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A new efficient technique for evaluation of complex error function of the real argument on the base of the Euler-

Maclaurin formula and a non-singular formula for the principal value of the Cauchy integral is given. .

It is

demonstrated that for the real values of argument, which are most “expensive” in the computational time, the new
algorithm is almost two times faster than algorithm 680 with the same accuracy. The code was successfully
implemented to ray tracing code that is used for application for investigation of ICR plasma heating in JET-type

tokamaks.
PACS: 52.27.Ny

INTRODUCTION
The function W(z):exp(—zz)[1+2i/ﬁ£exp(t2)dt]

is known as the complex error function or as Fadeeva
function. The name “Fadeeva function” was probably
introduced by Poppe and Wijers [1], since the function
was firstly tabulated by Fadeeva and Terent’ev in 1954
[2]. This function appears in many areas of physics and
mathematics in different forms. For example,
considering such applications as plasma spectroscopy,
nuclear physics, radiative heat transfer and nuclear
magnetic resonance it is necessary efficient and accurate
evaluation of this function. Depending on the problem
there are two main trends of the evaluation techniques:
high accuracy and computational time. We will consider
applications when computational time is more important
than accuracy.

Along with the applications, rather abundant are the
methods evaluating this function, from tables [2, 3] to
modern software [1, 4-7]. Still the main requirements
are high efficiency or somewhat accuracy that should be
investigated in the developing of any successful
algorithm for the computation of this function.

For instance, this function is common in the theory
of plasma waves, and its evaluation is a necessary
ground of ion cyclotron wave analysis of the laboratory
fusion plasmas. The nonrelativistic plasma dispersion
function Zz(z), which describes the absorption and

dispersion properties of plasmas along the magnetic
field is related to the function w(z) as z(z) =ivzw(z) .
For this reason the function w(z) is named as well as

the plasma dispersion function, which appears in all
elements of the plasma dielectric tensor. As a rule, in
plasma wave applications the function w(z) is

evaluated massively, therefore the efficiency of
involved numerical algorithm is of primary importance.
So, plasma applications can be related to the one of two
main trends mentioned above: they are connected with
the provision of high efficiency of calculations with a
previously specified accuracy.

At present time, the most successful method of this
trend is the method of Gautschi-Poppe-Wijers [1, 4].
The main idea of this method is to use the continued
fractions. For example, the continued fraction of Jacobi
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w(iz)=— — ——...

2— 71— 71— 72—
has been proved to provide the fast calculation of the
complex error function by means of this method for
large — |z| values (Region Q, Fig. 1). For moderate — |z
values (Region R, see Fig.1) were used the same
continued fractions in combination with the Taylor
expansion in a special direction. For small — |z| values
(Region S, see Fig. 1) the Taylor expansion at the zero
point

was used.
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Fig. 1. Three regions of the first quadrant of a complex
plane, where W(z) is calculated on the base three
techniques

It worth to mention that it is enough to calculate this
function in any quadrant due to its properties of
symmetry.

This method provides the accuracy up to 14
significant digits and the average computation time of
the single function value approximately equal to 10
times of the single computation of the exponential
function. It worth to note, the computation time in this
method is the most “expensive” on the real axis and
near it in the Region R.
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The main purpose of the present work is to increase
the efficiency of calculation in the most important
region R.

1. EVALUATION OF THE COMPLEX
ERROR FUNCTION OF THE REAL
ARGUMENT

In the theory of plasma waves, solving boundary
value problems requires computation of complex error
function only on the real axis, so it makes sense to
consider this case separately. On the real axis this
function can be defined by the means of the formula [8]

_t2
1+®e " dt
w(x)=— | : 1)
-0 t—X

This function belongs to the class of analytic
functions defined by Cauchy integral, with the integral
density tending to 0 at infinity. In accordance with the
formula of Plemelj-Sokhotskii real part of (1) equals to
the density of the integral at the pole t = x multiplied

by i ie., e X and its imaginary part, named usually
as the Dawson integral, equals to the principal value of
this integral. In principle, for thelX| values in the
Region R, this principal value can be evaluated by
means of the direct numerical integration on the base of
the following integral form which is nonsingular on the
real axis [9]:

o 2 X —(t-2x)?

,12_ )
mwe) =D =—P [ <dt= [£ = gt (2)
a2 t=X 7l s, t—x

The letter P denotes the principal value of the next
integral. Since the numerator of the integrand in (2) is
expressed in terms of exponentials, it can be estimated
numerically up to the any required precision.
Fortunately, the formulae (2) has an extra interesting
property, which is manifested only in its use in
conjunction with the famous Euler-Maclaurin formula

T (=, + -t v 2 + 1 (@)
a i

10 By h?" (2m-1) (2m-1)

5 m—[f (b)— (a)], 3)
m=l (2m)!

