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In the paper a new analytic approach to the solution of the effective single-site problem in the dynamical mean
field theory is developed. The approach is based on the method of the Kadanoff-Baym generating functional in
the form developed by Izyumov et al. It makes it possible to obtain a closed equation in functional derivatives
for the irreducible part of the single-site particle Green’s function; the solution is constructed iteratively. As
an application of the proposed approach the asymmetric Hubbard model (AHM) is considered. The inverse
irreducible part 251 of the single-site Green’s function is constructed in the linear approximation with respect
to the coherent potential J,,. Basing on the obtained result, the Green’s function of itinerant particles in the
Falicov-Kimball limit of AHM is considered, and the decoupling schemes in the equations of motion approach
(GH3 approximation, decoupling by Jeschke and Kotliar) are analysed.
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1. Introduction

The lattice models with Hubbard correlations are used in investigating strongly-correlated
materials. The one-band Hubbard model [1,2] and the spinless Falicov-Kimball model [3] can be
considered as the simplest models of this kind. In the present paper those models are combined into
the asymmetric Hubbard model describing a system with two sorts of mobile particles (electrons,
ions, ...) with different hopping integrals and different values of chemical potentials. Thus, the
model can be considered in investigating mixed-valence compounds [4] or ionic conductors. The
model Hamiltonian has the following form:

H= ZH +Zt§7ajgaja, (1)
K3

ijo
I:Ii = Un”nu — Z Moo - (2)
oe{l,T}

Here, the electron transfer is described using fermionic creation and annihilation operators (a,

0
a;,) and hopping parameters ¢7;. The single site part H; contains the Coulomb repulsion U (n;, =

a;rgaig) and chemical potentials p,. If the model is used for describing two sorts of fermionic
quasiparticles the electron spin indices are replaced by sort indices 0 = A, B. The hopping integrals

and chemical potentials in asymmetric Hubbard model are dependent on particle sort:

A
th#D, pa # s

However, even such a relatively simple model cannot be solved exactly and various simplificati-
ons are required in investigating the problem. As for now, only some specific cases were considered.
Thus, in the ground state of the model, a possibility of a phase separation phenomenon was ana-
lyzed in [5]. In the case of large on-site repulsion U, it is possible to use the effective anisotropic
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Heisenberg model with antiferromagnetic interaction [4,6,7]. Also, some thermodynamic properties
of the model were investigated in the case of one-dimensional space [7,8]. In infinite dimensions,
the spectral functions (densities of states) in the asymmetric Hubbard model were investigated
using approximations in the equation of motion approach for Green’s functions [9,10].

In this paper we consider the model within the dynamical mean field theory (DMFT) that is
exact in the limit of infinite dimension. In this case the lattice model is reduced to the single-
site problem where the self energy (k) is independent of the wave vector k [11]. The single-site
problem can be formulated constructing the effective Hamiltonian:

B B8
e=BH _, o=BHe — o=BHOT oypy [—/ dr dT’Z J(r —1"al (T)a, ()], (3)
0 0 =

where Hy = ), H;. A solution of the single-site problem is supplemented by the solution of the

Larkin equation
1

— (4)
\:al(wn) - Ja(wn)
and the relation following from the equality of the lattice Green’s function and the single-site

Green’s function: oo 0 (1)t
Po
Golwn) = [ I )
where p2(t) is unperturbed particle density of states.

Let us note that for solving the single-site problem (3), it can be reformulated in terms of
the single impurity Anderson model [12] or using the auxiliary Fermi-field describing the effective
external bath as it was done in [9,10,13,14].

The task of the single-site problem is to find the functional relation between the single-site
Green’s function G, and the coherent potential J,. A number of numerical methods has been de-
veloped for this purpose (for example, the quantum Monte-Carlo [15-17], the exact diagonalization
[18,19], and the numerical renormalization group [20]). However, with the recent development of
the ab initio methods for calculating electronic structure of real materials combining the density
functional theory with the dynamical mean field theory (see reviews [21,22]), new fast methods
for solving the single-site problem are required. The analytic approximations for the Green’s func-
tion (self-energy) in terms of the coherent potential can be used as such fast methods [13,23-27].
Among them there are methods based on decoupling of Green’s functions in the equation of mo-
tion approach [13,23] and methods based on perturbation theory expansion (for example, iterated
perturbation theory [12,28]). As shown in [13], the different-time decoupling approach includes the
modified alloy-analogy approximation [29] and the Hubbard-IIT approximation [30] as particular
cases.

