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     Some results concerning the study of the dynamics of ensembles of linear and nonlinear oscillators are stated. It 

is shown that, in general, a stable ensemble of linear oscillator has a limited number of oscillators. This number has 

been defined for some simple models. It is shown that the features of the dynamics of linear oscillators can be used 

for conversion of the low-frequency energy oscillations into high frequency oscillations. The dynamics of coupled 

nonlinear oscillators in most cases is chaotic. For such a case, it is shown that the statistical characteristics 

(moments) of chaotic motion can significantly reduce potential barriers that keep the particles in the capture region. 
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INTRODUCTION 

The ensembles of oscillators are convenient models 

for providing analysis of the dynamics of various 

physical systems. Such systems can, e.g., be ensembles 

of charged particles captured in various potentials, a set 

of eigenmodes in oscillatory systems of equivalent 

resonators, and many other physical systems. In general, 

the analysis of the dynamics of the ensemble is a 

complex task (e.g., [1]). The key question of this 

analysis is the question about the stability of the 

ensembles. In this paper some results are presented on 

the study of the dynamics of ensembles of linear and 

nonlinear oscillators. The most important results of the 

analysis can be summarized as follows: if there are a 

number of identical oscillators in the ensemble, and 

they can be grouped together, the ensemble of 

oscillators is transformed into an ensemble of oscillators 

with a nonreciprocal connection, and matrices of 

coefficients describing the kinetic and potential energy 

of the ensemble, ceases to be symmetrical. At that a 

variety of new dynamic processes can be realized, and 

most important of them is the possibility for such 

ensemble to be unstable. The criteria of instability were 

found. Some famous ensembles of nonlinear oscillators 

were investigated in detail. The most important result is 

that in the case when the dynamics is determined by a 

dynamic chaos, the oscillatory characteristics, including 

stability of such ensembles, are determined by the value 

of the statistical moments. 

 

1. OF AN ENSEMBLE OF LINEAR 

OSCILLATORS 

 
     Suppose that we have a system with the 

Hamiltonian: 
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     This system represents N  coupled linear oscillators, 

which are subjected to the external periodic force. The 

amplitude of this force is equal to A , the frequency - .     

 

From (1) it is easy to obtain a system of equations for 

the oscillators: 
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For simplicity, we consider a system where all 

oscillators are connected to each other only through the 

zero oscillator (Fig. 1,a). The normal frequency of such 

a system can be easily found. For this the solution of the 

system (2) when 0A  will be seeking in the form of: 

 exp ,i i iq a i t a const    .                    (3) 

Substituting this solution in (2), the dispersion equation 

can be obtained: 
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with the solution:  
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     The signs + and – in the formula (5) before the root 

and under the root are independent. It is seen that even 

when the coupling coefficient is very small, but there is 

a large number of oscillators, one of the normal 

frequency can be very small (for the case of the sign “–“ 

under the root).  If inequality 

 
2

0N                                       (6)  

is fulfilled, such ensemble cannot exist and breaks 

down.  

     Suppose that the external periodic force with the 

frequency equals to the minimal normal frequency of 

the ensemble, acts on the ensemble. Then the amplitude 

of oscillations of the ensemble will be increasing 

linearly with time.  

     Now, if at some point in time (it is defined by the 

presence of decay and, accordingly, by saturation of the 

amplified oscillations) the connection is broken, the 

oscillator frequency will be a partial frequency. The 

amplitudes of the partial frequencies are much higher 

than the initial amplitude. An illustration of this fact are 

Figs. 2 and 3. 
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a 
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Fig. 1. Ensemble of oscillators. Connection occurs only 

through the central oscillator (a). Connection occurs 

through the central oscillator and between nearest 

neighbors (b) 

 

 
Fig. 2. The time evolution of the amplitude of the 

central oscillator. At time 10
3
 the connection between 

the oscillators was torn 

 

In these figures the time evolution of the amplitude 

of the central oscillator connected with nine identical 

oscillators are shown (see Fig. 1,a). The ensemble is 

under action of the external force. The dynamics of 

ensemble is described by equations (2). The parameters 

of this system were chosen as: 

 ( ) 0.333 (1000 )t t    , 0.1; 0.032A     , 
0 1   

with initial conditions equal to zero. Here ( )t - 

Heaviside function. The amplitude of the central 

oscillator is about 1500 (see Fig. 2). The amplitudes of 

the other oscillators are approximately three times lower 

(around 466). Note that the amplitudes of the partial 

oscillations depend on the moment of rupture of the 

connection. If to break the links at another time, for 

example, when the coupling coefficient is equal to 

( ) 0.333 (937.67 )t t    , the amplitudes of the 

partial oscillations will be significantly smaller (see 

Fig. 3). These results show that with the help of the 

energy of low-frequency vibrations it is possible to 

excite efficiently vibrations of significantly higher 

frequency (in this example the frequency of the excited 

oscillations in more than thirty times exceeds the 

frequency of the external excitation). 

