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Some results concerning the study of the dynamics of ensembles of linear and nonlinear oscillators are stated. It
is shown that, in general, a stable ensemble of linear oscillator has a limited number of oscillators. This number has
been defined for some simple models. It is shown that the features of the dynamics of linear oscillators can be used
for conversion of the low-frequency energy oscillations into high frequency oscillations. The dynamics of coupled
nonlinear oscillators in most cases is chaotic. For such a case, it is shown that the statistical characteristics
(moments) of chaotic motion can significantly reduce potential barriers that keep the particles in the capture region.
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INTRODUCTION

The ensembles of oscillators are convenient models
for providing analysis of the dynamics of various
physical systems. Such systems can, e.g., be ensembles
of charged particles captured in various potentials, a set
of eigenmodes in oscillatory systems of equivalent
resonators, and many other physical systems. In general,
the analysis of the dynamics of the ensemble is a
complex task (e.g., [1]). The key question of this
analysis is the question about the stability of the
ensembles. In this paper some results are presented on
the study of the dynamics of ensembles of linear and
nonlinear oscillators. The most important results of the
analysis can be summarized as follows: if there are a
number of identical oscillators in the ensemble, and
they can be grouped together, the ensemble of
oscillators is transformed into an ensemble of oscillators
with a nonreciprocal connection, and matrices of
coefficients describing the kinetic and potential energy
of the ensemble, ceases to be symmetrical. At that a
variety of new dynamic processes can be realized, and
most important of them is the possibility for such
ensemble to be unstable. The criteria of instability were
found. Some famous ensembles of nonlinear oscillators
were investigated in detail. The most important result is
that in the case when the dynamics is determined by a
dynamic chaos, the oscillatory characteristics, including
stability of such ensembles, are determined by the value
of the statistical moments.

1. OF AN ENSEMBLE OF LINEAR

OSCILLATORS
Suppose that we have a system with the
Hamiltonian:
N p2 qZ N N
H :2{7'+a)§?'j+uqo~2qj+Asith-qu. 1)
i=0 j=1 j=0

This system represents N coupled linear oscillators,
which are subjected to the external periodic force. The
amplitude of this force is equal to A, the frequency - Q) .

From (1) it is easy to obtain a system of equations for
the oscillators:

G; +C‘)OZQi =—p-G, —A-sinQt,

N
o + gy = _,U'zqi —A-sinQt. )
i=1
For simplicity, we consider a system where all

oscillators are connected to each other only through the
zero oscillator (Fig. 1,a). The normal frequency of such
a system can be easily found. For this the solution of the
system (2) when A =0 will be seeking in the form of:

g =aexp(i-o-t), a =const. ()

Substituting this solution in (2), the dispersion equation
can be obtained:

(—a)2 +af )2 =i’N , (4)
with the solution:

o=t N Taf . (5)

The signs + and — in the formula (5) before the root
and under the root are independent. It is seen that even
when the coupling coefficient is very small, but there is
a large number of oscillators, one of the normal
frequency can be very small (for the case of the sign “—*
under the root). If inequality

u-IN > (6)
is fulfilled, such ensemble cannot exist and breaks
down.

Suppose that the external periodic force with the
frequency equals to the minimal normal frequency of
the ensemble, acts on the ensemble. Then the amplitude
of oscillations of the ensemble will be increasing
linearly with time.

Now, if at some point in time (it is defined by the
presence of decay and, accordingly, by saturation of the
amplified oscillations) the connection is broken, the
oscillator frequency will be a partial frequency. The
amplitudes of the partial frequencies are much higher
than the initial amplitude. An illustration of this fact are
Figs. 2 and 3.
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Fig. 1. Ensemble of oscillators. Connection occurs only
through the central oscillator (a). Connection occurs
through the central oscillator and between nearest
neighbors (b)
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Fig. 2. The time evolution of the amplitude of the
central oscillator. At time 10° the connection between
the oscillators was torn

In these figures the time evolution of the amplitude
of the central oscillator connected with nine identical
oscillators are shown (see Fig.1,a). The ensemble is
under action of the external force. The dynamics of
ensemble is described by equations (2). The parameters
of this system were chosen as:

u(t) =0.333-H(1000 1) , A=-0.1, Q=0.032, @ =1
with initial conditions equal to zero. Here H(t)-

Heaviside function. The amplitude of the central
oscillator is about 1500 (see Fig. 2). The amplitudes of
the other oscillators are approximately three times lower
(around 466). Note that the amplitudes of the partial
oscillations depend on the moment of rupture of the
connection. If to break the links at another time, for
example, when the coupling coefficient is equal to
u(t) =0.333-H(937.67—t), the amplitudes of the
partial oscillations will be significantly smaller (see
Fig. 3). These results show that with the help of the
energy of low-frequency vibrations it is possible to
excite efficiently vibrations of significantly higher
frequency (in this example the frequency of the excited
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oscillations in more than thirty times exceeds the
frequency of the external excitation).

