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The ways of introducing and handling renormalizations in the many-body perturbation theory are reviewed.
We stress the indispensable role the technique of Green functions plays in extrapolating the weak-coupling
perturbative approaches to intermediate and strong couplings. We separately discuss mass and charge renor-
malizations. The former is incorporated in a self-consistent equation for the self-energy derived explicitly from
generating Feynman diagrams within the Baym and Kadanoff approach. The latter amounts to self-consistent
equations for two-particle irreducible vertices. We analyze the charge renormalization initiated by De Domi-
nicis and Martin and demonstrate that its realization via the parquet approach may become a powerful and
viable way of using the many-body diagrammatic approach reliably in non-perturbative regimes with coopera-
tive phenomena induced by either strong interaction or strong static randomness.
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1. Introduction

Electric and magnetic properties of solids are determined by the behavior of valence electrons
weakly bound to the atoms forming the crystalline lattice. The behavior of the gas of valence
electrons in solids is most profound in metals with an open Fermi surface. Conduction electrons
in metals can be described in a number of situations and for various purposes quite accurately
by Bloch waves, eigenstates of the Fermi-gas Hamiltonian. We know, however, that electrons even
in metals are not a noninteracting gas. They are generally exposed to forces driving them out of
the equilibrium state of the Fermi gas. Firstly, no metal is a pure crystal and hence the electrons
do not move freely in space. They are scattered on randomly distributed impurities and lattice
defects. Secondly, the electrons are neither free and their mutual repulsion cannot be neglected
particularly for transition and heavy metals. It is the most important and long standing task of
condensed-matter theorists to comprehend and qualitatively capture the deviations in the behavior
of electrons in real metals from their idealized representation via Bloch waves.

The problem with quantification of the behavior of electrons beyond the almost free-electron
picture is in paucity of available tools for accomplishing this task. Even if we can reduce the
description of the electron gas in metals to rather simple and generic models, we are unable to
solve them exactly, except for a few limiting cases that mostly do not correspond to situations of
physical interest. With the increasing power of modern computers the role of numerical solutions
and numerical “brute force” approaches has increased. Numerical solutions are usually unbiased
and can reach a rather high level of quantitative precision. In some aspects they substitute the
missing exact analytic solutions. Numerical solutions are suitable and even indispensable in showing
and displaying the trends and some global features of the models studied. They, however, fail in
critical regions of phase transitions in the vicinity of singularities in correlation functions. In these
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situations analytic methods, even approximate, are superior to numerical approaches. We need an
analytic description of singularities in physical quantities so that we could decide about the way
the critical point is reached and which symmetry-breaking order parameters emerge in the ordered
phase. That is why developing and improving approximate analytic treatments of cooperative
phenomena leading to a critical behavior is still very actual.

Most systems of interacting particles can be described by the generic Hamiltonian

H=Hy+ H; (1.1)

with the noninteracting part ﬁo and an interaction H 1. The former term is a kinetic energy having
Bloch waves as exact eigenstates labeled by momenta and spin. The force driving the system
out from stationary Bloch waves is the interaction H;. Usually the two components of the total
Hamiltonian do not commute and we are unable to find the eigenstates of the full Hamiltonian. Even
if we were able to find some of the exact eigenstates of the full Hamiltonian, they would be coherent
states composed of (infinite)many Bloch waves. We could not easily match these complicated
coherent states with experiment. Experimentally we observe only asymptotic states described by
renormalized Bloch waves. Hence, the problem we are facing is not to find stationary many-body
eigenstates of the full Hamiltonian but rather to solve a problem of scattering of asymptotic Bloch
waves induced by the interacting term Hj;. The most natural way to treat such a problem is to
use the time-dependent perturbation expansion and Green functions. The latter offers a means to
gain non-perturbative results from the perturbation expansion. But what is more important is that
they are one of the few available analytic means of treating the singularities and the way how to
go around poles in physical quantities. The strength of Green functions lies in that they involve
boundary conditions and enable us to formulate and solve the problem off the mass shell, that is
for complex energies. Moreover, we can keep consistency of approximate solutions by satisfying the
demanded analytic properties of Green functions. Thereby we significantly improve upon reliability
of otherwise hard controllable approximations having no small expansion parameter.