If there is no external force ( 0A ), but oscillators 

are arranged randomly in the vicinity of the bottom of 

the potential well, the oscillations of the oscillators are 

limited. However, if one slightly increases the coupling 

coefficient ( 0.3334  ), the dynamics becomes 

unstable, and the breakdown criterion (6) does occur. 

The ensemble becomes destroyed.  

The case considered above is a simplest model. The 

more realistic is the ensemble of oscillators presented in 

Fig .1,b. In this ensemble, as in the previous, all 

oscillators are connected to the central oscillator, but 

they are also bound with one of the nearest neighbors. 

In addition, the frequency of the central oscillator 

differs from the frequency of other oscillators. Then the 

system of equations describing the dynamics of such 

ensemble is:  
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To find the conditions for existence of such 

ensemble it is convenient to rewrite the system (7) as: 

              
2

0 ,Q Q Nq      

2

0 1 0q q Q       ,                            (8) 

where  
2 2

0 12    ;  
1

N

i

i

Q q


 ; 0A . 

Similarly to the way as the condition (6) was 

obtained, it is easy to find the condition for breaking of 

such ensemble, namely: 
2 2 2

1N      .                               (9) 

All main results, obtained in the analysis of the 

previous model, are also valid for this model. Note that 

the ensemble of identical oscillators, in which each 

oscillator is connected to all other oscillators with the 

same bond, is stable. 

 

 
Fig. 3. The time evolution of the amplitude of the 

central oscillator. The moment of breaking the bonds is 

equal 937.67 

2. DYNAMICS OF SYSTEMS OF 

NONLINEAR OSCILLATORS 

The oscillations of the linear oscillators correspond 

to oscillations in an infinite parabolic potential well. 

The amplitudes of these oscillations are unlimited, and 

the limitations of amplitudes are associated with either 
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attenuation or nonlinearities. Below we consider the 

effect of nonlinearities.  

Let us consider an ensemble of coupled N  

nonlinear oscillators, which is under influence of 

external regular periodic force. The Hamiltonian of such 

system can be represented as: 
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to which the following system of second order 

equations corresponds:  

     0 1 ,i i i jx F x F x x      .             (11)                   

The second term 
1 /

N

i

i

F G x    on the right side 

of the system describes the interaction between 

nonlinear oscillators. If it is missing, the system 

describes the dynamics of an ensemble of nonlinear 

oscillators independent from each other. The nature of 

the nonlinearity is determined by the function 

 0 /i iF x x   . The third term describes the 

external periodic force.  

Let's assume, for definiteness, that each of the 

nonlinear oscillators is a charged particle that moves in 

a nonlinear potential. Suppose additionally that due to 

interaction between oscillators, or due to impacts of 

external regular force, their dynamics is chaotic. In this 

case, the displacement of each of these oscillators can 

be represented as: 
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is average coordinate nonlinear 

oscillators displacement; 
i - is random deviation from 

the normal distribution, such, that 0i  . For an 

ensemble of oscillators the value x corresponds to the 

"the center of inertia" of the ensemble. With this 

assumption, the average value over the ensemble of 

functions
0F  and 

1F
 
is convenient to decompose in a 

series of moments: 
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where  
n

n    are  moments. 

 

3. THE ENSEMBLES OF 

MATHEMATICAL PENDULUMS AND 

DUFFING OSCILLATORS 

 
If every oscillator is a mathematical pendulum 

   0 sini iF x x  , the average value of this function 

will look like: 
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     For this particular case, the most important results 

can be obtained by the use of the formula (13): the 

characteristics of a mathematical pendulum, engaged in 

random motion, will be significantly different from the 

known characteristics. For illustration of this fact we 

start from the system (11) for finding an equation that 

describes the dynamics of the average deviation. For 

simplicity, the external force and the connection 

between oscillators are neglected: 

2

1

1 sin 0
(2 !)

m

m

x x
m





 
   
 

  .                     (14) 

