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Based on the method of collective variables (CV) with a reference system, the exact expression for the func-
tional of the grand partition function of a m-component ionic model with charge and size asymmetry is found.
Particular attention is paid to the nth particle correlation functions of the reference system which is presented
as a m-component system of “colour” hard spheres of the same diameter. A two-component model is consi-
dered in more detail. In this case the recurrence formulas for the correlation functions are found. A general
case of a m-component inhomogeneous system of the “colour” hard spheres is also analysed.
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1. Introduction

In recent years much attention has been focused on an issue of the phase transitions in multi-
component fluid mixtures, especially in ionic fluids. In spite of significant progress in this field, such
systems are far from being completely understood. The investigation of complex models is of great
importance in understanding the nature of critical and phase behavior of real ionic fluids which
demonstrate both the charge and size asymmetry. The powerful tools for the study of multicom-
ponent continuous systems are those based on the functional methods. One of such approaches is
the method of collective variables (CVs). The method, proposed initially in the 1950s [1–3] for the
description of the classical charged many particle systems and developed later for the needs of the
phase transition theory [4–7], was in fact one of the first successful attempts to attack the problems
of statistical physics using the functional integral representation. Nearly at the same time other
functional approaches based on the Stratonovich-Hubbard transformation [8,9] were originated. As
was shown recently [10] both groups of theories are in fact in close relation.

The CV method is based on: (i) the concept of collective coordinates being appropriate for the
physics of the system considered (see, for instance, [11]) and (ii) the integral identity allowing to
derive an exact functional representation for the configurational Boltzmann factor. Being applied
to the continuous system the CV method uses the idea of the reference system (RS), one of the
basic ideas of the liquid state theory [12]. The idea consists in the splitting of an interparticle
interaction potential into two parts

uαβ(r) = φ0
αβ(r) + φαβ(r),

where φ0
αβ(r) is a potential of a short-range repulsion which describes the mutual impenetrability

of the particles, while φαβ(r), on the contrary, mainly describes the behaviour at moderate and
large distances. The equilibrium properties of the system interacting via the potential φ0

αβ(r) are
assumed to be known. Therefore, this system can be regarded as the “reference” system. Within
the framework of the CV method the interaction connected with potential φαβ(r) is described in
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the phase space of CVs. The fluid of hard spheres is most frequently used as the RS in the liquid
state theory since its thermodynamic and structural properties are well known. It is worth noting
that the concept of the RS was also applied to the study of quasispin systems with short- and
long-range interactions [13].

In this paper we derive the functional representation for the grand canonical partition function
of a multicomponent fluid which includes both short-range and long-range interactions. A particular
attention is focused on an issue of the correlation functions of the RS of a charge asymmetric
continuous binary model of an ionic fluid. The paper is organized as follows. In section 1 we obtain
the exact expression for the functional of the grand partition function of a multicomponent mixture.
The case of an asymmetric ionic model is considered in more detail. Section 2 is devoted to the study
of the correlation functions of a m-component hard sphere system of the same diameter (system
of “colour” hard spheres). This system forms a basis for further applications of standard methods
in the study of many particle interacting systems. The recurrence formulas for the correlation
functions of the two-component system of “colour” hard spheres are found here.

2. Method

2.1. General relations for a m-component system

Let us consider a classical m-component system consisting of N particles among which there
exist N1 particles of species 1, N2 particles of species 2, . . . and Nm particles of species m. The
pair interaction potential is assumed to be of the form:

Uαβ(r) = φHS
αβ(r) + φC

αβ(r) + φSR
αβ(r), (1)

where φHS
αβ(r) is the interaction potential between the two additive hard spheres of diameters

σαα and σββ . We call the m-component hard sphere system a reference system (RS). φC
αβ(r) is the

Coulomb potential. The solution is made of both positive and negative ions so that electroneutrality
is satisfied,

∑m
α=1 qαcα = 0, and cα is concentration of the species α. The ions of the αth species

are characterized by their hard sphere diameter σαα and their electrostatic charge qα. Here we
consider the case when the hard spheres differ little in their diameters. Then we can present the
potential of short-range interaction φSR

αβ(r) as a sum of the two terms: φSR
αβ(r) = φR

αβ(r) + φA
αβ(r),

where φR
αβ(r) is used to mimic the soft core asymmetric repulsive interaction, φR

αβ(r) is assumed to

have a Fourier transform. φA
αβ(r) describes a van der Waals like attraction. The above assumption

about hard sphere diameters allows us to employ hereafter a one-component hard sphere system
as the RS for the study of a multicomponent mixture.