In this paper, to systematize and consider a possibility of improving analytic methods we
develop the generating functional approach as solver for the single-site problem. This method
is based on the Kadanoff and Baym functional scheme [31] in the form elaborated by Izyumov
and Chaschin for the lattice models with strong correlations (for example, Hubbard model and
Heisenberg model) [32-35]. The approach allows one to obtain a closed equation in functional
derivatives for irreducible part of the Green’s function. Solutions of the equation are constructed
iteratively in a form of expansion around the atomic limit (in powers of hopping ¢;; or J,)

Exemplified by the asymmetric Hubbard model, it is shown that the problem can be formulated
as the equation for the Larkin irreducible part Z(w) or the equation for the self-energy and termi-
nal part of the Green’s function. This technique allows one to construct an analytic expression for
the irreducible part with arbitrary precision in powers of hopping (coherent potential). The first
iteration leads after some simplification to the so-called generalized Hubbard-IIT (GH3) approxi-
mation that was recently proposed using different-time decoupling of irreducible Green’s functions
in the equations of motion approach [9,14]. In the same way, there is established a relation with
the decoupling scheme of Green’s functions of higher order used by Jeschke and Kotliar [23] for
the Hubbard model at U — oo (JK decoupling). The generating functional approach enables us to
improve these approximations constructing successive iterations for the irreducible part.

GO’ (wn) -
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2. Effective single-site problem and generating functional approach

Let us consider the effective single-site problem (3) using the procedure proposed in [13] where
the problem was reformulated in terms of the auxiliary Fermi-field. In this case, the Hamiltonian
H.g can be written explicitly

Heg = Hi + Y _Vo(al&, +&la,) + He, (6)

where the last term (H¢) characterizes the environment of a given site in terms of ¢-field. The
Green’s function

Go(r = 1) = (T (1), (7)), (7)
that is calculated by formal averaging with the zero-order Hamiltonian H¢, determines the coherent
potential

Jo(r = 1) = V3G (r — 1) = VAUTEL(T)E,(T))o- (8)
The main task in the given approach is to calculate the single-site Green’s function

Gy = (Tral(T)a (') 9)

for the problem with the Hamiltonian (6) and defined function G,. As a result, such a solution
gives the relation between the single-site Green’s function G, and coherent potential J,.
In the Hubbard operators representation the creation and annihilation operators are expressed as

a, = X" +¢X7%, el = X7+ (X7, (10)

where indices and signs are determined as follows

c=B,(=+ foro = A,
o=A, (=— for 0 = B.

Then, the Hamiltonian of the effective single-site problem reads

Heg = Ho+ Hing, (11)
Hy = UX?-> [uo (X7 + X*?)] + He, (12)
Hye = Y Vo [(X704¢X%)& +&0 (XY +¢X7)]. (13)

We use below the thermodynamic perturbation theory. For this purpose the term that describes the
hopping between the given site and environment in (11) is considered as a perturbation (interaction)
term Hi,;. The scheme of calculating the Green’s function

Golr = 7') = (Trali(D)a, (') = (T, X7() X" (') + (T X7 () X7 ()
+ (T, X7 (1) X2 (1)) 4+ (T X7 (1) X (7)) (14)

is based on the Kadanoff and Baym generating functional method [31] applied and developed for
the problems with strong particle correlations by Izyumov et al. [35]. To simplify the formulation
of the method we consider the limit case U — oo, when the doubly occupied site is excluded, and
the problem is reduced to the calculation of the Green’s function G%% = (7, X9 (1) X0 (7")).

Let us introduce the time dependent fluctuating fields v.,(7) that are conjugated to the quanti-
ties described by corresponding bosonic Hubbard operators X (v = 00,00,05). In that case the
partition function is rewritten in the following form

7 — Zy = Sp (e_ﬁHTTe_V) , (15)
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where

B B
vz/0 dTV(T):/O dr vy (1) X7 (7). (16)

The calculation of operator average values (averaging over Gibbs ensemble with Hamiltonian
H.g in the presence of fluctuating fields) is performed according to the formula:

by = Sp (TTe_BH .. .e_V)
<. V= Sp (T,—efﬁHe*V)

(17)

The average values of bosonic operators X” are expressed as functional derivatives with respect
to v4:

1 6z

7y = R -
<X > <X >V|V—>O ZV (S’Ui(’r) Vo ’

(18)

where the fields v, are directed to zero after the differentiation to obtain the operator average
values for the system with initial Hamiltonian.
Introducing the generating functional [35]

ZV = ecbV) (I>V =1In ZV7 (19)

we can rewrite the relation (18) in the following form

0P
(X =— sl (20)
i (7) |y o
From the expression for the second-order derivatives
520y, 1 52 Zy 1 8Zy 8%y 1)
dva(11)0v8(12)  Zv dva(m1)dva(T2)  ZE va(T1) dus(T2)

(and the similar ones for the higher-order derivatives) follows a relation between functional deriva-
tives of average values of bosonic X-operators (Green’s functions) and the higher order Green’s
functions on such operators:

0

WUTXO‘(TMV = —(TX(1)X(12))v + (X (n))Wv (T XP (12))v. (22)

Similarly, one can write an arbitrary Green’s function of the higher order with bosonic Hubbard
operator using functional derivatives:

LX)y = S (Tt
= *@‘F(ﬁ-...h/(];)(a(’rl»v, (23)
Uoz(Tl)

The last relation makes it possible to obtain a closed set of equations in functional derivatives
for the fermionic Green’s functions

G;f/o’on(ﬂ 7_/) = <TFXUO(T)XO77(TI)>V' (24)

The obtained solutions give the single-site Green’s function G°%%7 (7 — /) after the transition to
the vy, = 0 limit.
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2.1. Recurrent form of Wick'’s theorem

Let us consider the procedure of constructing the equations for the Green’s function with X-
operators within the framework of thermodynamic perturbation theory. In this case

Zy = Sp (T,6(B)e” Ve o) = Zo(6(B)e™" ), (25)

where

B
6(8) = Tr exp [—/ dTlHint(ﬁ)] ) (26)

0

and Zy = SpePHo is the zero-order partition function. Here, when U — oo, the zero-order Hamil-
tonian reads
Hy = —paX* — ppXPP 4+ He (27)

and the interaction (perturbation) term has the form
Hine = Vi (X%, + €4X°4) + Vg (X750, + €L, X°7). (28)

Time ordered (7;) operator averaging can be performed by calculating Gibbs average values with
unperturbed Hamiltonian Hy

(Tr...6(8)e™V), _ %L
(T:6(B)e™)o  2Zv
To calculate average values of time ordered (7;) products of X-operators in (29), we use a form

of the Wick’s theorem formulated in [36], that can be called its recurrent form. Let us write, in a
closed form, the result of the pairing of one selected non-diagonal X-operator with all others

(T ...)v = (T-...5(8)e")o. (29)

1 N
(T X)X (11) ... X" (7)) Z X“O VXV () X)L X ()6 (B)e Y Do
Zo ;0 ] A ‘—V
+7<ZX (MX" (1) ... X" (12)6(8)e™" )o. (30)
14

According to [36], the result of pairing of two selected operators is a product of their commuta-
tor (anticommutator, when both operators are of the Fermi-type) and the unperturbed Green’s
function. In that case

<Z—XUO(T)X’YI (r)... X" (7, Z g"0 (T—m)
x <TTX% (r) -« X7 X5 X (r)a(B)e™ ) (1)
+ 5—3 A’ g7 (r — WL X7 (1) o X7 (1) [ X0, Hing + V6 (8)e Vo, (31)

where the alternating (—1)P* multiplier is defined by a number of Fermi-permutations p; of operator
X°9(r) from the starting position to the position directly on the left of the operator that is
paired to.

Going back in (31) to the averages with the full (perturbed) Hamiltonian, we have

(T,X(T) X7 (1) ... X7 (m, Zgao T— N T X " (1) . (X0, XE X () (— 1)

B .
+ dr' g% (1 — WL X (11) .. X7 (1) [ X0, Hing 4 Vo). (32)
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The similar procedure can be applied to the averages (Green’s functions) involving &-operators.
If the pairing procedure is started from the operator &, then, instead of unperturbed Green’s
function ¢g7°(1 — 7'), the Green’s function of auxiliary fermions G, (7 — 7/) is used and the &
operator is on the first position in the commutator.

Relation (32) can be called a recurrent form of the Wick’s theorem. When it is used repeatedly
to the averages appearing from the right hand side, the complete structure of the expansion of initial
averages in products of unperturbed Green’s functions is reproduced. However, the distinction is
that the final expressions containing averages of diagonal X-operators that terminate the pairing
sequence are calculated with the full Hamiltonian Heg. It is different from using the standard
Wick’s theorem [36] where such averages are taken over the Gibbs ensemble with the unperturbed
Hamiltonian H.

Let us note, that the formula (32) can be interpreted as an equation relating the averages
(Green’s functions) with the Green’s functions of higher order. The same structure of equations
is characteristic of the equation of motion approach [31] for the temperature Matsubara Green’s
functions.

2.2. Equations for single-particle Green’s function

The relation (32) is applied to the Green’s function (7, X°(7) X% (7))y . For this purpose, we
need to calculate the commutators of the Hubbard operator X°° with Hin:+V and anticommutator
of operators of Fermi-type X°°, X%, For example:

(X0, Hing) = — Vagh X7 = VgL (X2 + X7P),
[XB07 V] — _ (UB _ ’U())XBO _ @XAO,
{XAO XOA} — XOO +XAA {XAO XOB} — XAB

(where vg = vgo; Vo = Vso;0 = vap; v = vpa). This leads to the appearance of Green’s func-
tions such as (Z£5 (71)[X0 + X77)(11) X (")) and (T-£L (1) X (71) X7 (7'))y,, which can be
expressed using a relation like (32). Taking into account that

