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Stochastic equations of charged particle motion in toroidal plasma are derived using the Ito theory of stochastic
processes. Expressions for stochastic differentials of the full set of drift variables associated with the kinetic theory
of charged particles in plasma with Coulomb collisions are obtained. Equations obtained may be used for the
modelling of fast charged particle motion in toroidal plasmas, namely for Monte-Carlo simulation the dynamics of

charged fusion products and beam ions in tokamaks.
PACS: 52.55.Hc, 52.55.Pi, 55.25.Fi, 52.35.Bj, 05.45.-a

INTRODUCTION

Description of the charged particle behaviour in
toroidal plasmas usually is based on the Kinetic
equations with the Fokker-Plank collisional term
accounting for the effect of Coulomb collisions.
Alternatively the detailed microscopic depiction of
single particle motion may be achieved on the base of
the Markov theory in terms of the Ito approach of
stochastic differential equations [1, 2].

This paper aims the derivation of stochastic
equations of single particle motion in plasma using the
Ito theory of stochastic processes. We obtain the
expressions for the stochastic differentials of the full set
of drift variables in exact correspondence with the
kinetic theory of charged particles in plasma with
Coulomb collisions [3]. Equations derived can be used
for the Monte-Carlo simulation of the dynamics of
charged fusion products and beam ions in tokamaks.
Notice that such kind of modelling is usually based on
the use of supporting Monte-Carlo models [4].

1. BASIC FORMULAS OF STOCHASTIC
ANALYSIS

Ito stochastic differential equations [1, 2] of multi-
dimensional diffusive process X(t) = (X1(t),..., Xa(1)),

dX, =a, (t,X)dt+ b, (X B, (£ X)dW, 1), (1)

j=1

as well as the Kolmogorov equation for the transition
probability of Markov process F, , (t, X) from the state

Xo in an arbitrary time tp into the state X at a time t>tg

atptoxo (t, X ) = —iﬁxi |:6li (t, X ) ROXO (t, X ):|+

1 n
Ei;axiaxj [DU (t’ X ) PtOXD (t’ X ):|

represent the alternative approaches of the complete
description of the process. According to Ito approach
the coefficients a, b in expression for stochastic
differential are determined by the left edge of time
interval (t, t+dt) and supposing the values X(t) to be
known the stochasticity of differentials dX is delivered
by the independent increments of the components dW; =
Wj(t+dt) — Wj(t) of Wiener process. Namely the above

@)

80

structure of Ito stochastic differential results in the
Markoviety of process X(t) (alternative definitions of
stochastic differential, e.g. Stratonovich meaning, are
not considered here). The components of Wiener
process are independent and represent the elementary
Markovian Gaussian processes with the independent
growths and transition probabilities as
follows

Ptvxj(t+r,XJf)=eXp[—(Xj—X;)Z/(ZT)J/\/%, @)

where 7 is an arbitrary value. It follows from Eq. (3) that
the random part of stochastic differential (1) is the
dominant as the Wiener differential is of the order of

Jdt. Respectively the random part may be represented
as dw; = \/d—t;/j with y; — the Gaussian random numbers

with a dispersion that equals 1. This circumstance is
crucial for the process calculation. Nevertheless the
quadratic terms dW;dWj are of the order of dt. From Eq.
(3) it follows that for infinitely small z = dt the square
of infinitely small growth dW;=W;(t+dt)-Wj(t) is
determined by the process dispersion with a probability
one and can be considered as a non-random value, i.e.
dW;? = dt, with

dede = 5jkdt 4)
for multidimensional processes. From above equation it
follows also the subsequent equality

dx.dx; => bb,dt . (5)
k=1

These relations determine the rule of correspondence of
the diffusion coefficients D, =Zbikbjk in stochastic
k=1

equations (1) and in Kolmogorov equation (2). They
represent the basis of Ito formula for the stochastic
differential of arbitrary function F(X) —

dF(X) :dei6x|F+%Z Dijailij (6)
i=1

ij=1

as well. Egs. (1-5) represent the basis of Ito analysis that
essentially extends the classical mathematical analysis.
The number of Wiener components m in stochastic
differential equation (1) can be less than the number n
of the components of process X and what is more — not
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every of Egs. (1) may contain a fluctuating part. Namely
such a situation is realised in plasma theory formulated
in terms of the kinetic equations for the distribution
functions fa(r,v) of plasma components a in the phase
space of spatial coordinates and velocities. The most
complete form of these equations is as follows [4]