We consider the grand partition function (GPF) of the system which can be presented in the
form:

Ξ[να] =
∑

N1,N2,...,Nm

m∏

α=1

exp(ναNα)

Nα!

∫
(dΓ) exp


−β

2

∑

α,β

∑

ij

Uαβ(rij)


 . (2)

Here the following notations are used: να = βµα + ln[(2πmαβ
−1)3/2/h3] is the dimensionless

chemical potential, µα is the chemical potential of the αth species, β is the reciprocal temperature,
(dΓ) is the element of the configurational space of N particles.

Let us introduce operators

ρ̂k,α =
∑

i

exp(−ikr
α
i ), (3)

which are the Fourier transforms of the microscopic number density of the species α. In this case
we can present the part of the Boltzmann factor in (2) which does not include the RS interaction
in the form:

exp


−β

2

∑

α,β

∑

i,j

(Uαβ(rij) − φHS
αβ(rij))


 = exp


−1

2

∑

α,β

∑

k

Φ̃αβ(k) (ρ̂k,αρ̂−k,β −Nαδαβ)


 , (4)
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where

Φ̃αβ(k) = Φ̃C
αβ(k) + Φ̃SR

αβ(k)

and we use the notations Φ̃X...
αβ (k) = β

V φ̃
X...
αβ (k), φ̃X...

αβ (k) is the Fourier transform of the corre-
sponding interaction potential.

In order to introduce the collective variables (CVs) we use the identity

exp


−1

2

∑

α,β

∑

k

Φ̃αβ(k)ρ̂k,αρ̂−k,β


=

∫
(dρ)

∏

α

δF [ρk,α − ρ̂k,α] exp


−1

2

∑

α,β

∑

k

Φ̃αβρk,αρ−k,β


 , (5)

where δF [ρk,α − ρ̂k,α] denotes the functional delta function

δF [ρk,α − ρ̂k,α] ≡

∫
(dω) exp

[
i
∑

k

ωk(ρk,α − ρ̂k,α)

]
,

ρk,α = ρc
k,α − iρs

k,α is the CV which describes the value of the k-th fluctuation mode of the density
of the αth species particles. (dρ) is a volume element of the CV phase space:

(dρ) =
∏

α

dρ0,α

∏

k6=0

′
dρc

k,αdρs
k,α .

The prime means that the product over k is performed in the upper semi-space. The indices c and
s denote the real and imaginary parts of ρk,α.

Taking into account (4)–(5), we can present (2) in the form:

Ξ[να] =

∫
(dρ)(dω) exp (−H[να, ρα, ωα]) , (6)

where

H[να, ρα, ωα] =
1

2

∑

α,β

∑

k

Φ̃αβ(k)ρk,αρ−k,β − i
∑

α

∑

k

ωk,αρk,α − ln ΞHS [ν̄α;−iωα]. (7)

ΞHS [ν̄α;−iωα] is the GPF of a m-component system of the bare hard spheres with the renor-
malized chemical potential ν̄α in the presence of the local field ψα(ri)

ΞHS [. . .] =
∑

N1,N2,...,Nm

m∏

α=1

exp(ν̄αNα)

Nα!