[fA, mt} = _VAXon [g;rgvHint] = _VBXBov (33)

we come to Green’s functions with three Hubbard operators, where one operator is of a bosonic
type. The Bose-operators are excluded using the functional differentiation (23). As a result we
obtained the following equation for the Green’s function G@O’O"(T, 7'):

o 0P 0P 0P
GVO’On(ﬂ ') = —goo(T — ') [(&zo(:’) N 5110(:’)) 7 G

550-,5 (7'

B
,)65,n:| - /dTIQUO(T _Tl)
0

dTQV Gs (7 G?,O’OW(TQ,T') +

\m

™ [forrte

5
/dﬁggo T—T /dTQV Go(T1 — T2)
0

5Dy 6<I>V ) o 0,01 '
% K&JO( Soa(m) | Suo(m) 5%(71)) Gy, T)

+/dTlgUO(T_Tl)[UU(Tl) —vo(m)]GY (11, 7') /dTlgao(T—Tl)Uoo(Tl)GUO (11, 7), (34)

where d,,, is a Kronecker delta and vp 4 = v, V4,5 = ¥.
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Let us introduce an inverse Green’s function g, (7 — 7’) according to the definition

B
/ A7’ g5 (1 — 7 goo (7! — ") = 6(7 — 7). (35)
0
Accordingly, in frequency representation, it corresponds to

9;01 (wn) = [gao(wn)]_l = lwp, + po- (36)

Let us multiply both sides of equation (34) by g;ol (7" —7) and integrate out the free time argument
7. Then, we rewrite the obtained equation in more compact form using matrix representation where
the required single-site Green’s function has the following form

. GB0,0B GB0,0A
G= < GA0,0B GA0,04 (37)
Introducing a matrix representation for the differentiation operator
é 1)
A é o
Al(r,7) = 6(r —7) ”gB(T) ”(g) : (38)
0v(T) dvoa(T)

where 51;50 = % + %, and introducing matrices for the Green’s functions of auxiliary fermions

(coherent potential)

Jrr)= ((‘J/EQB(T B V26a(r — ) ) - (gB(T T S ) (39)

and the inverse unperturbed Green’s functions (combined with the linear contributions of the
fluctuating field V'):

i )= () 0 Je( e

0 gao(r—7 —v(T) vo(T)U—

the equation (34) can be presented in the form
G AgGy ALIG = — Ay, (41)
Here, the matrix Ay is a result of the differentiation operator A’ action on the generating functional

®y (Ay = A'®y). The multiplication of arbitrary two matrices X (7,7') and Y (7/,7") contains
integrating out the inner time argument 7’:

" B . .
XY E/ dr' X (r, 7Y (', 7"). (42)
0

At the final stage (after exclusion of fluctuating fields v, (7)), multiplication (42) corresponds to
the product of Fourier’s components in the frequency representation.

2.3. Irreducible part

—

We introduce the irreducible part = of the single-site Green’s function G meaning Larkin
irreducibility. Then, the equation (4) can be written in the following form

Glwp) = [é*l(wn) - j(wn)} - (43)
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To obtain an equation defining = we use a property of the differentiation
0 ~ ~ [0 - A
—G=-G [Gl} G, (44)

and rewrite the equation (41) in the form of a functional differential equation where the differen-
tiation operator A’ acts on the inverse Green’s function matrix G—!:

>
Gl AN - - ASTAIGGTGE, (45)

the arrow line points a matrix function operated on by the differentiation operators. Transforming
this equation we obtain the equation for the irreducible part:

El =Gyt + AgtAJGETY, (46)
where
Gyl =—Ajtyt (47)
In explicit form it reads
B B
(£ )pl(T, T/) = (éo )Pl(TvT ) + Z/dTl e '/dT4ij(7_1a 7_4)qu(7—477—2)(/161);08(77 7—3)
sam g 0
x[ALy (73, 71)(E™ (72, 7)), (48)
4 1 / d —1 /
N , 1 (51)0({)1‘(/7') Bo(m=7) % a0(m=7)
Go (nT)== 50 5By, , 5oy ,
o) T T Sy S0 T
0Dy 0Dy 0Dy 0Py
B §UOA(T) [ O(T) UB(T)]'i_W ( ) _5'UOA(T) )_51)(7') [UO(T)_UA(T)]
0Dy 0Dy 0Py _ 0Dy
oy o) —un (P = 52 () ) g s [oo(r) ()
1 /
X G So(r—1), (49)
where

0dy 0Dy 0y 6Oy

D(r) = Svo5(T) dvoa(r)  du(r) 60(r)

(50)

Equation (46) has the structure that corresponds in the generating functional approach to
the similar equations for irreducible parts of Green’s functions for models of magnetics or strongly
correlated electron systems [32-35]. Its solution can be sought in the form of a series with summands
involving various number of J multipliers.

The iterations generate terms where operators A’ from (46) act only on matrices Aa Lor G and
do not affect the terminating matrix §—* (Ga ! is taken as a zero order function). Another set is
formed by summands involving derivatives of §—!. Therefore, the solution can be presented in the
form

2= _ASUN (g*l +F), (51)
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where two new matrices are introduced (M and F ), and the mentioned terms with differentiation
of g—1 are collected in F.