%fa+v~Vfa+a-vaa =y Cc*,

b

a:e—a(E+lv><Bj, c’=v, .(—Afa+lvv-ﬁfaj,
m c 2

a

A=L"° [1+ ﬂ]vvw(r, V), )
mb

&€,

2 y

D(t,X)=L"V ,V,p, L =47A
dv
= jmfb (trv,) o= _[|v—vb|fb (t,r,v,)dv,

where C?P is the collisional term, A — the Coulomb
logarithm. Kinetic equations (6) can be treated as the
direct Kolmogorov equations for the unconditional
simultaneous single-particle probability renormalized in
accordance with the definition of distribution function f,
as the density of particles a in the phase space X=(r,v).
Though the kinetic theory does not use the approach of
Markov processes the unambiguous correspondence of
kinetic and Markov approaches is established by the

equality ~ f (&, x):j(dxo)n b X)P_, (0 X) that

serves as the basis for the Monte-Carlo modelling of a
macro-canonical ensemble. Therefore the stochastic
differential equations of particle motion corresponding
to the kinetic theory have a form:

dr=vdt, dv=(a+A)dt+b-dw, D=b-b. (8)

Here W is a 3D Wiener process.

2. VELOCITY DIFFUSION IN GYRO-
TROPIC PLASMA

Stochastic equations (8) are rather compact and
striking for the numerical modelling. Though, even if
the problems of the numerical modelling of random
changes are solved, in general case of 3D velocity
diffusion there is a complex problem of the expansion

of the matrix of diffusion coefficients D of kinetic
equation as a product of two matrixes of diffusion

coefficients b in equation of stochastic motion. In
practice this problem is avoided in modelling of charged
particle motion in strong magnetic field. In this case the
fast gyration can be excluded from the analysis using
the drift theory of motion for longitudinal u=v-h and
transverse w = lv-uh| velocity components with h = B/B
[5, 6]. Drift theory is developed for determinable motion
of charged particle and is based on the averaging over
the fast gyration. Similar approach is applicable for
stochastic equation of motion as well. The basic
formulae of drift theory are written in local orthogonal
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coordinate system (h, ei;, e2) associated with the
inhomogeneous magnetic field:

v=uh+we,, e,=e Ccos¢+e,sind,

V,=ho, +e,0,+e w'o, =

ho, +e, w0, w+w"d.e

because e, =hxe, =0

p7

B €y =-0,8,. 9

D=L [VVVV +epepw‘1aw}(p(u,w)=

DUU DWU 0
D,, D,, 0 |,
0 0 D

P

w!

V,=ho, +e,0,,

A= 2P (1+ %j?vy/(u,w).

b

Thus if the potential ¢ of kinetic theory is independent
on gyro phase ¢ the problem of the expansion of
diffusive matrix is simplified as the 2x2 block of the
matrix can be represented as two matrixes of same
dimensionality (corresponding solution will be provided
separately). It should be pointed out that 3D Wiener
process determined in Eq. (7) in arbitrary (not related
with the magnetic field) coordinate system is
characterised by the components (W,,W,,W ), which

are the standard independent Wiener processes. In fact,
using relationships (4), it can be shown that

dw,dw, =(h-dw)(e, -dW)=(h-e,)dt=0.

Derivation of the stochastic equations for u, w is based
on the Ito formula (5) as the differential dr does not
contain the Wiener fluctuations, variable u=h-v is linear
with respect of v and differentiation of u is equivalent to
a standard differentiation:

du = d(h~v)=[v-(v~V)h+(a+A)~h:|dt+
b, dW, +b,_dW, .

Variable w is linear regarding v with

v.w=e,, 2 €,

VVVVW:le e

w
Correspondingly the equation for dw has a following
form:

dw=d(e, V)=
{v~(v-v)ew+(a+A)-ew+$ Dpp}du
+b,,,dW, +b,,, dW.,,.