If there is no external force (A=0), but oscillators
are arranged randomly in the vicinity of the bottom of
the potential well, the oscillations of the oscillators are
limited. However, if one slightly increases the coupling
coefficient (£ =0.3334), the dynamics becomes

unstable, and the breakdown criterion (6) does occur.
The ensemble becomes destroyed.

The case considered above is a simplest model. The
more realistic is the ensemble of oscillators presented in
Fig.1,b. In this ensemble, as in the previous, all
oscillators are connected to the central oscillator, but
they are also bound with one of the nearest neighbors.
In addition, the frequency of the central oscillator
differs from the frequency of other oscillators. Then the
system of equations describing the dynamics of such
ensemble is:

G + @0y =—p- 0y — 14 (Ghy +Gy) — A-sSiNQY,
N

G + 0y =—p- Y G — A-sinQt . @)
i=1

To find the conditions for existence of such
ensemble it is convenient to rewrite the system (7) as:

Q+w’Q=-u-Nq,,
qo+a)12qo:_ﬂ'Q ) ®)
N
where o’ =aff +2u; Q=Yq; A=0.
i=1

Similarly to the way as the condition (6) was
obtained, it is easy to find the condition for breaking of
such ensemble, namely:

N>’ . 9)

All main results, obtained in the analysis of the
previous model, are also valid for this model. Note that
the ensemble of identical oscillators, in which each
oscillator is connected to all other oscillators with the
same bond, is stable.
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Fig. 3. The time evolution of the amplitude of the
central oscillator. The moment of breaking the bonds is
equal 937.67

2. DYNAMICS OF SYSTEMS OF
NONLINEAR OSCILLATORS

The oscillations of the linear oscillators correspond
to oscillations in an infinite parabolic potential well.
The amplitudes of these oscillations are unlimited, and
the limitations of amplitudes are associated with either
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attenuation or nonlinearities. Below we consider the
effect of nonlinearities.

Let us consider an ensemble of coupled N
nonlinear oscillators, which is under influence of
external regular periodic force. The Hamiltonian of such
system can be represented as:

N XZ

H=Zzl:[?'+®(xi)+G(xi,xj)—g(r)-xi}, (10)
ii=

to which the following system of second order

equations corresponds:

% =F,(x)+F(%.%)+e(r) - (11)
N
The second term F, =—) 0G/ax; on the right side

of the system describes the interaction between
nonlinear oscillators. If it is missing, the system
describes the dynamics of an ensemble of nonlinear
oscillators independent from each other. The nature of
the nonlinearity is determined by the function

Fo(x)=—0®/ox . The third term describes the

external periodic force.

Let's assume, for definiteness, that each of the
nonlinear oscillators is a charged particle that moves in
a nonlinear potential. Suppose additionally that due to
interaction between oscillators, or due to impacts of
external regular force, their dynamics is chaotic. In this
case, the displacement of each of these oscillators can
be represented as:

X =X+0, , (12)

N
where X =>"x /N is average coordinate nonlinear
i=1
oscillators displacement; J; - is random deviation from
the normal distribution, such, that (&)=0. For an

ensemble of oscillators the value X corresponds to the
"the center of inertia" of the ensemble. With this
assumption, the average value over the ensemble of
functions F; and F, is convenient to decompose in a

series of moments:

(Fy(R+8)) =R (X)+3

n=1

M, (dY

where M, :<(5)"> are moments.

3. THE ENSEMBLES OF
MATHEMATICAL PENDULUMS AND
DUFFING OSCILLATORS

If every oscillator is a mathematical pendulum
F (X )=-sin(x), the average value of this function

will look like:

(R () =—(ain(x)) =—| -3 i

m=1

For this particular case, the most important results
can be obtained by the use of the formula (13): the
characteristics of a mathematical pendulum, engaged in
random motion, will be significantly different from the
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known characteristics. For illustration of this fact we
start from the system (11) for finding an equation that
describes the dynamics of the average deviation. For
simplicity, the external force and the connection
between oscillators are neglected:
X+|1->» —2 |sinXx =0 . 14
{ ;(Zm!)} (49
Equation (14) describes the dynamics of a
mathematical pendulum. The potential of this
mathematical pendulum, and accordingly, its oscillatory
characteristics, do essentially depend on the statistical
characteristics of the oscillators. Importantly, that the
square of the frequency of small oscillations of a
pendulum depends essentially on the moments of
chaotic dynamics. It can be seen that this value is
reducing with increasing moments. As a result, the
depth of the potential well, in which the particles
moves, does also reduce, and, thus, even small
magnitude external forces can easily throw particles out
from the capture area. The trapped particles are
becoming untrapped. Especially visually this influence
of the random dynamics is seen when one is considering
the system of Duffing oscillators. For such oscillators
F(x)=ax—-B-%, a>0up>0. The equation for
the center of inertia will look as:
X—(a=3-B-M,)x+£-x*=0. (15)
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Fig. 4. Potential of Duffing oscillator at: M,=0; 5=0.2
(a) and M,=5; p=0.2 (b)
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Equation (15) is the Duffing equation. The potential
of this equation is presented in Fig. 4. In Fig. 4,a the
potential corresponds to a regular dynamics of the
oscillator. In Fig. 4,b — the oscillator, the dynamics of
which is chaotic. As can be seen, the chaotic dynamics
can significantly change the potential. The presence of
the second moment (variance) reduces the potential
barrier between the minima. The particles move almost
like in a single-well potential. Numerical calculations
confirm all these results.