Equation (14) describes the dynamics of a 

mathematical pendulum. The potential of this 

mathematical pendulum, and accordingly, its oscillatory 

characteristics, do essentially depend on the statistical 

characteristics of the oscillators. Importantly, that the 

square of the frequency of small oscillations of a 

pendulum depends essentially on the moments of 

chaotic dynamics. It can be seen that this value is 

reducing with increasing moments. As a result, the 

depth of the potential well, in which the particles 

moves, does also reduce, and, thus, even small 

magnitude external forces can easily throw particles out 

from the capture area. The trapped particles are 

becoming untrapped. Especially visually this influence 

of the random dynamics is seen when one is considering 

the system of Duffing oscillators. For such oscillators 

  3

0 i i iF x x x     , 0   и 0  .  The equation for 

the center of inertia will look as: 

  3

23 0x M x x         .               (15) 

 

 
                                                                  a 

 
                                                               b 

Fig. 4. Potential of Duffing oscillator at: M2=0; =0.2 

(a) and M2=5; =0.2 (b) 
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     Equation (15) is the Duffing equation. The potential 

of this equation is presented in Fig. 4. In Fig. 4,a the 

potential corresponds to a regular dynamics of the 

oscillator. In Fig. 4,b – the oscillator, the dynamics of 

which is chaotic. As can be seen, the chaotic dynamics 

can significantly change the potential. The presence of 

the second moment (variance) reduces the potential 

barrier between the minima. The particles move almost 

like in a single-well potential. Numerical calculations 

confirm all these results. 

 

CONCLUSIONS 

 
Now let's formulate the most important results of 

this work: 

1. In the general case, the ensemble of linear 

oscillators may have a limited number of coupled 

oscillators. With the number of oscillators exceeding the 

critical number the ensembles are destroyed. From the 

above analysis it is clear that this is happening when the 

ensemble has some number of identical oscillators that 

can be combined into a group. The amplitudes of the 

normal vibrations of the stable ensemble are limited 

only by attenuation and nonlinearity.  

2. The distinctive features of the dynamics of linear 

ensembles can be used to convert the energy of low-

frequency oscillations into the energy of high-frequency 

oscillations (see also [2, 3]).  

3. In most cases, the dynamics of coupled nonlinear 

oscillators is chaotic. It is also chaotic under influence 

of external perturbation on the oscillators.  

In such cases the dynamics of ensemble is in many 

respects determined by statistical properties of chaotic 

motion of the oscillators.  

The most significant feature of this dynamics is the 

reduction of particle capture area. Thus, it is easy to see 

from (14) that the width of the nonlinear resonance is 

significantly reduced to: 
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The motion of particles in the Duffing potential 

occurs, practically, without influence of a potential 

barrier which exists in the regular dynamics mode 

(compare Fig. 4,a and Fig. 4,b). It is easy to show that 

in this case, even small external disturbances may 

knock out particles from the capture area, i.e. turn the 

trapped particles into the untrapped particles. 
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РАЗРУШЕНИЕ АНСАМБЛЕЙ ЛИНЕЙНЫХ И НЕЛИНЕЙНЫХ ОСЦИЛЛЯТОРОВ 

В.А. Буц 

Изложены некоторые результаты исследования динамики ансамблей линейных и нелинейных 

осцилляторов. Показано, что в общем случае устойчивый ансамбль линейных осцилляторов имеет 

ограниченное число осцилляторов. Для простых моделей определено это количество. Показано, что 

особенность динамики линейных осцилляторов может быть использована для преобразования энергии 

низкочастотных колебаний в высокочастотные. Динамика связанных нелинейных осцилляторов в 

большинстве случаев хаотична. В этом случае показано, что статистические характеристики (моменты) 

хаотического движения могут существенно уменьшать потенциальные барьеры, которые удерживают 

частицы в области захвата.  

 

РУЙНУВАННЯ АНСАМБЛІВ ЛІНІЙНИХ ТА НЕЛІНІЙНИХ ОСЦИЛЯТОРІВ 

В.О. Буц 

Викладено деякі результати дослідження динаміки ансамблів лінійних та нелінійних осциляторів. 

Показано, що в загальному випадку стійкий ансамбль лінійних осциляторів має обмежене число 

осциляторів. Для простих моделей визначена ця кількість. Показано, що особливість динаміки лінійних 

осциляторів може бути використана для перетворення енергії низькочастотних коливань у високочастотні. 

Динаміка пов'язаних нелінійних осциляторів у більшості випадків хаотична. У цьому випадку показано, що 

статистичні характеристики (моменти) хаотичного руху можуть істотно зменшувати потенційні бар'єри, які 

утримують частинки в області захвату. 