∫
(dΓ) exp


−β

2

∑

α,β

∑

i,j

φHS
αβ(rij) +

∑

α

Nα∑

i

ψα(ri)


 , (8)

where

ν̄α = να +
1

2

∑

k

Φ̃αα(k), (9)

ψα(ri) = −iωα(ri). (10)

Mean-field approximation. The mean-field approximation of functional (6) is defined by

ΞMF [να] = exp(−H[να, ρ̄α, ω̄α]), (11)

where ρ̄α and ω̄α are the solutions of the saddle point equations:

δ H [να, ρα, ωα]

δρk,α

∣∣∣∣
(ρ̄α,ω̄α)

=
δ H [να, ρα, ωα]

δωk,α

∣∣∣∣
(ρ̄α,ω̄α)

= 0 .
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We obtain for ρ̄α and ω̄α

ρ̄α = ρα
HS [ν̄α − iω̄α], ω̄α = −i


ρ̄αΦ̃αα(0) +

∑

β( 6=α)

ρ̄βΦ̃αβ(0)


 (12)

and ρα
HS [ν̄α − iω̄α] denotes the number density of the αth species of the hard sphere fluid with

chemical potential ν̄α − iω̄α.
Substituting (12) in (11) we obtain

ΞMF = exp
[β
2

∑

α,β

ρα
HSρ

β
HSφ̃αβ(0)

]
ΞHS [ν̄α;−iω̄α].

Taking into account fluctuations. In order to take into account fluctuations we present CVs
ρk,α and ωk,α in the form:

ρk,α = ρ̄αδk + δρk,α, ωk,α = ω̄αδk + δωk,α,

where the quantities with a bar are given by (12).
The function ln ΞHS [ν̄α;−iωα] in (7) can be presented in the form of the cumulant expansion

ln ΞHS [. . .] =
∑

n>0

(−i)n

n!

∑

α1,...,αn

∑

k1,...,kn

Mα1...αn
(k1, . . . , kn)δωk1,α1

. . . δωkn,αn
δk1+···+kn

, (13)

where Mα1...αn
(k1, . . . , kn) is the nth cumulant which is defined by

Mα1...αn
(k1, . . . , kn) =

∂n ln ΞHS [. . .]

∂δωk1,α1
. . . ∂δωkn,αn

|δωki,αi
=0. (14)

After the integration in (6) over δωki,αi
we obtain for Ξ[να]

Ξ[να] = ΞMF Ξ′

∫
(dδρ) exp

{
−

1

2!

∑

α,β

∑

k

Lαβ(k)δρk,αδρ−k,β +
∑

n>3

Hn(δρα)
}
. (15)

Gaussian approximation. In the Gaussian approximation, which corresponds to taking into
account in (15) only the terms with n 6 2 (Hn ≡ 0), we have Lαβ(k) = Cαβ(k), where Cαβ(k)
are the Fourier transforms of the partial direct correlation functions. After integrating in (15) we
arrive at the GPF of a m-component system in the random phase approximation (RPA).

2.2. A two-component system of charged particles

Let us consider now in more detail the particular case of a two-component system consisting
of N1 particles of species 1 and N2 particles of species 2. The particles of the species α = 1 are
characterized by their hard sphere diameter σ11 and their electrostatic charge +q and those of
species α = 2, characterized by diameter σ22, bear opposite charge −zq. It is worth noting that
such a model is of particular interest from the point of view of the phase transitions study in real
ionic fluids.

For the model, equations (6) and (7) can be presented in the form:

Ξ[να] =

∫
(dρ)(dQ)(dω)(dγ) exp (−H[να, ρ,Q, ω, γ]) , (16)

and

H[να, ρ,Q, ω, γ] =
1

2

∑

k

[Φ̃NN (k)ρkρ−k + Φ̃QQ(k)QkQ−k + 2Φ̃NQ(k)

×ρkQ−k] − i
∑

k

(ωkρk + γkQk) − ln ΞHS [ν̄α;−iω,−iqαγ], (17)
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where CVs ρk and Qk describe fluctuations of the total number density and charge density, re-
spectively

ρk =
∑

α

ρk,α , Qk =
∑

α

qαρk,α.