Yo="Tf(@).¥1. Y5, Ynq. Yn=T(b), are the

values of function f(x) in successive equally spaced

points with the step h, and B, are the Bernoulli

coefficients. Let’s apply the formula (3) to the right side
of formula (2) by setting

1 e—12 _e—(t—2x)2

- = f(t). 4
o t-x ®© )
Then the Dawson integral can be presented as
T B,h
Imw(x) = j f(O)dt = h(y, +...+ Y, ,) —T[f (x) + f (=0)]-

-

If we present function W(X)as the expansion at the
point X = oo
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we can conclude the even properties of f(t)with
respect to the point x: f(x—-h)= f(x+h) for

everyh > 0. It’s easy to see, that
fe" D (—0)=0,(M=123...) and  f(-)=0.
Taking into account that B, =-1/2 and

f @™ (x) =0 we have

X -2

—(t-2x)?
Imw(x) = % J.Ldt _ih

th dho (@)
x =it t Vo) + =¥

where
e—(x—jh)z (1_e—4><jh)
jh '

Since the limiting behavior of Bernoulli coefficients
is B, =o(mi/(27)"), this formula is exact for some
h <1 rather close to 1. Direct calculations along the
formula (7) show that the value h=0.5 provides the
accuracy up to 14 significant digits. This allows one
performing computations about ten times faster in

comparison with the direct numerical integration on the
base the single nonsingular form (2).

Yoy = F(x=1h)=

2. COMPUTATIONAL PROCEDURE, TESTS

After transformation of the final expression (7) for
evaluation of the Dawson integral in order to increase
the efficiency of this algorithm we can have reduction

of the calculation up to only three exponents: e,

e %%, e* and some additional power algebra.
Numerical calculations have shown that efficiency of
evaluation of the complex error function on the real axis
is higher than algorithm of Gautschi-Poppe-Wijers
(GPW).

From Table it follows that calculation of w(x) for

most “expensive” in computational time real values of
argument from the region R demonstrates about twice
higher efficiency in comparison with the algorithm
[1, 4].
Comparison of computational times, which are required
for estimation of function w(x) in the points
X =2,3,4,5,6 from region R for our algorithm (the 2™

column) and the algorithm of GPW (the 3¢ column)
with accuracy up to 14 significant digits

x-values of Time of our Time of GPW
argument computation computation
2.0 5.4990999x102 | 0.160976008
3.0 5.5991001x102 | 0.154975995
4.0 5.3992003x102 | 0.138979003
5.0 5.2992001x102 | 0.123980999
6.0 5.3991001x102 | 9.6986003x107?

3. JET-APPLICATION

The technique of the plasma dispersion function
evaluation, presented above, was utilized to accelerate
numerical calculations in the ray tracing code as an
example of application in the field of nuclear fusion
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[10]. This code was used for the theoretical
investigation of ion cyclotron resonance frequency
plasma heating in a tokamak of JET-type [11]. It was
assumed that the antenna to excite the fast mode (FW)
of the fast magnetosonic wave was located at the inner
side of the plasma column. We investigated the scenario
of plasma heating by means of FW excitation and its
subsequent conversion to the ion Bernstein wave (IBW)
in a plasma depth with subsequent IBW absorption in
the central regions of the plasma column. This scenario
is rather promising for high-power plasma heating in
large size tokamaks because the RF energy is easily
introduced into the FW and then fully absorbed by the
IBW. The energy is easy injected into FW due to
narrow area of FW opacity in the periphery of the
plasma and then after conversion the entire energy is
completely absorbed by the IBW which is linearly
polarized and has a wavelength much smaller than that
of fast wave. Note that direct excitation of IBW is
currently the serious problem due to the wide opaque
barrier on the periphery of the plasma column [12].

Ray tracing code allows a treatment of general
tokamak magnetic field configurations with the poloidal
divertor and realistic wall geometry on the base the
equilibrium field data from the EFIT code [13]. In
calculations was used cylindrical coordinate system
r=r(R,p2).

The geometrical optics equations describing the
propagation of rays in spatially non-uniform plasma are:

ar oD/ ok dk ob/or (®)
dt D/ow dt  oD/ow
where K is the wave vector and D=D(N,,N, o,F) is
dispersion relation for waves. Here, N =ck/w is

refractive index, Nllz(ﬂ.g)/g and NLzN*_N" are

longitudinal component of the refractive index along the
magnetic and the perpendicular field, respectively. In
the region of ion cyclotron resonance frequency the
dispersion relation for plasma waves contains the next
components of the dielectric tensor

3wk w*v?
=&l +nN?, = pi” T , (9
L e Zc 2(e” wB.)(w2—4wé.)
_l = — 1
Zl:w _wBl Zlla)Bl a)BI)
& =1+ w”; 225, (L+ Vw2, W(zo,)) -

