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We studied transmission of a p-polarized electromagnetic wave through two- and four-layer plasma structure
immersed in an external magnetic field perpendicular to the incidence plane. The structure was composed of alter-
nating layers of high and low density plasma. The layers had equal width. The transmission and reflection coeffi-
cients were derived using transfer matrix method. In this study we calculated spatial distribution of the tangential
energy flux of the wave in the case of reflectionless transmission.
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INTRODUCTION

Interaction of the electromagnetic radiation with
overdense plasma has been extensively studied in vari-
ous contexts for many years. For the waves with fre-
quencies beyond w,. plasma acts as a mirror, but in

layered structures it could behave differently. For in-
stance, a symmetric three-layer structure containing
layer of overdense plasma sandwiched between two
layers of less dense plasma has anomalously high trans-
parency for certain frequencies and angles of inci-
dence [1]. Similar effect is also observed in asymmetric
two layer structure [2, 3]. Layered structures with arbi-
trary number of layers were considered in [4].

Recently, a great deal of interest is attracted to the
structures called photonic crystals. Photonic crystals are
artificial structures, which have a periodic dielectric
structure with high index contrast, designed to control
photons in the same way that crystals control electrons
[5, 6].

The studies of the phenomena in these structures
open the ways for building various kinds of tunable fil-
ters and spatial and spectral multiplexers or overcoming
the blackout in radio communication with spacecrafts
reentering the atmosphere.

1. MAIN EQUATIONS AND ASSUMPTIONS
We consider a periodic multilayer plasma structure

surrounded by vacuum (Fig. 1). The structure is im-
mersed in an external magnetic field H directed along
z-axis. It is assumed that the density of the layers P1 is
small (0 <g g <1, where g, is the dielectric permittiv-
ity of layer at the absence of magnetic field), while the
layers P2 are dense with &,, <0 (here ¢, is the dielec-
tric permittivity of the layer P2 at H =0). Consider
propagation of a p-polarized (with field compo-
nents E,,E,,H,) electromagnetic wave with the wave

vector k = k. +k,€, through the structure. The wave

propagating from the half-infinite vacuum region V1 is
obliquely incident at the plasma layer PI1. In the vacu-
um region V1, there are the incident (k, >0) and re-
flected (k, <0) waves. The transmitted wave propa-

gates into the half-infinite vacuum region V2. The
plasma regions P1 and P2 have equal widths a;.=a,=a.

From Maxwell’s equations we obtain the expres-
sions for components of electromagnetic field of the
wave

1
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where x2=ky2—(32—gz)<02/e, ko=wlc, c is the

speed of light, £and g are the components of the dielec-
tric tensor for cold magnetoactive plasma neglecting ion
motion and particle collisions.
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Fig. 1. Schematic representation of a p-polarized wave
transmission through a symmetric layered plasma
structure

Transmission of a p-polarized electromagnetic wave
is studied using a transfer matrix method [7]. The lay-
ered plasma structure is characterized by a transfer ma-
trix M, which relates wave amplitudes of the incident
wave to the amplitudes of the transmitted wave. We
derived transfer matrix for a two-layer plasma structure.
The change in amplitude of the p-polarized wave after
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propagation over distance a into the positive direction x
is described by matrix equation

H,(x+a H,(x
( A )]:M( m} "
E,(x+a) E,(X)
The wave tangential magnetic field component has
the following form

H, =[C, exp(xx) + C, exp(—x)]exp ik, y —iat) . (5)

The solution does not change across the layer of
magnetoactive plasma, and corresponding transfer ma-
trix is as follows

1 ( &sinh(xa) — y cosh(xa) isinh(xa)
_E( i(y? — &%)sinh(xa) ésinh(xa)ﬂ//cosh(z(a)]’
where
£= Ke _ kyg
CkE-g)' T k(P -g)

The transfer matrix of a multilayer structure com-
posed of N layers is a product of transfer matrices M,
for each layer

Mg =My -...-M,-My,
where M; — transfer matrix of the first layer facing the
incident wave, M, — transfer matrix of the next adjacent
layer etc.