For Φ̃AB(k) (A,B = N,Q) we have the following expressions

Φ̃NN (k) =
1

(1 + z)2

[
z2Φ̃SR

11 (k) + 2zΦ̃SR
12 (k) + Φ̃SR

22 (k)
]
,

Φ̃QQ(k) =
1

(1 + z)2

[
Φ̃SR

11 (k) − 2Φ̃SR
12 (k) + Φ̃SR

22 (k)
]

+ Φ̃C(k),

Φ̃NQ(k) =
1

(1 + z)2

[
zΦ̃SR

11 (k) + (1 − z)Φ̃SR
12 (k) − Φ̃SR

22 (k)
]
. (18)

ΞHS [ν̄α;−iω,−iqαγ] is the GPF of a two-component system of the bare hard spheres with the
renormalized chemical potential

ν̄α = να +
1

2

∑

k

Φ̃SR
αα(k) +

q2α
2

∑

k

Φ̃C(k) (19)

in the presence of the local field

ψα(ri) = −iω(ri) − iqαγ(ri), (20)

where ω = (zω1 + ω2)/(1 + z) and γ = (ω1 − ω2)/q(1 + z).
In this case the saddle point equations yield

ρ̄ = ρHS [ν̄α;−iω̄,−iqαγ̄], Q̄ = 0, ω̄ = −iρ̄Φ̃NN (0), γ̄ = −iρ̄Φ̃NQ(0) (21)

and we obtain for the GPF in the mean field approximation

ΞMF = exp
[β
2
ρ2

HSΦ̃NN (0)
]

ΞHS [ν̄α;−iω̄,−iqαγ̄].

The cumulant expansion for ln ΞHS [. . .] in terms of variables δγk and δωk have the form:

ln ΞHS [. . .] =
∑

n>0

(−i)n

n!

∑

in>0

∑

k1,...,kn

M
(in)
n (k1, . . . , kn)δγk1

. . . δγkin
δωkin+1

. . . δωkn
δk1+...+kn

, (22)

where the nth cumulant is defined by

M
(in)
n (k1, . . . , kn) =

∂n ln ΞHS [. . .]

∂δγk1
. . . ∂δγkin

∂δωkin+1
. . . ∂δωkn

|δγk=0,δωk=0 (23)

and index in is used to indicate the number of variables δγk in the cumulant expansion.
As was shown [14], the free energy obtained in the RPA for such a model is independent of

the charge asymmetry factor z. Therefore, the study of the effect of the charge asymmetry on the
phase behaviour requires taking into account the cumulants of the order higher than the second
order. In this relation it is important to have got the explicit expressions for the cumulants with
n > 2. The next section is devoted to this issue.

3. Reference system

3.1. A m-component mixture of “colour” hard spheres

Let us consider a general case of a m-component inhomogeneous system of hard spheres with
the local chemical potential ν∗α(r). We start with expression (8) under conditions that all the hard
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spheres have the same diameter σ and ν∗α(r) = ν̄α +ψα(r). In this case (8) can be presented in the
form:

ΞHS [Z∗] =
∑

N>0

1

N !

∫
dr1dr2 . . . drN

N∏

j=1

Z∗(rj) exp


−β

2

N∑

i,j

φHS(rij)


 , (24)

where

Z∗(rj) =
∑

α

Z∗
α(rj) (25)

and

Z∗
α(rj) = exp ν∗α(rj) = Z̄α exp(−iωα(rj)), Z̄α = exp(ν̄α). (26)

Our goal is to derive explicit expressions for the cumulants
Mα1...αn

(1, 2, . . . , n) defined by

Mα1...αn
(1, 2, . . . , n) =

1

(−i)n

δn ln ΞHS [Z∗]

δωα1
(1)δωα2

(2) . . . δωαn
(n)

∣∣∣∣
δωαi

(i)=0

, (27)

where, for notational convenience, a position vector ri is presented simply by i.

First we start with some important relations. We introduce the density distribution function
ρn(1, 2, . . . , n) and the correlation function ρT

n (1, 2, . . . , n) [15]:

ρn(1, 2, . . . , n)

Z∗(1)Z∗(2) . . . Z∗(n)
=

1

Ξ

δnΞ

δZ∗(1)δZ∗(2) . . . δZ∗(n)
, (28)

ρT
n (1, 2, . . . , n)

Z∗(1)Z∗(2) . . . Z∗(n)
=

1

Ξ

δn ln Ξ

δZ∗(1)δZ∗(2) . . . δZ∗(n)
. (29)

We also have the relation for the function hn(1, 2, . . . , n)

hn(1, 2, . . . , n) =
ρT

n (1, 2, . . . , n)

ρ1(1)ρ1(2) . . . ρn(1)
. (30)

Expressions (28)–(30) can be easily generalized for the case of a m-component mixture replacing
ρn(1, 2, . . . , n) by ρα1...αn

(1, 2, . . . , n) and ρT
n (1, 2, . . . , n) by ρT

α1...αn
(1, 2, . . . , n), etc. As a result,

we obtain for Mα1
(1)

Mα1
(1) = ρT

1 (1)
Z∗

α1

Z∗(1)
= ρα1

(1), (31)

where we take into account that

ρT
1 (i) = ρ1(i),

Z∗
αi

Z∗(i)
=
ραi

(i)

ρ1(i)
, ρ1(i) =

∑

α

ρα(i).