Finally last two stochastic equations should be averaged
over the gyro phase. Correct averaging procedure

supposes the usage of stochastic integrals for growths
t+5 t+58

ou= I du, ow = I dw,
t t

where time interval 3t includes a lot of gyro periods,
however, is small over the time scales of the
characteristic variation of values u,w. This procedure
leads to the well-known (in drift theory) regular terms
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proportional to 8t, while the stochastic contributions are
introduced using the independent Wiener components
OoWh, 6W,. In drift stochastic differential equations the
values dt, SWh, oW, are supposed to be infinitely small.
Finally we get:

2
du = (Eh.aw?divm Ajjdterhdeh +hb,, AW,
m

dwz(—%divh+ A, +§Dﬁpjdt+bwhdwh +b,, dW,,.

Using Ito formulae
d(u®)=2udu+D,dt, d(w*)=2wdw+D,,dt,
we get equations for well-known constants of motion

2
=B°—W, 521(u2+wz)
2B 2
as follows:
d By L D D d dw
p=2 WAN+E( o+ D, ) [dt+wdW ¢,

de = {%uh~E+uAJ +WAN+%(DUU +D,, + Dpp)}du
(u+w)dw, dw =b,,dW, +b,,dW,.

Knowledge of the stochastic equation of motion allows
deriving a corresponding direct Kolmogorov equation or
Fokker-Planck equation. Below is the relevant
derivation.

3. VELOCITY DIFFUSION IN ISOTROPIC
PLASMA

In case of isotropic plasma, when the distribution
function of charged particles f, in collisional term C¥®
depends on the absolute value of the velocity v=(u?+
w?)¥2, the potentials ¢, y depend only on v and diffusion
coefficients are as follows:

- 1 ,- g ) = = Wooe W
D=La/bNb(;(pUl+§o U\j,Uizl—V—z,U =V—2.(9)
Important is the orthogonality of U, and 0.,

U, -0, =0 and following relationships U, - U, =0,
0.-0.=0, U, -e,=0. Consequently the problem of

the expansion of the matrix of diffusion coefficients is
easily resolved. The stochastic equations of the velocity
diffusion are of the following form (drifts are not
included):

dv=(a+A)dt+(D,U, +D,0.)-dw,.
A=L"N,(1+m,/m )vvy/dt,
DL — La/bNb V71(D,, D[ — La/bNb(ﬂ”.

(10)

In variable u, w the equations can be rewritten as
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du=(a,+A)dt+b,dW, +b,,dW,,

dw:(aW+AN+%Dpp)dt+bwuqu +b,,,dW,,,

b, b,

(bwu %j:

. w?/D, +u?\/D uw(\/D_‘—\/D_l)
uw(ﬁ—JDT) uz\/DT+W2\/DT.

However, usage of the asymmetric matrix of diffusion
coefficients allows the more compact matrix expansion.
With new independent Wiener differentials dU;, dW; the
basic equations of stochastic dynamics can be
essentially simplified

du=(a,+ A,)dt+(w\/D_idUt Jru\/adwt)v’l
dw = (aw +A,+D,, /(2W))dt —(u\/D_LdUt —W\/Edwt)v’1

(10)

Ito stochastic differential equations for energy ¢ =
(uw?)/2, pitch-parameter 2 = wole; and transverse
energy o = W2

1
du, :{WaW +§(DWW+ Dpp)}dt+
+w(by,dU, +b;,dv, ),
de = (uA, +WA, +Sp{D}/2)dt+v,/D.dV,,

2
da =ﬂ[1+%j{1—d—g+(ﬁ) —..1:
£ Ho £ £

11)
i i2(5dﬂo _/'Iodg)(l_%j,
& &

1
£y~ pollz = (U7d gty = prdu®) =

%[u2(DWW +D,,)- WD, Jdt+

ulw uw?

T(b;;udut + b;WdWl)—T(bJudUt +b;, W, ).

In Eq. (12) terms with dW; annihilate and term in Ito
differential dA is reduced to dU; dW.. Finally

di= v"‘[uz(DWW + Dpp)—szuu]dH
+2v*t (uzwbv*vu —uw’b), )dUt =

=v* [(ZU2 ~w*)D, dt- ZUVWﬁdUt}.

