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      A new efficient technique for evaluation of complex error function of the real argument on the base of the Euler-

Maclaurin formula and a non-singular formula for the principal value of the Cauchy integral is given. . It is 

demonstrated that for the real values of argument, which are most “expensive” in the computational time, the new 

algorithm is almost two times faster than algorithm 680 with the same accuracy. The code was successfully 

implemented to ray tracing code that is used for application for investigation of ICR plasma heating in JET-type 

tokamaks. 
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INTRODUCTION 
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is known as the complex error function or as Fadeeva 

function. The name “Fadeeva function” was probably 

introduced by Poppe and Wijers [1], since the function 

was firstly tabulated by Fadeeva and Terent’ev in 1954 

[2]. This function appears in many areas of physics and 

mathematics in different forms. For example, 

considering such applications as plasma spectroscopy, 

nuclear physics, radiative heat transfer and nuclear 

magnetic resonance it is necessary efficient and accurate 

evaluation of this function. Depending on the problem 

there are two main trends of the evaluation techniques: 

high accuracy and computational time. We will consider 

applications when computational time is more important 

than accuracy.  

Along with the applications, rather abundant are the 

methods evaluating this function, from tables [2, 3] to 

modern software [1, 4-7]. Still the main requirements 

are high efficiency or somewhat accuracy that should be 

investigated in the developing of any successful 

algorithm for the computation of this function. 

For instance, this function is common in the theory 

of plasma waves, and its evaluation is a necessary 

ground of ion cyclotron wave analysis of the laboratory 

fusion plasmas. The nonrelativistic plasma dispersion 

function )(zZ , which describes the absorption and 

dispersion properties of plasmas along the magnetic 

field is related to the function )(zw  as )()( zwizZ  . 

For this reason the function )(zw  is named as well as 

the plasma dispersion function, which appears in all 

elements of the plasma dielectric tensor. As a rule, in 

plasma wave applications the function )(zw  is 

evaluated massively, therefore the efficiency of 

involved numerical algorithm is of primary importance. 

So, plasma applications can be related to the one of two 

main trends mentioned above: they are connected with 

the provision of high efficiency of calculations with a 

previously specified accuracy. 

At present time, the most successful method of this 

trend is the method of Gautschi-Poppe-Wijers [1, 4]. 

The main idea of this method is to use the continued 

fractions. For example, the continued fraction of Jacobi  
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has been proved to provide the fast calculation of the 

complex error function by means of this method for 

large  |z| values (Region Q, Fig. 1). For moderate  |z| 

values (Region R, see Fig. 1) were used the same 

continued fractions in combination with the Taylor 

expansion in a special direction. For small  |z| values 

(Region S, see Fig. 1) the Taylor expansion at the zero 

point  
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was used. 
 

 

Fig. 1. Three regions of the first quadrant of a complex 

plane, where W(z) is calculated on the base three 

techniques 
 

It worth to mention that it is enough to calculate this 

function in any quadrant due to its properties of 

symmetry. 

This method provides the accuracy up to 14 

significant digits and the average computation time of 

the single function value approximately equal to 10 

times of the single computation of the exponential 

function. It worth to note, the computation time in this 

method is the most “expensive” on the real axis and 

near it in the Region R.  
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     The main purpose of the present work is to increase 

the efficiency of calculation in the most important 

region R. 

 

1. EVALUATION OF THE COMPLEX 

ERROR FUNCTION OF THE REAL 

ARGUMENT  
 

     In the theory of plasma waves, solving boundary 

value problems requires computation of complex error 

function only on the real axis, so it makes sense to 

consider this case separately. On the real axis this 

function can be defined by the means of the formula [8] 
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     This function belongs to the class of analytic 

functions defined by Cauchy integral, with the integral 

density tending to 0 at infinity. In accordance with the 

formula of Plemelj-Sokhotskii real part of (1) equals to 

the density of the integral at the pole xt   multiplied 

by i  i.e., 
2xe and its imaginary part, named usually 

as the Dawson integral, equals to the principal value of 

this integral. In principle, for the IIx  values in the 

Region R, this principal value can be evaluated by 

means of the direct numerical integration on the base of 

the following integral form which is nonsingular on the 

real axis [9]: 
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     The letter P denotes the principal value of the next 

integral. Since the numerator of the integrand in (2) is 

expressed in terms of exponentials, it can be estimated 

numerically up to the any required precision. 