Let us insert (51) into the equation (46). Collecting separately terms of the first and second
type, we obtain two equations:

M =1+ RA;'M + RA;' M, (52)
F'=RAJ'Mg '+ RA;'MF, (53)
where the notation
"
R---=AJG... (54)

is introduced. )
Iterations in the equation (52) point to a possibility of writing the matrix M as

M=(1-1L)", (55)

where the matrix L is determined by the functional equation

1
L=1ILo+RAJY1 - L]7'L, (56)
where
Lo = RA;' = A'JGA;* (57)

Accordingly, the equation (53) is rewritten as

> 1
F=Fy+ RA;'[1 - L]7'F, (58)
where
1
Fy = RAGY[1 - L] 'g % (59)

Let us note, that matrix M can be connected with the so-called terminating part A of the
Green’s function G. Let us write GG in the form

G =TIA, (60)

and introduce the mass operator by according to the equation

Il =g+ 311, I t=g¢"'-3. (61)

In this case the equation for the Green’s function G (41) can be split into two equations for the
mass operator ¥ and terminating part A, as it was done by Izyumov et al. [32-35]:

Y+ AgJ — A'JTIgH + A JTIY = 0, (62)
A+ A'JTIA = — A, (63)

(1

Consider the relation between the mass operator % and irreducible part

S =g+ AJ— A=Y (64)
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following from the relations (60), (61) and equation (46). Comparing equations (56), (58) and (62),

(63), one can see that there exists the correspondence
P o
RAGJ'I— L7t = —AJTI...,
Ae—[i-iJdo, S—AJ_F (66)
(67)

=AY 4 F).

This makes possible to write the inverse irreducible part of the Green’s function as

From here, it is seen that A is also a terminating part of the matrix =, and ( —F ) has the meaning

of a Dyson irreducible part of 2.

Summarizing, let us note that the equations (46) or (56) and (58) constructed by us allow one
iteration procedure permits to construct their solutions in the form of functionals of G functions,

to find, respectively, the inverse irreducible part =~ or, separately, its components L and F. Direct
bosonic correlators and coherent potential J.
rticles

3. Falicov-Kimball model: Green'’s function of itinerant pa

approach the Green’s function of itinerant particles in the Falicov-Kimball model as the simplest

As an example of the simple application, we consider within the framework of the developed
specific case. This problem can be exactly solved in DMFT and its solution corresponds to the

so-called alloy-analogy (AA) approach.

In the case of the Falicov-Kimball model, particles of one sort are localized (Jg = 0; in the
matrix notations Ji; = 0). To find the Green’s function of itinerant particles (corresponding matrix
element (G)Qg) the irreducible part (é 155 should be calculated.
= 195 does not contain nonzero terms where the differentiation operator Al

(68)

(

The series for (2~
acts on the zero-order Green’s function §:
(F1)a2 =0, (F2)22 =0,
because R
(A)22(97 )22 = 0, (69)
and, in terms where the operator (/1’)12 acts on (§71);2, either matrix element (/1 )21 Or Goy is
present that gives a vanishing result when the fluctuating field tends to zero. Thus
é71)22 = *(/10_1)22([1 - E]71)22(923)a (70)
and taking into account that when v — 0, the matrix Lis diagonal:
(E7 )22 = —(Ag)22[l — Laa] g5 (71)
To find the function L, we use a fact that operator X% 4+ X4 is an integral of motion in the
case Jp = 0 ([X°° + X444 Heg + V] = 0). It gives
= (X004 x4, (72)
= (LXY(n)X(). (73)

(T(XP + XA ()X + XA ()
(T (X% + XA () X A0(r) X 4(7))
Then, using (23) we obtain the differentiation properties in the 22 subspace (corresponding to
(A)22(A5 " )22 = (Ag 122 + 1, (74)
(75)

itinerant particles):
(A")22(Ap)22 = —(Ag)22 — (Ag)3,
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This makes possible to write the iteration series for Log as a sum of geometric progression:

[A/22

[1 + (1‘181)22} [Ja(wn)Ga(wn) = [Ja(wn)Galwn)]* + -]

1= (X0 4 XA Ja(wn)Ga(wn) (76)
B <X00—|—XAA> 1+JA(wn)GA(wn) '

Finally, we get the expression for the Green’s function irreducible part for itinerant particles

=1 _ 9aoWn) = Ja(wn)
AT (X004 XAA)

+ Ja(wn). (77)

This expression corresponds to the exact result (see for example [37-39]); it is also obtained within
the different-time decoupling approach [9,13,14].