4. SPATIAL DIFFUSION

(12)

In guiding centre coordinates R = r - p, p =gxv, g =
h/Q the Ito differential of R looks like
dR =dr—(dr-V)gxv—gxdv. (13)

For fluctuating Wiener part of dR we get
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drR--1
Q
Considering stochastic Ito integral within the interval

(t,t+At), QAt0 1 we account for the Gaussian nature
of stochastic integrals which can be approximated by

Wiener processes with dispersion and correlation
determined by the integrals

[e, (b, dW, +b,, dW;) —eb dV]. (14)

t+At t+At

ARAR = j IdR(g)dR(tz). (15)

Gyro averaging of above expression results in

At - * * .
0 (1-hh)(b,:, +b,3, +b7) .

ARAR =

(16)

In axisymmetric tokamak-like configuration
dR = /D, (ndW, +n"dW,"),

1 . . . 1
Ds :E(bwi+bw$v+bp;):ﬂ(wa+Dpp)’ (17)

where Ds the 2D spatial diffusion. Finally we get
drR =[uh(R)+vd (u,w,R)]dt+

JDx (ndw, +n’dw;’),

La/b N R) u2 ’ ” n
D = WE()VZ[T(/’V + W, +V2¢’WJ- (18)

CONCLUSIONS

Correct stochastic equations of charged particle
motion which correspond to the drift kinetic approach
are derived in terms of Ito theory of stochastic

processes. They represent the set of four equations
containing the four independent Wiener components.

Obtained equations are consistent with the theory of
Coulomb collisions and are not more complex as
compared to those used in the conventional approaches
[4]. They can be used for the Monte-Carlo simulation of
the dynamics of charged fusion products and beam ions
in tokamaks.
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CTOXACTUYECKHE YPABHEHUA IBW/KEHUA 3APAKEHHBIX YACTHI]
B TOPOUJAJIBHOMU IIJIASME

A.A. I'ypun, B.A. Aeopckuii

B TepMuHax TeopuM CTOXAaCTHUECKHX MpoIeccoB MTO TMOJIydeHbl BBIpAXKEHHs] JJS CTOXAaCTHUYECKHX
nuddepeHIragoB MOJHOro Habopa ApeiOBBIX MEPEMEHHBIX, COOTBETCTBYIONMX KHHETHYCCKOW TEOpUU
3apsOKEHHBIX YacTUIl B TUIa3ME€ C KYJIOHOBCKUMH CTOJIKHOBEHHMSIMH. [lOJydeHHBIE CTOXaCTHYECKHE ypaBHEHUS
JIBIOKCHUS SIBJISIFOTCSL TOCJICIOBATCABHBIME C TOYKH 3pEHHUs y4éra 3(PQPEeKTOB KYJIOHOBCKHX CTOJKHOBCHHH M HE
SIBISIFOTCST ©0Jiee CIOKHBIMH 10 CPaBHEHUIO C T€MH, YTO OOBIYHO HUCHOJB3YIOTCS B TPAIUIIMOHHBIX MOJIENBHBIX
MOIXO/IaX.

CTOXACTHUYHI PIBHSHHSI PYXY 3APSGKEHUX YACTUHOK
Y TOPOIJAJIBHIUA ITJIA3ZMI

A.A. I'ypun, B.O. Asopcokuil

B tepminax Teopii cToXacTHYHHX mpoueciB ITo oTpuMaHO BHpa3u AJs CTOXAaCTHYHHX AW(DEPEHIlialiB MOBHOTO
Habopy npeldoBHX 3MIHHMX, O[O BiANOBINAIOTh KIHETHUYHINH Teopii 3apsUDKEHHX YacTHHOK Yy IHiasMi 3
KYJOHIBCHKHMH 3iTKHEHHAMHU. OTpHUMaHi CTOXaCTHYHI PIBHAHHS PyXy € MOCIiZOBHIMH IIIOJI0 BpaxyBaHHS e(eKTiB
KYJIOHIBCHKHMX 3ITKHEHb, Ta HE € CKJIAJHIMIMMH Yy TOPIBHAHHI i3 THUMH, IO BUKOPHUCTOBYIOTbCS 3a3BHYal B
MOMIMPEHNX MOJICIIBHUX MiAX0AaX.
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