Fortunately, the formulae (2) has an extra interesting 

property, which is manifested only in its use in 

conjunction with the famous Euler-Maclaurin formula 
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)(,1,...,2,1),(0 bfnynyyyafy  , are the 

values of function )(xf  in successive equally spaced 

points with the step h , and mB  are the Bernoulli 

coefficients. Let’s apply the formula (3) to the right side 

of formula (2) by setting 
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Then the Dawson integral can be presented as 
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If we present function )(xw as the expansion at the 

point x  
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we can conclude the even properties of )(tf with 

respect to the point x: )()( hxfhxf   for 

every 0h . It’s easy to see, that 
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     Since the limiting behavior of Bernoulli coefficients 

is  m

m mOB )2/(!  , this formula is exact for some 

1h  rather close to 1. Direct calculations along the 

formula (7) show that the value 5.0h  provides the 

accuracy up to 14 significant digits. This allows one 

performing computations about ten times faster in 

comparison with the direct numerical integration on the 

base the single nonsingular form (2). 

 

2. COMPUTATIONAL PROCEDURE, TESTS  
 

     After transformation of the final expression (7) for 

evaluation of the Dawson integral in order to increase 

the efficiency of this algorithm we can have reduction 

of the calculation up to only three exponents: 
2xe , 

25.0e , xe  and some additional power algebra. 

Numerical calculations have shown that efficiency of 

evaluation of the complex error function on the real axis 

is higher than algorithm of Gautschi-Poppe-Wijers 

(GPW). 

     From Table it follows that calculation of )(xw for 

most “expensive” in computational time real values of 

argument from the region R demonstrates about twice 

higher efficiency in comparison with the algorithm 

[1, 4]. 

Comparison of computational times, which are required 

for estimation of function )(xw  in the points 

6,5,4,3,2x  from region R for our algorithm (the 2nd 

column) and the algorithm of GPW (the 3d column) 

with accuracy up to 14 significant digits 
 

x-values of 

argument 

Time of our 

computation 

Time of GPW 

computation 

2.0 5.4990999×10-2 0.160976008 

3.0 5.5991001×10-2 0.154975995 

4.0 5.3992003×10-2 0.138979003 

5.0 5.2992001×10-2 0.123980999 

6.0 5.3991001×10-2 9.6986003×10-2 

 

3. JET-APPLICATION 
 

The technique of the plasma dispersion function 

evaluation, presented above, was utilized to accelerate 

numerical calculations in the ray tracing code as an 

example of application in the field of nuclear fusion 
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[10]. This code was used for the theoretical 

investigation of ion cyclotron resonance frequency 

plasma heating in a tokamak of JET-type [11]. It was 

assumed that the antenna to excite the fast mode (FW) 

of the fast magnetosonic wave was located at the inner 

side of the plasma column. We investigated the scenario 

of plasma heating by means of FW excitation and its 

subsequent conversion to the ion Bernstein wave (IBW) 

in a plasma depth with subsequent IBW absorption in 

the central regions of the plasma column. This scenario 

is rather promising for high-power plasma heating in 

large size tokamaks because the RF energy is easily 

introduced into the FW and then fully absorbed by the 

IBW. The energy is easy injected into FW due to 

narrow area of FW opacity in the periphery of the 

plasma and then after conversion the entire energy is 

completely absorbed by the IBW which is linearly 

polarized and has a wavelength much smaller than that 

of fast wave. Note that direct excitation of IBW is 

currently the serious problem due to the wide opaque 

barrier on the periphery of the plasma column [12].  

Ray tracing code allows a treatment of general 

tokamak magnetic field configurations with the poloidal 

divertor and realistic wall geometry on the base the 

equilibrium field data from the EFIT code [13]. In 

calculations was used cylindrical coordinate system 

),,( ZRrr 


 . 

The geometrical optics equations describing the 

propagation of rays in spatially non-uniform plasma are: 
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where k


 is the wave vector and ),,,( || rNNDD
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  is 

dispersion relation for waves. Here, /kcN


  is 

refractive index, BBNN /)(||


  and 

||NNN
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
 are 

longitudinal component of the refractive index along the 

magnetic and the perpendicular field, respectively. In 

the region of ion cyclotron resonance frequency the 

dispersion relation for plasma waves contains the next 

components of the dielectric tensor 
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Here 
Tee vkz ||0 2  and )(W  is the plasma 

dispersion function.  