In this paper we discuss a way of efficiently using the Green functions in deriving non-perturbative
approximations by means of the many-body perturbation theory in systems with interacting and
disordered electrons. The advantage of the many-body perturbation theory is its universality when
represented via Feynman diagrams. The diagrammatic representation of the scattering events of
asymptotic particles gives us a physically motivated clue to selecting the relevant processes to be
included when constructing a suitable approximation for various physical phenomena. Here we
concentrate on the application of the many-body perturbation theory in critical regions of singu-
larities caused either by a strong electron-electron interaction or a strong random potential. We
show the possibility of introducing effectively of renormalizations of one-particle and two-particle
Green functions and developing the mean-field-type non-perturbative approximations for quantum
critical phenomena.

The paper is organized as follows. In section 2 we introduce the model and many-body Green
functions. In section 3 we discuss important exact equations of motion needed for a correct handling
of renormalizations. Mass renormalization within the scheme of Baym and Kadanoff is discussed
in section 4 and charge renormalization provided by the parquet approach in Sec 5. An example of
a successful application of the parquet approach to a nontrivial problem — Anderson localization —
is presented in section 6. We summarize in section 7.

2. Generic model and Green functions

We use a generic tight-binding model for the description of the electron gas in metals, namely
the one-band Hubbard model with a fully screened electron-electron interaction characterized by
a Hamiltonian

ﬁH = Z (G(k) - O'B) CLUCkU + Z ‘/iﬁig + UzﬁiTﬁil . (21)
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We used the standard notation for the kinetic energy e(k), external magnetic field B and the Hub-
bard interaction U. We also added local atomic potentials V; that may either represent impurities or
different atoms forming an alloy. We generally assume that these potentials are statically randomly
distributed and cause elastic scatterings of Bloch waves. The Bloch state with momentum k and

spin projection o is created in the Fock space by the creation operator CLT and destructed by the

annihilation operator ¢, . The operator of the local density is i, = N2 Y qk exp{iq~Ri}0L +qo o

Our first task in statistical mechanics is to find a thermodynamic potential that for quantum
systems in the many-body perturbation theory is the grand potential with a chemical potential u

Q= —kgT <ln Tr exp {—6 (I;T — M]\Af> }> . (2.2a)
av
The trace Tr is taken over the whole Fock space and the angular brackets ()., denote static
(quenched) averaging over the given distribution of the random potential V;.

Knowledge of the grand potential does not contain the complete information of the equilibrium
thermodynamic state. That is, the information about the distribution of the eigenenergies and
the corresponding eigenvectors of the underlying Hamiltonian. For a full reconstruction of the
equilibrium macroscopic state we also need to add all moments of the density-matrix operator to
the grand potential. The moments quite generally are

E("’m)(klcfl, o kpon, ko, .. ko) =

1 ~ ~
= <ZT1" |:Ck10'1 . 'Ck'rLU'rLCLﬁLUﬁL . 'CLIUi exp {—ﬂ (H - uN) H > . (2.2b)

av

So far we have introduced only static, equilibrium quantities defined on the energy (mass) shell
where the dispersion relation between energy and momentum is obeyed. Since we are unable to find
the spectrum of the full Hamiltonian we have to go off the mass shell and introduce time-dependent
functions or states where the energy is detached from momentum. We introduce an imaginary
time 7 € (0,0) and let propagate the creation and annihilation operators with the free-electron
Hamiltonian H, = Y ko (e(k) — 0 B) c;rmckg. We define ¢, (1) = exp{Tﬁo}ckU exp{—7H,} and
analogously the time-dependent creation operator. Moving the creation and annihilation operators
off the mass shell we can introduce Green functions as time-ordered moments of the density-matrix
operator

- 1
G, nm,. ., 1) = <ZTroT

- B
c(1)...c (n),c(m)...c(1)exp {—/O dTH[(T)}‘|>,(2.2C)

av
where we denoted TroX = Tr [X' exp{—B(H, — uﬁ}] and Z = TroTexp{ffOB dTﬁI(T)}. We
introduced a short-hand labeling of the space-time and spin variables | = (Ry, 77, 07). Only when we
know the full time-dependent off-shell moments of the density-matrix operator or Green functions
we can properly handle singularities in physical quantities and go around poles in approximate
treatments.