As is readily seen, the first expression follows from (28)–(29) and the second one follows from
(24)–(25).

The higher order cumulants (up to n = 4) can be written as

Mα1α2
(1, 2) = ρα1

(1)[ρα2
(2)h2(1, 2) + δα1α2

δ(1, 2)], (32)

Mα1α2α3
(1, 2, 3) = ρα1

(1)[ρα2
(2)ρα3

(3)h3(1, 2, 3) + ρα2
(2)h2(1, 2)δα2α3

δ(2, 3)

+ρα2
(2)h2(1, 2)δα1α3

δ(1, 3) + ρα3
(3)h2(1, 3)δα1α2

δ(1, 2)

+δα1α2
δα1α3

δ(1, 2)δ(1, 3)], (33)
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Mα1α2α3α4
(1, 2, 3, 4) = ρα1

(1)[ρα2
(2)ρα3

(3)ρα4
(4)h4(1, 2, 3, 4) + 3ρα2

(2)ρα3
(3)

×h3(1, 2, 3)(δα3α4
δ(3, 4) + δα2α4

δ(2, 4) + δα1α4
δ(1, 4))

+2ρα2
(2)ρα4

(4)h3(1, 2, 4)(δα2α3
δ(2, 3) + δα1α3

δ(1, 3))

+ρα3
(3)ρα4

(4)h3(1, 3, 4)δα1α2
δ(1, 2) + 4ρα2

(2)h2(1, 2)

×(δα2α3
δα2α4

δ(2, 3)δ(2, 4) + δα2α3
δα1α4

δ(2, 3)δ(1, 4)

+δα2α4
δα1α3

δ(2, 4)δ(1, 3) + δα1α3
δα1α4

δ(1, 3)δ(1, 4))

+2ρα3
(3)h2(1, 3)(δα3α4

δα1α2
δ(3, 4)δ(1, 2) + δα1α4

δα1α2

×δ(1, 4)δ(1, 2)) + ρα4
(4)h2(1, 4)δα1α3

δα1α2
δ(1, 3)δ(1, 2)

+δα1α2
δα1α3

δα1α4
δ(1, 2)δ(1, 3)δ(1, 4)]. (34)

In (32)–(34) hn(1, 2, . . . , n) is the correlation function of a one-component hard sphere system with
Z∗(i) given by (25).

Formulas (32)–(34) are valid for an inhomogeneous system of equal diameter hard spheres in the
external local field. Expressions (32)–(33) are of the same form as those recently obtained within
the framework of the statistical field theory based on the Hubbard-Stratonovich transformation
[16] (see (7.8) in [16]). Expression (34) is important in context of applying the approach proposed
here for the study of phase transitions.

For a homogeneous system ρα(i) = ρα, where ρα is the number density of hard spheres of
the αth species. In the case of model (1) describing a system of charged particles constrained by
the condition of global electroneutrality, the expressions for the cumulants Mα1α2,...,αn

(1, 2, . . . , n)
should be supplemented by the two relations for partial densities ρα, namely

∑

α

cα = 1,
∑

α

qαcα = 0, cα = ρα/ρ. (35)

3.2. Two-component system of charged hard spheres

Let us consider the particular case of a two-component model of charged hard spheres of the
same diameter with the local chemical potential ν∗α(i) = ν̄α +ψα(i), where ν̄α and ψα are given by

(19)–(20). First we consider cumulants M
(in)
n (1, . . . , n) (see (23)) for the case of an inhomogeneous

system.