CONCLUSIONS

Now let's formulate the most important results of
this work:

1. In the general case, the ensemble of linear
oscillators may have a limited number of coupled
oscillators. With the number of oscillators exceeding the
critical number the ensembles are destroyed. From the
above analysis it is clear that this is happening when the
ensemble has some number of identical oscillators that
can be combined into a group. The amplitudes of the
normal vibrations of the stable ensemble are limited
only by attenuation and nonlinearity.

2. The distinctive features of the dynamics of linear
ensembles can be used to convert the energy of low-
frequency oscillations into the energy of high-frequency
oscillations (see also [2, 3]).

3. In most cases, the dynamics of coupled nonlinear
oscillators is chaotic. It is also chaotic under influence
of external perturbation on the oscillators.

In such cases the dynamics of ensemble is in many
respects determined by statistical properties of chaotic
motion of the oscillators.

The most significant feature of this dynamics is the
reduction of particle capture area. Thus, it is easy to see
from (14) that the width of the nonlinear resonance is
significantly reduced to:

4~\/[1—§:M2m /(2m!)} .

The motion of particles in the Duffing potential
occurs, practically, without influence of a potential
barrier which exists in the regular dynamics mode
(compare Fig. 4,a and Fig. 4,b). It is easy to show that
in this case, even small external disturbances may
knock out particles from the capture area, i.e. turn the
trapped particles into the untrapped particles.
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PA3PYIIEHUE AHCAMBJIEN JJMHEWHBIX 1 HEJTMHEWMHBIX OCIIULIISATOPOB
B.A. Byy

W3noxkeHbl HEKOTOphIe pe3yNbTaThl HCCJICNOBAaHUS JUHAMUKM aHcaMOJie JIMHEHHBIX U HEITUHEHHBIX
ociuisiTopoB.  [lokazaHo, 4To B OOmEM ciydae YCTOWYMBBIA aHCamMOIb JIMHEHHBIX OCHUJUIATOPOB HUMEET
OTPaHUYEHHOE YHUCJIO OCLWUIATOPOB. [l IpOCTBIX Mozenei ompenenaeHo 3To koaudecTtBo. IlokazaHo, uTo
0COOEHHOCTD JUHAMHKU JIMHEUHBIX OCHIUWJIJIATOPOB MOXKET OBITh HCIIOJIL30BaHa JJIs1 npeo6pa303aHHﬂ OHEprumn
HU3KOYACTOTHBIX KOJeOaHWiA B BBICOKOYACTOTHBIC. JIMHAMUKA CBS3aHHBIX HEIUHEWHBIX OCIHJUIITOPOB B
OOJIBIIMHCTBE CIIyYacB XaoTHYHA. B 3TOM ciydae MOKa3aHO, YTO CTATUCTUYCCKHE XApaKTEPUCTHKH (MOMCHTBHI)
XaOTHYECKOTO IBIDKCHHUS MOTYT CYIICCTBEHHO YMEHBIIATh IOTCHI[MANBHBIC Oapbephl, KOTOPBIC YICPKHBAIOT
Y4acTHUIIBI B 00JIACTH 3aXBarTa.

PYWUHYBAHHS AHCAMBJIIB JITHIMHUX TA HEJIHIHHUX OCLUJISAATOPIB
B.O. byy

BuknageHo Jesiki pe3yiabTaTd JOCTIDKECHHS THHAMIKM aHCAMOJIIB JIHINHUX Ta HETIHIHHUX OCHHUJISATOPIB.
IlokazaHo, moO B 3araJbHOMY BHIIQJKY CTIHKHH aHCaMOIb IIHIHHUX OCHWIATOPIB Mae OOMEXEeHE YHCIIO
ocruiiATopiB. [Iisi mpocTux Mojeneil Bu3HadeHa I KuUTbKicTh. [loka3aHo, MO OCOOJIMBICTE MWHAMIKH JIIHIHHUX
OCLUIISITOPIB MOXKE OYTH BUKOpHCTaHA JUisl IEPETBOPEHHS €Heprii HU3bKOYACTOTHUX KOJIMBaHb Y BUCOKOYACTOTHI.
JlnHamika MOB'sI3aHUX HENiHIHHUX OCHUJISATOPIB y OUTBIIOCTI BUMAKIB Xa0THYHA. Y I[bOMY BHITAJKy ITOKa3aHO, 10
CTaTUCTUYHI XapaKTEePUCTHKH (MOMEHTH) XaOTHYHOTO PYXy MOXKYTh iICTOTHO 3MEHIIYBAaTH NOTEHIIHHI Oap'epH, sKi
YTPUMYIOTh YAaCTHHKH B 00J1aCTi 3aXBary.
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