Instead of separately treating the thermodynamic potential and time-dependent moments of the
density-matrix operator we can use generalized external potentials and define a generating functi-
onal from which we can derive all moments via functional derivatives. To do so we have to use the
time-dependent creation and annihilation operators introduced above. We perturb the equilibrium
state with a general non-equilibrium external potential interacting with arbitrary density-type par-
ticle operators. For physical interpretation it is more convenient to treat the spin independently of
the space-time variables. We write the most general non-equilibrium Hamiltonian for the external
potential as a sum of several terms

B
Ho= 3 | dndm{z[ng<1,2>ci<1>cg<2>+sl,'<1,2>cg<1>cg<2>+fg<1,2>c3<1>c2<2>]

o

- {#(1,2)4(1)%(2) +ﬁi(1,2)cj(2)cT(1)} + {51(1,2)%(1)%(2) +§L(1,2)c1(2)c$(1)} } (2.3)
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the meaning of which can be explained in physical terms [1]. The diagonal elements of the real fields

n,u invoke changes of the equilibrium state conserving charge as well as spin. They stand for the

physical external fields like magnetic or electric ones. The others are nonconserving external sources,
being complex numbers, that either add or remove charge, spin or both from the equilibrium many-
particle state. The field n* conserves charge but increases spin of the equilibrium state by two
elementary units. The fields ¢+ increase charge while &U increase both charge and the appropriate
spin projection. The complex conjugate fields lower the respective quantities. The complex non-
equilibrium fields are convenient when the equilibrium system may undergo transitions either to a
magnetic order in the transverse plane to the easy quantization axis or to a superconducting state.

The generating functional with the time-dependent external perturbation driving the system
out of thermal equilibrium can then be represented as

8 -~
Q[j] = *kBT <1H TI'QTeXp {/ dTHI(T) - cht}> . (24)

0

We are not interested in the full non-equilibrium potential Q[7] but rather only in small deviations
from the equilibrium so that we could generate the Green functions of interest. It is clear that Q[0]
coincides with the equilibrium grand potential. Beyond this we shall be interested only in one- and
two-particle Green functions. If 7, denotes a chosen external source perturbing the equilibrium
system, i. e. it stands generically for n!l, n, €ll, and €+, we can write for the one-particle equilibrium
Green function

Go(12) = % , (2.52)

J=0

where the index o denotes a “channel” or type of the one-particle propagator. It need not generally
be a normal propagator conserving charge and spin, but may be any combination of creation and
annihilation operators required by the physics of the problem, that is, by the structure of the
equilibrium state. Analogously we can define two-particle equilibrium Green functions

T 07.(4,3)074(2,1) (2.5b)

J=0

We can see that the more derivatives w.r.t. the external fields the more different types of higher-
order Green function we can generate. In this paper we shall deal only with normal Green functions
conserving charge and spin. That is, at the one-particle level we use only the real field n!l, and
hence we drop the index « at this level. But at the two-particle level we have more options to
generate a Green function conserving the total spin and charge and we keep the “channel” index «
there. Hereinafter we use different types of external perturbations in distinguishing different types
of two-particle irreducible Green functions.

3. Renormalized many-body perturbation expansion and exact equations
of motion

The basic idea of the many-body perturbation theory is to expand the non-equilibrium grand
potential from equation (2.4) in powers of the interacting and external time-dependent Hamilto-
nians H 1 and ﬁext. It is a standard procedure to develop a diagrammatic representation for this
expansion and to define the rules for the construction of Feynman diagrams. However, a simple
perturbative summation of diagrams up to a fixed finite power of the interaction Hamiltonian is
not the way in which we could successfully describe a critical behavior of interacting and disordered
many-electron systems. We have to introduce renormalizations into the perturbation expansion,
that is, we have to reorganize the perturbation expansion in that we sum up classes of specific
diagrams to infinite order of the interaction strength. The way of choosing the diagrams to be
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summed to infinite order depends on the physical situation at which we want to apply the many-
body perturbation expansion.

The fundamental step in the formulation of a renormalized many-body perturbation theory
was made by Baym and Kadanoff [2,3]. They proposed a construction that is capable of keeping
renormalizations, i. e., summations of infinite-many diagrams under control. Their idea was to
reformulate the expansion containing the bare interaction strength U and the bare one-electron
propagators G(9) in terms of the renormalized one-electron propagator G. Moreover in this formu-
lation we do not sum the diagrams for the grand potential but rather for the one-particle vertex,
being the self-energy X.. The self-energy is defined via the Dyson equation that in energy-momentum
representation reads

S (k) = G (k) — GO (k) (3.1)

We used a four-vector notation k = (iw,, k) with Matsubara frequency w, = (2n + 1)7kgT to
which we shall keep throughout this paper.