Power carried by the ray Q  is defined as 
 eQQ 0

 where 
0Q  is initial power and 
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The following parameters of the plasma and excited FW 

were used in the numerical calculations: deuterium 

plasma with the addition of hydrogen 

( )0(/ dh nn 5…16 %), 
313101.3  cmne  is the density 

of the deuterium in the core, Ti,e = 1…3 keV are the ion 

deuterium and hydrogen) and electron temperatures, 

B(0) = 1.8 T is magnetic field in the center of column, 

8l is toroidal wave number, 810822.1  srad /  is 

FW frequency (Fig. 2). 

 

 

Fig. 2. Ray trajectories in JET-like tokamak for cases: 

)0(/ dh nn 16% )0(,eiT =1 keV (1); )0(/ dh nn 16%, 

)0(,eiT =2 keV (2); )0(/ dh nn 16%, )0(,eiT =3 keV (3); 

( )0(/ dh nn 5%, )0(,eiT =3 keV ( 4) 

 

A detailed analysis of that RF plasma heating 

scenario in JET-like tokamak is not the subject of 

thispaper. Moreover, the full investigation of this 

scenario requires as well the use of the 1-D wave model 

to solve boundary problem for the system of Maxwell-

Vlasov equations, that also leads to massive 

computations of the plasma dispersion function. 

However, it is easy to see that the application of the 

technique presented in this paper for the plasma 

dispersion function evaluation allows approximately 

twice to accelerate calculations on the base both models.  

CONCLUSIONS 

1. On the base of nonsingular form for Cauchy 

integrals and the Euler-Maclaurin formula a new method 

for computing the complex error function for real values 

of argument is given. 

2. Comparison of this method with the most 

successful one of Gautschi -Poppe-Wijers has shown that 

doubled efficiency for real argument values in the most 

“expensive” in terms of computational time region R. 

3. This method can be used as well for computation 

of any Cauchy integrals defined on the real axis, 

provided that the density of the corresponding integral 

vanishes at infinity.  
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4. The efficiency of using this method was shown in 

application for investigation of ICRF plasma heating in 

JET-type tokamaks, where it has been implemented to 

ray tracing code. As far as this code usually featured for 

the study of the shortwave IBW in tokamak JET, it leads 

to a large number of trajectories  and a large number of 

calculations of the plasma dispersion function during 

calculation of each trajectory.  For acceleration of such 

calculations this method was applied to. 
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БЫСТРОЕ ВЫЧИСЛЕНИЕ КОМПЛЕКСНОЙ ФУНКЦИИ ОШИБОК РЕАЛЬНОГО АРГУМЕНТА  

C.В. Малко, С.С. Павлов, К.К. Третьяк 

Предлагается новый эффективный метод вычисления комплексной функции ошибок реального 

аргумента на основе несингулярной интегральной формы Коши и формулы Эйлера-Маклорена. Показано, 

что для действительных значений аргумента, которые являются наиболее "дорогими" по времени 

вычислений, новый алгоритм примерно в два раза быстрее, чем алгоритм 680 с той же точностью. Алгоритм 

был успешно использован в коде лучевых траекторий, который применялся для исследования ИЦР-нагрева 

плазмы в токамаке типа JET. 

 

ШВИДКЕ ОБЧИСЛЕННЯ КОМПЛЕКСНОЇ ФУНКЦІЇ ПОМИЛОК РЕАЛЬНОГО АРГУМЕНТУ 

C.В. Малко, С.С. Павлов, К.К. Трет’як 

Пропонується новий ефективний метод обчислення комплексної функції помилок реального аргументу 

на основі несінгулярної інтегральної форми Коші та формули Ейлера-Маклорена. Показано, що для дійсних 

значень аргументу, які є найбільш "дорогими" за часом обчислень, новий алгоритм приблизно в два рази 

швидший, ніж алгоритм 680 з тією ж точністю. Алгоритм був успішно використаний в коді променевих 

траєкторій, який застосовувався для дослідження ІЦР-нагріву плазми в токамаці типу JET. 
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