It is convenient to present M
(in)
n (1, . . . , n) in terms of the truncated (or connected) correlation

functions Gn(1, 2, . . . , n) defined by [15]

Gn(1, 2, . . . , n) =
δn log Ξ

δν∗(1)δν∗(2) . . . δν∗(n)
. (36)

As a result, we obtain the following expressions for the cumulants of the first order

M
(0)
1 (1) = G1(1), M

(1)
1 (1) = qαcα(1)G1(1), (37)

where cα(i) = ρα(i)/ρ(i) and summation over repeated indices is meant. For the cumulants of the
second order we get

M
(0)
2 (1, 2) = G2(1, 2), M

(1)
2 (1, 2) = qαcα(2)G2(1, 2),

M
(2)
2 (1, 2) = q2αcα(1)G1(1)δ(1, 2) + qαcα(1)qβcβ(2)[G2(1, 2) −G1(1)δ(1, 2)]. (38)

M
(in)
3 (1, 2, 3) with in = 0, 1, 2, 3 have the form:

M
(0)
3 (1, 2, 3) = G3(1, 2, 3), M

(1)
3 (1, 2, 3) = qαcα(1)G3(1, 2, 3), (39)
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M
(2)
3 (1, 2, 3) = qαcα(1)qβcβ(2)[G3(1, 2, 3) −G2(2, 3)δ(1, 3)]

+q2αcα(1)G2(2, 3)δ(1, 3), (40)

M
(3)
3 (1, 2, 3) = qαcα(1)qβcβ(2)qγcγ(3)[G3(1, 2, 3) − 3G2(1, 2)δ(2, 3)

+2G1(1)δ(1, 3)δ(2, 3)] + 3q2αcα(1)qβcβ(2)[G2(1, 2)

−G1(1)δ(1, 2)]δ(1, 3) + q3αcα(1)G1(1)δ(1, 2)δ(2, 3). (41)

Finally, we obtain for M
(in)
4 (1, 2, 3, 4)

M
(0)
4 (1, 2, 3, 4) = G4(1, 2, 3, 4), M

(1)
4 (1, 2, 3, 4) = qαcα(1)G4(1, 2, 3, 4), (42)

M
(2)
4 (1, 2, 3, 4) = qαcα(1)qβcβ(2)[G4(1, 2, 3, 4) −G3(2, 3, 4)δ(1, 4)]

+q2αcα(1)G3(2, 3, 4)δ(1, 2), (43)

M
(3)
4 (1, 2, 3, 4) = qαcα(1)qβcβ(2)qγcγ(3)[G4(1, 2, 3, 4) − 3G3(2, 3, 4)δ(1, 4)

+2G2(3, 4)δ(1, 4)δ(2, 3)] + 3q2αcα(1)qβcβ(2)[G3(2, 3, 4)

−G2(3, 4)δ(2, 4)]δ(1, 3) + q3αcα(1)G2(3, 4)δ(1, 2)δ(2, 3), (44)

M
(4)
4 (1, 2, 3, 4) = qαcα(1)qβcβ(2)qγcγ(3)qζcζ(4)[G4(1, 2, 3, 4) − 6G3(1, 2, 3)δ(1, 4)

+11G2(1, 2)δ(2, 3)δ(1, 4) − 6G1(1)δ(2, 3)δ(1, 4)δ(1, 2)]

+6q2αcα(1)qβcβ(2)qγcγ(3)G3(2, 3, 4)δ(1, 4) + 4q3αcα(1)qβcβ(2)

×[G2(2, 3) −G1(2)δ(2, 3)]δ(1, 3)δ(3, 4) + 3q2αcα(1)q2βcβ(2)

×[G2(2, 3) −G1(2)δ(2, 3)]δ(1, 3)δ(2, 4) + q4αcα(4)G1(1)

×δ(1, 2)δ(2, 3)δ(3, 4). (45)

Homogeneous case For the homogeneous system, cα(i) = cα where cα is the concentration
of the αth species. In this case expressions (37)–(45) reduce due to the electroneutrality condi-
tion. As a result, we get the following recurrence formulas for the cumulants in the Fourier space
representation