In the diagrammatic language the self-energy is a sum of all one-particle irreducible diagrams
(1PI). In the renormalized theory we then try to construct a functional X[G, U] depending only on
the renormalized propagator related to the bare one by the Dyson equation (3.1). It means that this
functional does not contain diagrams with self-energy insertions in the one-electron propagators.
If we know the self-energy functional 3[G, U] we can in principle construct a genearting functional
leading to the given self-energy. We denote this functional ®[G, U]. It is related to the self-energy
via a functional derivative

0P[G, U]

20,2 = Tony (3.2)

To find the generating functional ®[G, U] from the above equation is generally not straightforward
and we show the way of doing it for simple approximations. For more elaborate approximati-
ons, however, this potential need not always be explicitly attainable. Approximations with the &
functional in closed form are called ®-derivable. We show in the next section that the dynamical
mean-field theory or atomic limit are not ®-derivable theories.

ok ok+q

Aot

o'k k' +q

Figure 1. Generic two-particle function with three independent four-momenta and two spins
with a defined order of incoming and outgoing fermions used in this paper.

The self-energy contains essentially the entire information about the equilibrium state. The only
things we have to enter by hand are symmetry-breaking order parameters for long-range orders that
may emerge at low temperatures. The order parameters can either have a form of an anomalous
self-energy as in the case of superconductivity or can be built up of a combination of self-energies
vanishing in the high-temperature phase. To recognize which symmetry of the high-temperature
phase has to be broken we have to analyze two-particle functions. The normal two-particle function
conserving the total charge and spin is defined from the generating non-equilibrium functional
Q[J] in equation (2.5b) with the real fields 77!,'. Instead of working with the full two-particle Green
function G®) we come over to the vertex function I defined from an equation in four-momentum
representation

GO,k kq) = Go(k)Gor (k) [5(0) = Tour (ks K5 0)Go (k + @)Gor (K + )]
b8k — )G (k)G + ), (3.3)
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where the four-momentum J-function is defined for ¢ = (iwy,,q) as §(¢) = B0m.09(q). We use the
attribution of four-momenta to two-particle function as in figure 1.

Analogously to the Dyson equation for one-particle functions there is a similar equation of
motion for the two-particle vertex I'. It is called Bethe-Salpeter equation and can generically be
written as

I(k,k'5q) = A% (kK q) — [A*GG O T (k, k' q), (3.4)
where ® denotes an appropriate integration over intermediate momenta. Unlike the Dyson equation
the generic Bethe-Salpeter equation is no longer an algebraic equation but rather a convolutive
integral equation. Moreover, the Bethe-Salpeter equation is not uniquely defined which we marked
with a label . As we can see from equation (3.4) it is only the vertex A® and the sum over
intermediate momenta which are ambiguous. The full two-particle vertex I' must not depend on
the choice of the vertex A%. This vertex is called two-particle irreducible (2PI) and is related to the
one-particle irreducible vertex, self-energy, via a functional derivative either in direct representation

A®(13,24) = (‘m , (3.50)

or in four-momentum representation

«
Ao K50) = st )
5Ga, (K, K —q)

Although the equilibrium self-energy does not depend on the index a we have to use the non-
equilibrium self-energy in the presence of an external perturbation to derive the two-particle vertex.
The non-equilibrium self-energy depends on the index « if appropriate terms appear in the external
perturbation. Different contributions in the external perturbation Hey, from equation (2.3) generate
different two-particle Bethe-Salpeter equations. Different Bethe-Salpeter equations correspond to
different types of two-particle reducibility of diagrams, i. e., the way to disconnect a diagram by
cutting a pair of one-particle propagators. The field n!l leads to reducible functions in the interaction
(U) channel where diagrams can be disconnected by cutting a virtual electron-hole pair, internal
loop propagators. This type of perturbation invokes normal density responses and susceptibilities.
The field n* leads to the electron-hole (eh) reducibility (diagram can be disconnected by cutting
an electron and a hole line of asymptotic incoming and outgoing particles). Finally, the field ¢+
leads to the electron-electron (ee) reducibility where diagrams can be disconnected by cutting
two electron (hole) propagators of asymptotic particles. Second derivatives w.r.t. £ I vanish in
equilibrium without anomalous functions. Thus, we can attach external perturbations to generators
of different two-particle irreducible vertices A® and their respective Bethe-Salpeter equations.

