPATypHOM IUIa3Mbl B HEOIPAHUYEHHYIO Ta30BYIO
cpeny. Ilpeanonaraercsi, yTo miua3Ma CO34aHa JIOKAJIBHO MCTOYHMKOM HOHM3ALMM, NEHCTBYIOIIMM JOCTaTOYHO
Masioe Bpemsi. MoHbI uMelOT TemmepaTypy (OHOBOrO ras3a, CTENeHb WOHHM3alUMM IUIa3Mbl HEBEIMKa M|
MaKpOCKONIMYECKHe TEYCHHs Ta3a OTCYTCTBYIOT. OJEKTPOHBI HMEIOT MAaKCBEJUIOBCKOE pacIpesiecHHUE.
Pa3zpaboTansl MaTeMaTHuecKass MOJAEIh W UHCIEHHBIH MeTox e€ pemeHHA. 3ajada MOXeET OBbITh IoJie3Ha B
HCCIIEI0BAaHUSAX [IOCIECBEUECHMS U JIa3€PHON HAKAYKU KOPOTKUM MMITYJIbCOM.

PO3ILIMPEHHS IIJIASMHU B I'A3
M.O. Azapenkos, O.B. I'anon

Po3risHyTO IMovyaTkoBa 3ajiaua PO3IIUPEHHS HU3bKOTEMIIEpaTypHOI TuIa3MH B HEOOMEKEHE I'a30Be CEpPEOBHIIE.
IlepenbauaeThes, IO [1a3Ma CTBOPEHA JIOKATBHO JHKEPETIOM iOHi3allil, 10 i€ J0CHTh KOPOTKHil uac. Monn Maroth
TemrepaTypy (GoHOBOro rasy, CTyMiHb iOHI3alii 1a3MU HEBEJIMKA 1 MaKpOCKOMIUHi Tedii rasy BiacyTHi. EnexTponun
MaroTh MaKCBEJIiBChbKUI po31moail. Po3pobieHo MaTeMaTHIHyY MOJIENh Ta il YUCIOBUI PO3B’A30K. 3aada Moxke OyTH
KOPHCHA B JOCHIPKEHHIX MICJIACBITIHHS 1 JJa3ePHOTO HaKadyBaHHSI KOPOTKUM IMITYJIECOM.
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