The electromagnetic field at the vacuum-plasma
boundary at x=0 is a superposition of incident and re-
flected waves

H, (0) = Ho (1+R), (6)

E, (0) = ke Ho (1-R), %
where H, — the amplitude of magnetic field of the wave,
R — amplitude reflection coefficient, k, is a wave num-
ber. The electromagnetic wave at the plasma-vacuum
facing the transmitted wave at x=L is

H, (L) =Texp(ik,L), @)

Ey(L):kxT exp(ikyL), C))

where T — amplitude transparency coefficient. The elec-
tromagnetic wave field at the structure interface with
region V1 (6), (7) is related to electromagnetic field at
the plasma boundary with region V2 (8), (9) by the
equation (4), where M=Ms. The solution gives us trans-
parency and reflection coefficients, correspondingly

M1,Myp =M My,
Mlzkxz +Mjy =k (M1 +My,)

T =2k, exp(—ik,Xx)

R= M1k =My +Ky (Mg —Myy)

Mlzkf + My =k (My;+Myy)
where M;; are components of the transfer matrix of the
layered structure. The condition of the reflectionless

transmission of the electromagnetic wave through the
structure is determined by the equations

M1:-M2,=0,
Mlex2*M21=O-

(10)
(11

If wave frequency, angle of incidence and plasma pa-

rameters satisfy the conditions (10), (11), the absolute
value of the transmission coefficient equals unity.
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Meanwhile, the phase of the wave is shifted. For the
two-layer structure the phase shift is determined by the
following expression

Arg(T) =

:_é w, sinh(x;a,) — & cosh(x,a,) — ik, sinh(x;a,)
& \ w, sinh(x,a,) + &, cosh(x,a,) —ik, sinh(x,a,) )

On Fig. 2 is shown the dependencies of absolute value
and phase of the transparency coefficient on tangential
component of the wave vector. The phase rapidly grows
in the vicinity of the point corresponding to
reflectionless transmission.
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Fig. 2. The dependance of absolute value of
transmission coefficient (dashed line) and phase of the
transmitted wave (solid line) on wave number. The
width of the layers is a;=a,= A/ 7, the density ration is

n,/ny =2, cyclotron frequency «, = 0.45@,,, wave

frequency w=0.767@,

Using equation (4) one can find the value of tangential
components of electromagnetic field of the wave at any
boundary between layers of the structure. For instance,
the tangential components of the electromagnetic wave
at the boundary between first and second layers is found
by multiplying the value of the wave field vector at vac-
uum-plasma interface by transfer matrix of the first lay-
er. Due to continuity of the tangential components
across the interfaces the tangential electromagnetic field
vector at the next interface is obtained by multiplying
field vector from the previous step by corresponding
transfer matrix. In this way for each layer one gets the
values of the field components at the right Hg and left
H, boundary. These values allow finding coefficients C;
and C, in expression (5)

C. = Hg exp(ax ) —H_exp(axg)

, 12
' exp(—xa) —exp(xa) 42

C.— H_exp(—axg)—Hg exp(—xxg) (13)
? exp(—a) —exp(xa) ’

where xg and x_ is the coordinates of the right and left
boundaries, respectively, a = xg — X, is the width of the
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layer. Equations (1)-(3) and coefficients (12), (13) give
the spatial distribution of the electromagnetic field in-
side the layered structure.

2. THE ENERGY FLOW IN LAYERED
PLASMA STRUCTURE

The energy flux carried by the electromagnetic wave
is described by the Poynting vector

c
S—E[EH].

The Poynting vector has two components Sy and S,. The
time averaged normal to the interfaces component <S,>
is constant across the layers. We studied the spatial dis-
tribution of the tangential component of the energy flux

<Sy>:£Re[EXH:].

On Figs. 3-6 we present the spatial distribution of
the time averaged tangential energy flow normalized by
the value Sy=c|H,(0)|/8x, the coordinate x is measured
in units of k * starting from the vacuum-plasma inter-
face V1-P1.