Different Bethe-Salpeter equations are distinguished by the selection of the 2PI vertex A% and
simultaneously by the summation over intermediate states denoted generically by symbol ®. This
summation must correspond to the way we derived the irreducible vertex A®. This summation
depends on the way we interconnect the left and the right two-particle functions with a pair of
one-particle propagators. For the three irreducible vertices we have in the electron-hole (o = eh),
electron-electron (« = ee), and interaction (o = U) channels, respectively

(3.5b)

XGGe Y] (ki) = o D Koo (55" Go -+ )G (K + )

X Y:,«k +¢" K +4q"q-4"), (3.6a)
:XGG o ?: K = ﬂiN Z Xoor (ki k' +4"5q = q")Go(k+q—¢")Go (K +¢")

X Ygi'(k +q—-4"k:q"), (3.6b)
RGGHY]  (kKiq)= ﬁiN 2}; Xy (kK5 )Gl (K")Gorr (K + q)

X Y:u(,/(k”, K'q) . (3.6¢)
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For convenience we used separate symbols for each multiplication scheme. Note that only the
interaction (vertical) channel mixes the spin singlet (1]) and triplet (oo) functions. The three types
of convolutions in the Bethe-Salpeter equations can be at best visualized via Feynman diagrams.
The Bethe-Salpeter equation in the electron-hole channel is plotted in figure 2, the electron-electron
is shown in figure 3 and finally the vertical U-channel is shown in figure 4. We took into account
all the possibilities of interconnecting electron lines in the vertical channel with triplet two-particle
propagators.
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Figure 2. Diagrammatic representation of the the Bethe-Salpeter equation in the electron-hole
scattering channel.
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Figure 3. Diagrammatic representation of the the Bethe-Salpeter equation in the electron-
electron scattering channel.

Having the Bethe-Salpeter equations fully defined we can improve upon our construction of a
renormalized perturbation theory. Instead of diagrammatically representing the one-particle self-
energy . we can choose a two-particle vertex A as a generator of our approximation. We then use
equation (3.5) to determine the self-energy from A® and further equation (3.2) to determine the
thermodynamic potential ®. Such a construction is mostly viable only for simple approximations,
since it is not easy to invert functional differential equations. For more involved approximations
for 2PI vertices we need not be able to find the corresponding diagrammatic representation for the
self-energy, even if we can construct it in a closed analytic form.

We need not use equation (3.5) to determine the self-energy from a known two-particle ir-
reducible vertex. A better and more explicit way of doing so is to use an integral form of the
functional derivative (3.5) playing the role of a global Ward identity proved in [4]. It reads

Yo (k) — ZA"h (ks k' q) [Go(k +q) — Go (K +q)] - (3.7)

We can use special matrix elements of this Ward identity to determine the imaginary part of the
self-energy and then use the Kramers-Kronig relation to determine its appropriate real part so that
the necessary analytic properties are fulfilled [4].

The most widely used method of deriving the self-energy from the two-particle vertex, however,
is to use the dynamical equation of motion, that is, Schrédinger equation projected to Green
functions. This is the Schwinger equation. We use its form called Schwinger-Dyson equation. There
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Figure 4. Diagrammatic representation of the the Bethe-Salpeter equation in the vertical chan-
nel with all ways one-electron propagators can be interconnected in vertices. Note that in the
diagrams with crossed lines, the irreducible vertex must originate from the electron-hole channel.
The last term is a correction removing the doubly counted diagrams.

the one-electron self-energy is directly related to the full vertex I'. It reads

5, (k) = 5% S G () - % STy (b K 0)Go (b + )G (K +q)G_o (). (3.5)
~

k'q

The first term on the right-hand side is the static Hartree self-energy and the latter contains second
and higher-order, dynamical corrections. We can use the Schwinger-Dyson equation to determine
the self-energy from the vertex function A® which enters the full two-particle vertex I' via the
Bethe-Salpeter equation (3.4). We thereby get a closed functional X[G].