4. Relation of the generating functional approach to other a pproximations

Let us compare the results of the generating functional approach with other approximate meth-
ods of calculating the Green’s function of the single-site problem. We consider, in detail, the first
iteration in the series for the total irreducible part. When the fluctuating field tends to zero
(ve — 0), the expression for (271), as it follows from (46), is

1 6y

(E™ 1)11( '):—T mgBo

(=)

5Py 2y gpo(ra—T1)
dvoa(T) 0v(7)d0(12) D(7)D(72)

B
dTQ/dT4J22(T—T4>G22( T4 — ’7'2)
0

(5<I>V (5(1)\/ 5(T - T/)

T —w T —aw “TT—x

+ [ dredealr =)ol = )5 S () DD
B
)Gy (7 — 1) 22V 62Py 00y 17 gpo(ra—1)
+ dTZb/dTélJH T Q)GH( 2 4)(5U0A(T) 6’003(7’)(57]03(7’4) |:(5UOB(T4):| D(T) (78)
Here 20
V___ _ GAB(r — 1) = (T.XB (1) X BA (1)),
S = O = ) = (FXAP XA (m) (79)

while the second derivative of the generating functional with respect to the field vop can be
represented as a cumulant Green’s function:

52 Py,

GOB o = _ -V
¢ (T=m) dvop (7)ovop(T4)

v=0

(T(XP+XPP) (X0 XPP) ) — (T(XP+XPP) N (X P+ XPP)). (80)

In the frequency representation

E () = - {ggéwnm ~ Qulwn) - Na(wn)] + 153} , (81)
Ao Aoa
where )
o 5(1)\/ B l W + B —w
Quen) = () 5 e eI e ) (82
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Np(w,) = % > @m0 T (@) G (Wi ) GAP (Wi — wn)% , (83)
Sp = %Zei“’meA(wm)GA(wm). (84)

=—1

Formula (81) gives a full expression for the inverse irreducible part Z~' in the linear, with
respect to J,, approximation.
4.1. Comparison with GH3

Basing on the obtained expression for é_l, let us consider some of its possible simplifications.
At first, we compare the result (81) of the generating functional approach with the irreducible

part 2! obtained in the GH3 approximation [9]. For this purpose we consider the fermionic and
bosonic Green’s functions in (81) in the zero approximation:
GAB (W) = (XA — XPBYgup(wm), GOP(wm) ~ B (wm)Aop(1l — Aogs), (85)
GA(Wm) ~ AOAgAO(Wm); GB (Wm) ~ AOBQBO(Wm)a (86)
1
Ipg = mv Apg = Ap = Ags (87)

where A, are eigenvalues of the unperturbed singe-site Hamiltonian. This approximation allows
us to apply the following identity

1 1 1 1 1 (58)
W — A0 1wm — iwn — AAB  1wn — ABo | 1Wm — Aao  1Wm — 1wn — AAB
calculating the product gpg(wn)Ng(wy,) in (81). Thus, we obtain
Qp(wn) = (1 — Aop)JB(wn)gB0(wn) (89)
and
-1 1 1 1 1 -
(\:' )11(wn) = 1 goB(wn) - 7PB(wn) + 7SB(WVL) - (1 - AOB)JB(wn) ) (90)
Aop Ao Aop
where

<XAA _ XBB>

1wy, — 1w, — AaB

(91)

PB (wn) — % Z eiwm,0+ JA (wm)

W

is the function that in diagram representation corresponds to the loop containing the lines of the
coherent potential J4 and unperturbed bosonic Green’s function g4p oriented in the opposite
directions. On the other hand, such a loop appears from different-time decoupling of the Green’s
function ((XAB¢ ,|¢l XBAY), that is contributing to the total irreducible part of the single-site
Green'’s function in the equation of motion approach in the GH3 approximation [9,14].

The coherent potential J, can be written in the Lehmann representation

0 Im J, (w' + in)dw’

Jo(wp) =—— 1 92
(wn) T nl%l+ o iw, —w’ (92)
Using the relation of the (88) type as well as formulae
1 XAA XBB .
- : < i + > euumOJr — <)(AA>7 (93)
ﬁ w W, — Wp, — >\AB
1 1 oo+ 1 1 1, B
— — 'Y = ———— =— — —tanh— 4
ﬁwz:iwm—w’e B’ y1 2 9 Ty (94)
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we obtain the expression for Pg in the form of integral over frequency.

XAA +XBB ) XAA _ XBB
Pown) = ST ) + T ),
1 [T [=2Im J4 (' +i07)] Buw’
Ye(w,) = — tanh =—— dw’. 95
5(wn) 21 J_ o iw, —w + AaB an 2 v (95)

Considering the expression for the Green’s function

AOB

- P n S
gp0(wn) — 252 4 I5 — Jp(w,)

Gp(wn) = (96)

one can see that (96) together with (95) corresponds to the GH3 approximation. The correspon-
dence: Pp(wn) < —Rp(w); Sp < —Vaep (in the notations used in [9]) takes place.