The conditions for total transparency of the structure
(10), (11) support two types of solutions. The first one
called here evanescent resonance corresponds to the
wave evanescent (k’<0) in all the plasma regions. The
second one corresponds to the wave propagating in the
regions with positive dielectric permittivity (P1) and
evanescent in regions with negative permittivity (P2)
and thus called semi-evanescent resonance. The number
of evanescent and semi-evanescent resonances is equal
and increases with number of layers in the structure.

The flow of the energy of the electromagnetic wave
has larger values in the layers with positive dielectric
permittivity (P1).
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Fig. 3. The spatial distribution of the tangential energy
flow in the two-layer structure in case of evanescent
resonance. The wave number is ky/ko= — 0.967; wave
frequency is @ =0.767w,

86

150
100
50

—50
—-100

—150

0 05 1 15 2 25 3 35 4

X

Fig. 4. The spatial distribution of the tangential energy
flow in the two-layer structure in case of semi-
evanescent resonance. The wave number is
ky/ko= — 0.457; wave frequency is o= 0.6690,,
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Fig. 5. The spatial distribution of the tangential energy
flow in the four-layer structure in case of evanescent
resonance. The wave number is k,/k,=0.588; wave fre-
quency is »=0.809,,
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Fig. 6. The spatial distribution of the tangential energy

flow in the four-layer structure in case of evanescent
resonance. The wave number is k,/ko=0.817; wave fre-

quency is @=0.61w,,
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PACIIPOCTPAHEHHUE 3JIEKTPOMATHUTHOM BOJIHbI YEPE3 CJI0M MATHUTOAKTUBHOM
IJIA3MBI

C. Hexo, H. /lenucenxo, H. A3apenxos

N3y4anoch NmpoxokAeHHE p-TONSAPU30BAHHON 3JIEKTPOMATHUTHOM BOJHBI 4Yepe3 ABYX- M UETBIPEXCIOHHYIO
IUIA3MEHHYIO CTPYKTYPY BO BHEITHEM MarHWTHOM II0JI€, EPIEHINKYISIPHOM IUIOCKOCTH naaeHus. CTpyKTypa co-
CTOSUIA U3 TIEPEMEKAIOIINXCS CIIOEB BRICOKOW M HU3KOU MIoTHOCTH. Ciion Obutn paBHOH TommuHbL. KoaddummenTsr
MIPOXOXKICHUS M OTPKEHHs OBUIM MOJy4YCHBI TP MOMOIIM METOAa MaTpHIbI pacrpocTpaHeHus. MccnenoBanoch
MPOCTPAaHCTBEHHOE paclpe/ie/ieHHe TaHTeHI[MaIbHONW COCTABIIIONIEH MOTOKA HEPTUH BOJHEI B Cllydae Oe30Tpaka-
TENBHOTO MIPOXOXKICHUS.

MOLIUPEHHS EJIEKTPOMATHITHOI XBUJII KPI3b IIAPU MATHITOAKTUBHOI IIAZMHA
C. Isxo, 1. /lenucenko, M. Azapenkos

BuB4anoch mMpoxo/pKeHHsT p-NOJISPU30BAHOT €EKTPOMArHiTHOI XBHJII Kpi3b JBO- Ta YOTHPHLIAPOBY ILIA3MOBY
CTPYKTYPY B 30BHIIIHBOMY MarHiTHOMY IOJIi, IEPIICHANKYIAPHOMY JI0 TUIOIMHY naaiHHsg. CTpyKTypa cKiaganacs 3
IIapiB BUCOKOI Ta HU3BKOI I'yCTHHH, IO NEPEMEKOBYBAIHCS OAUH 3 oaHuM. Lllapu Manu ogHakoBy ToBLIMHY. Koe-
(IIieHTH TPOXOHKEHHS Ta BIAOUTTS 0YJI0 OTPHUMAaHO METOIOM MAaTpPHUIl HOIHUPEHHs. JJOCTiIKyBaBCs MIPOCTOPOBHMA
PO3MOALT TaHTEHITIAIFHOI KOMITOHEHTH ITOTOKY €HEeprii XBIIII Y BHMAAKY 0€3BiIOMBHOTO IMIPOXOKECHHS.
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