Here z,, =w/v2kyv, and W() is the plasma

dispersion function.
Power carried by the ray Q is defined as

Q=Q,e " Where Q, is initial power and

(10)
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The following parameters of the plasma and excited FW
were used in the numerical calculations: deuterium
plasma  with  the  addition of  hydrogen
(n, /n,(0)=5...16 %), n, =3.1-10"°cm* is the density
of the deuterium in the core, Tie = 1...3 keV are the ion
deuterium and hydrogen) and electron temperatures,
B(0) = 1.8 T is magnetic field in the center of column,
| =8 is toroidal wave number, »=1.822-10% rad /s is
FW frequency (Fig. 2).
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Fig. 2. Ray trajectories in JET-like tokamak for cases:
N, /ng(0) =16% T;,(0)=1keV (1); n, /n,(0) = 16%,

T,.(0)=2keV (2); n,/n,(0) =16%, T,,(0) =3 keV (3);
(n, /ng(0) =5%, T;,(0) =3 keV ( 4)

A detailed analysis of that RF plasma heating
scenario in JET-like tokamak is not the subject of
thispaper. Moreover, the full investigation of this
scenario requires as well the use of the 1-D wave model
to solve boundary problem for the system of Maxwell-
Vlasov equations, that also leads to massive
computations of the plasma dispersion function.
However, it is easy to see that the application of the
technique presented in this paper for the plasma
dispersion function evaluation allows approximately
twice to accelerate calculations on the base both models.

CONCLUSIONS

1. On the base of nonsingular form for Cauchy
integrals and the Euler-Maclaurin formula a new method
for computing the complex error function for real values
of argument is given.

2. Comparison of this method with the most
successful one of Gautschi -Poppe-Wijers has shown that
doubled efficiency for real argument values in the most
“expensive” in terms of computational time region R.

3. This method can be used as well for computation
of any Cauchy integrals defined on the real axis,
provided that the density of the corresponding integral
vanishes at infinity.
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4. The efficiency of using this method was shown in
application for investigation of ICRF plasma heating in
JET-type tokamaks, where it has been implemented to
ray tracing code. As far as this code usually featured for
the study of the shortwave IBW in tokamak JET, it leads
to a large number of trajectories and a large number of
calculations of the plasma dispersion function during
calculation of each trajectory. For acceleration of such
calculations this method was applied to.
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BBICTPOE BEIYMCJEHUE KOMIIJIEKCHOM ®YHKIIMA OIIMBOK PEAJIbHOI'O APTYMEHTA

C.B. Manxo, C.C. Ilaénos, K.K. Tpembax
IIpennaraercst HOBBIH 3((GEKTHBHBIA METOA BBHIYUCICHHUS KOMIUIEKCHOM (YHKIMH OIIHOOK pPEeaJbHOTOo
apryMeHTa Ha OCHOBE HECHHTYJSpHOIH uHTerpaibHoil Gpopmbl Ko u dopmynsr Ditnepa-Maknopena. [TokazaHo,
9TO A JACHCTBUTENBHBIX 3HAUYEHUIl apryMeHTa, KOTOpbIe SBIAIOTCS Hauboiee "IOPOrMMH' 10 BpEeMEHH
BBIUMCIICHHUH, HOBBIH alrOPUTM IIPUMEPHO B JIBa pa3a ObICTpee, yeM aaroput™ 680 ¢ Toi e TOUHOCTbI0. AJITOPUTM
OBLT YCHENTHO MCIIONB30BaH B KOJE JIYUEBBIX TPAEKTOPHUM, KOTOPHIA NMpUMeHsIca A uccnenoBanus UIP-narpesa
IUTa3MbI B TokaMake Tuma JET.

IBUIKE OBYUCJEHHS KOMILJIEKCHOI ®YHKIIII IOMWJIOK PEAJIBHOI'O APTYMEHTY

C.B. Manxo, C.C. Ilasnos, K.K. Tpem’sax
[IpononyeTbest HOBUIT e(eKTHBHUI MeTOJ] OOUYMCIECHHS! KOMIUIEKCHOI (DYHKIII MOMIJIOK PEaJbHOTO apryMEHTy
Ha OCHOBI HeCiHTYIIsIpHOI iHTerpanpHoI popmu Kot ta dopmynu Einepa-Maknopena. [1okazano, mo st JificHEX
3HA4YeHb apryMEHTY, SAKi € HaiOuTbm "mopormMu" 3a 4acoM OOYHMCIICHb, HOBHU alTOPUTM HPHUOIH3HO B IIBA pas3H
MIBUIMIAN, HDK anroput™M 680 3 Ti€l0 X TOYHICTIO. ANTOpuTM OyB YCITIINIHO BHKOPHUCTAaHHWN B KOJi MPOMEHEBUX
TPAEKTOPIH, KU 3aCTOCOBYBABCS /i AociimkeHns [L[P-narpiBy mia3mu B Tokamarii tuny JET.
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