4.2. Extension of JK decoupling to AHM

Our next step is to compare the obtained expression (81) for -1 with the expression that
can be found for the single-site problem of AHM within the framework of the equation of motion
approach using the decoupling [40] used by Jeschke and Kotliar in the paper [23]. Their scheme for
the model with the degeneracy and with the exclusion of the doubly occupied states can be easily
extended to the case when pg # pp. Following the scheme proposed in [23] for solving the DMFT
problem, we obtain (see Appendix)

Gy = Aog + 117;,(@_ (97)

S w0+ Jo(W) + Do (W) = Jo(w) 1 (w) |
Let us write the corresponding expression for the irreducible part and linearize it with respect to
the coherent potential (.J,):

—1

-1 950 (wn) + 1276(‘*%) - Ja(wn)ll,ﬁ(wn) - Ja(wn)

= n) = Jo
s (wn) Ao + I1.0(wn) -

—1 Ilﬁ(wn)

030 (@) = (1= Aag)Jo wa) + Lo (@) = g0 5 22

1
~ .

We transform the expressions for functions I; 7 (111) and I 7 (112) using the zero approxima-
tion for electron Green’s function ({((X°4|X4%));, = Ag[iw, — Aao]~!) and the scheme described
in the previous subsection. As a result we obtain:

B XAA _ x00 ) X AA 4 X00 N
gB(l)(wn)Il,A(wn) = _%JA(“% +AaB) + %YB(‘«%) - 5B, (99)
1 . 1
127A(wn) = —§JA(1(UTL + )\AB) + §YB(wn) (100)

In its turn, it leads to the relation

_ Il,A(wn) SB PB(wn)
Do.a@n) = 9o Aos Ao Aws

(101)

One can see that in this case expressions (98) and (96) coincide.

Therefore, the JK decoupling scheme corresponds to the GH3 approximation after the replace-
ment G, — G and at the linearization of Z;! with respect to J, 5). Besides, such a scheme
corresponds to the linear approximation in the generating functional approach, while in the latter

the fermionic and bosonic Green’s functions are considered in the zero approximation.
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5. Conclusions

The generating functional approach developed based on the Kadanoff-Baym idea by Izyumov
et al. is adapted to solving the single-site problem in the dynamical mean field theory. To construct
the equations for Green’s functions the recurrent form of Wick’s theorem for Hubbard operators
is used. This approach is similar to the usual scheme where the equations are constructed using
differentiation with respect to the time variable. However, when there are more than one operators
with the same time that is differentiated, these methods are different.

Within the framework of the generating functional approach a closed self-consistent equation
in functional derivatives is obtained for constructing the irreducible part (self energy, Green’s
function, etc.). To solve this equation the iterative procedure is used. It is shown that the solution
for the irreducible part can be expressed in terms of two functions. These functions are formed by
the different types of terms in the iteration series: one function involves the derivatives of linear
terms of fluctuating fields which are present in the g~! function; the other one can be considered as
a terminating part of the Green’s function (or the irreducible part). As an example, the asymmetric
Hubbard model is considered.

The algorithm is given for constructing the inverse irreducible part 2,1, o = {A, B} (or the
mass operator F,, and terminating part A,) in the form of a series in powers of coherent potentials
Ja, Jp. The irreducible part in the approximation linear with respect to J,, is obtained and anal-
ysed explicitly. Comparison is performed with the results of other approximations based on the
decoupling of the single-site Hubbard operator Green’s functions of higher order in equations of mo-
tion. It is established that after replacing fermionic and bosonic Green’s functions in the expression
for 21 by their zero approximations, this expression is reduced to the corresponding expression
in the GH3 approximation. Besides, at the similar simplification, the decoupling scheme used by
Jeschke and Kotliar for the Hubbard-like models can be also reduced to the GH3 approximation. It
should be mentioned, that such a scheme uses the zero-order bosonic Green’s functions. Therefore
it is also more simple than the generating functional approach formulated in the approximation
linear with respect to J,.

It should be noted that, in the proposed approach, a full closure of equations for the Green’s
function requires calculation of bosonic Green’s functions appearing in the expression for =71
(see for example (81)). It also can be done within the framework of the generating functional
approach, similarly as it was done in [35] using equations of motion with functional derivatives.

A. Decoupling for Anderson impurity model for AHM

In the equation of motion decoupling method proposed by Jeschke and Kotliar [23], the DMFT
single-site problem is interpreted as Anderson impurity model. In this case, when U — oo, the
Hamiltonian of the model reads

H=>Y croct 1y + Y Eo X7+ B X"+ (Viyel , X + Vi X7¢,,), (102)
ko o ko

where 0 = A, B; Vi, is the hybridization parameter. Unlike the similar problem for the standard
Hubbard model, here E4 # Ep, €xa # €k, Via # ViB-

To determine the Green’s function ((X%|X?%)) the equation of motion approach is used. At
the first stage, the Green’s functions (((X%0 + X79)ck,|XY)) and ((X7%¢k5|X %)) appear; they
are calculated using the equations of motion and differentiating again the left time argument. The
Green'’s functions of higher order appearing at the second stage are decoupled [23]. This procedure
leads to the average values (cpz XY) and (c,t, -C5) that are determined self-consistently.