M
(0)
n (k1,k2, . . . ,kn) = G̃n(k1,k2, . . . ,kn),

M
(1)
n (k1,k2, . . . ,kn) = 0,

M
(2)
n (k1,k2, . . . ,kn) = q2αcαG̃n−1(k1,k2, . . . ,kn−1 + kn),

M
(3)
n (k1,k2, . . . ,kn) = q3αcαG̃n−2(k1,k2, . . . ,kn−2 + kn−1 + kn),

M
(4)
n (k1,k2, . . . ,kn) = 3

[
q2αcα

]2
G̃n−2(k1,k2, . . . ,kn−2 + kn−1 + kn) +

(
q4αcα

−3
[
q2αcα

]2)
G̃n−3(k1,k2, . . . ,kn−3 + . . .+ kn), (46)

where G̃n(k1,k2, . . . ,kn) is the Fourier transform of the n-particle truncated correlation function
of a one-component hard sphere system with the density ρ̄ defined by (12).

It is worth noting that M
(2)
2 (k1,k2), M

(3)
3 (k1,k2,k3) and M

(4)
4 (k1, . . . ,k4) can be reduced to

the expressions obtained in [16] (see (7.8) in [16]).
For the case of the restricted primitive model (RPM), a charge symmetric model with z = 1,

the above expressions can be rewritten as

M
(1)
n ≡ 0, M

(2)
n = q2G̃n−1,

M
(3)
n ≡ 0, M

(4)
n = q4(3G̃n−2 − 2G̃n−3).
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Putting q = 1 in (47) we arrive at recurrence relations for the cumulants of a mixture of neutral
hard spheres with concentration cα = 1/2 [17]).

4. Conclusions

Based on the method of CVs we obtain the exact expression for the functional of the GPF for
a m-component model of an ionic fluid with size and charge asymmetry. The functional integral is
written in terms of CVs ρk,α (α = 1, 2, . . . ,m) describing the density fluctuations of the αth species.
The expression includes the logarithm of the GPF of the reference system which can be presented
as a cumulant expansion. We pay special attention to the correlation functions of the reference
system. The reference system for the model under consideration is a m-component system of equal
diameter hard spheres with the local chemical potentials ν∗α(r). We call such a model a system
of “colour” hard spheres. We obtain explicit expressions for the partial cumulants, the partial n
particle truncated (connected) correlation functions (n 6 4) of an inhomogeneous “colour” hard
sphere system.

We consider the particular case of a two-component model. Here we introduce the two sets of
CVs: ρk and Qk describing the fluctuations of the total number density and the charge density,
respectively. We choose the reference system as a two-component hard sphere system of equal
diameters with the local chemical potentials which include the charges and reflect the fact that the
Coulomb interactions are available in the full system. For the homogeneous ionic model we derive
the recurrence formulas which relate the cumulants of the initial two-component reference system
with the truncated correlation functions of a one-component hard sphere system. The relations will
be used in our study of the phase behaviour of an ionic fluid with the charge and size asymmetry.
The results will be published elsewhere.
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Функцiональне представлення великої статистичної суми
для багатокомпонентної системи заряджених частинок:
кореляцiйнi функцiї системи вiдлiку

О.В.Пацаган, I.М.Мриглод

Iнститут фiзики конденсованих систем НАН України, вул. Свєнцiцького, 1, 79011 Львiв

Отримано 27 лютого 2006 р., в остаточному виглядi – 29 червня 2006 р.

На основi методу колективних змiнних з системою вiдлiку, отримано точний вираз для функцiоналу

великої статистичної суми m-компонентної iонної моделi з асиметрiєю розмiрiв та зарядiв. Особли-
ва увага придiляється n-частинковим кореляцiйним функцiям системи вiдлiку, яка представляється

як m-компонентна система “кольорових” твердих сфер однакового дiаметру. Детально розглянуто

випадок двокомпонентної моделi, для якої отримано рекурентнi формули для кореляцiйних функцiй.
Також проаналiзовано випадок m-компонентної неоднорiдної системи “кольорових” твердих сфер.

Ключовi слова: функцiональнi методи, система вiдлiку, метод колективних змiнних, асиметрична

iонна модель, система “кольорових” твердих сфер

PACS: 05.70.Fh, 05.70.Jk, 65.10.+h
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