As a result, the initial function ((X%7|X°%)) is determined from the set of equations

(w = A0) ((X*7]1X7))e = Aoo + A (W) ((X°71X 7))
t+ I1,0(w) = Lo (W) (XX 0 + Ia (@) D Viro ({ewa X7 (103)
k/

(w —ere)((ewo X 7)) = Vi, (X271 X7%))., (104)
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where
Moo =E; — Es; Ao =Es — Eo;  Agy = (X + X7°), (105)
|Vk0|2
A, = _— 106
(w) gk p— (106)
<Ck&Xao> >
I 5 :E Vig————; E VJV,—. 107
L (W) = k w — )\0'5' — Eko Kk’ g g >\ ke ( )

As a result we come to

Aoo + 11 5 (w)
W—=Ag0 + Ag(w) + I 5(w) = Ag(w)1 5(w)

G, = (108)
In this approach, the hybridization function A,(w) corresponds to the coherent potential:
Ay (w) = Jy(w) (see [23] and references therein).
To calculate the average values in (107), the following method is used

X = -3 D ena X " (109)
(chisths) = 3 ; (Cralch Vi, €m0 = -3 ; { 5k_k’8]w o E‘:ig’z;z —7| (110)
Following the procedure described in [23], we obtain
I 5 (iwy) = —= Ze“"’"o Ag (i) —— iwlm e (X7 X7,
+3 Zei“””o Ay (iwn — AU(;)m((XOﬂX&O))M , (111)
I5 5 (iwy,) - Z eiwm0" 5 (iwm) — As (iw, — Agg)]m

Z w0t 1A (Iwm) — Az (iwn — Aos)] (X971 X7NY 0 Ag(iwn).  (112)

iwy, —iwm — Aos

In comparison with [23], where the case of degeneracy (E, = —u) was considered, in the
expressions (111) and (112), instead of the factor [iw,, — iw,,] ™!, the unperturbed bosonic Green’s
function [iw, — iw, — Ags] ! is present.
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AcumeTpuyHa mogenb Xa66apaa B Teopit AMHaAMIYHOIo
cepeaHboro noJsis B MeToAi TBIPHOro pyHkuioHany

I.B.Ctactiok, O.b.lepa

IHCTUTYT i3nkm koHaeHcoBaHMx cuctem HAH Ykpainn, 79011 JibBiB, Byn. CBeHLiLbKOroO, 1
OTtpumaHo 6 4yepsHs 2006 p.

B po6oTi po3BMBAETLCA HOBMIA aHANITUYHWUIA NiaXia, oS PO3B'A3aHHSA edeKTMBHOI OQHOBY3/10BOI 3a4a4i B
METOAI ANHAMI4YHOro cepeaHboro nons. MNigxig rpyHTYeETbCS HA MeToAl TBipHOro dyHkuioHany KagaHoBa-
Berma y ¢popmi, po3pobneHinn B poboTax I3tomosa Ta iH. BiH Jae MOXIMBICTb OTPMMATK 3aMKHEHE PIBHSAH-
HS Y PYHKUIOHANbHUX NOXIAHUX ANS HE3BIAHOT YaCTUHN OAHOBY3/10BOI OYHKLUIT MpiHA YaCTUHOK; PO3B’'A3KM
OyayloTbCs iTepaTMBHUM CNOCOOOM. B poni 3acToCyBaHHS 3anpOnoOHOBaHOI CXeMU B3ATO aCUMETPUYHY
mopenb Xa66apaa (AMX). Mo6ynosaHo o6epHeHy HE3BiAHY YacTUHy =5 ! ogHOBY3N0BOT hyHKLji MpiHa
B NiHINHOMY HaBNMXEHHI 3a KOrepeHTHMM noTeHuianom J,. Buxogsaum 3 otpumaHoro pesynsraTy, po3-
rnsHeHo ®yHKuUjlo piHa pyxoMmx YacTuHOK y rpaHuui danikoBa-Kim6ana AMX, npoaHaniaoBaHo cxemu
PO3LLEMNJIEHDb Y PIBHAHHSAX PYXY AN OOHOBY3/10BOI dyHKLUIi [piHa (HabnvxeHHs GH3, posienneHHs ELike-
KoTnsipa).

Knou4oBi cnoBa: cuibHOCKOpEesiboBaHi CUCTeMU, acuMeTpuydHa Mmoaesib Xabbapaa, oa4HOBY3/10Ba
3afaya, Teopis AMHaMiI4HOro CepenHbOoro rnoJs

PACS: 71.10.Fd, 71.27.+a, 71.30.+h
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