The advantage of the above general formulation with equations of motion is that we treat the
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one- and two-particle functions consistently on the same footing within one renormalization scheme.
This is essential for identifying the possible instabilities that may emerge at low temperatures. For
this purpose we rewrite the summation over intermediate states in the Bethe-Salpeter equations as
a matrix multiplication. We thereby manifestly distinguish active and inactive (conserved) variables
(parameters) in each equation. We introduce new notations in which only the active four-momenta
are used as variables. We define the following symbols

[XGG5s, [al(k, k) = Xoor (ks b+, K = k)G (K)Gor (K +q), (3.92)
[XGG]ZZ’ [Q](kv k/) = XO'O'/(k? k/; q— k — k/)GU(k/)GU’(q - k/) ’ (39b)
(XGG)Y [q)(ck,0'K) = Xoor (kK q)Gor (K)Gor (K + q) - (3.9¢)

The bosonic variable ¢ is in each channel inactive in the above matrix representation, or conserved
during the scatterings within the chosen two-particle channel. Each channel, however, has a different
conserving variable. To decide about the instability of a solution means to find a singularity in one
of the Bethe-Salpeter equations.

We can, in principle, formulate an exact criterion on the existence/nonexistence of singularities
in the Bethe-Salpeter equations. We formally find eigenvalues and eigenvectors for the matrices
[A*GG]?, kernels of the Bethe-Salpeter equations (3.4), and denote them Q®. They are complex
bosonic four-vectors. Only real four-vectors, i. e. for zero Matsubara frequency, both the conserved
four-momenta ¢ as well as the eigenvectors Q¢ are important in determining the stability conditi-
ons of equilibrium states, i. e., nonexistence of singularities in the Bethe-Salpeter equations. They
may formally be written as

min [A“GG]” [q%,0](Q%,0) > —1. (3.10)

We have just set up a framework for renormalizing the many-body perturbation expansion.
We have two types of irreducible vertices, the one-particle vertex, the self-energy ¥, (k) and the
two-particle vertices A2, (k,k’;q) and a set of exact equations of motion from which we are able
to reconstruct the salient features of the equilibrium state if we know either of these irreducible
functionals. It means that we can choose whether to use the diagrammatic input for the one-
particle self-energy or for a two-particle irreducible vertex. The former corresponds to explicit
mass renormalization, i. e., renormalization of the kinetic energy. The latter then reflects charge
renormalization, that is, renormalization of the inter-particle interaction.

4. Mass renormalization, self-energy, and generating functionals

The standard way of introducing the renormalizations into the many-body perturbation theory
is to use the Dyson equation (3.1) and to find a diagrammatic representation for the self-energy as
a functional of the full renormalized propagator and the bare interaction X[G, U] as dictated by the
Baym and Kadanoff construction. In this way we automatically include all self-energy insertions,
that is, one-particle reducible diagrams and subdiagrams. From the self-energy we then try to find
the corresponding generating functional ®[G, U] from equation (3.5) and higher-order irreducible
vertices via functional derivatives as in equation (3.5). We usually make the selection of generating
diagrams contributing to the self-energy by “educated guesses”. Control and in particular system-
atics of renormalizations in the many-body expansion go lost when a small expansion parameter is
missing. Recently, a new systematics to mass renormalizations in many-body theories was brought
by the dynamical mean-field theory (DMFT) [5,6]. This theory introduces inverse spatial dimen-
sion d~! as a small parameter and represents thereby a systematic way of classifying the local
approximations with suppressed spatial fluctuations. It is important that quantum fluctuations
should not go lost in this construction and we can separate quantum dynamical fluctuations from
classical spatial ones.

There are several ways of deriving DMFT for lattice models. Here we present a construction
of the DMFT generating functional introduced in [7]. We assume that the partition function can

507



V.Jani§

be represented via a functional integral with a set of internal degrees of freedom that we do not
explicitly specify in order to keep the reasoning simple. We can write

o{cOuig} = —pm|z{cO U7
= —p7! ln/Dchw* exp {go* [G(O)_l - J} e+U [<P*7<P]} ;o (41)

where again 7 is an (non-equilibrium) external potential. We introduce renormalizations into func-
tional {G(O)_l7 U; J} as in the Baym and Kadanoff formalism via the Dyson equation (3.1). We
replace the bare propagator with G—! 4+ X, that is by a sum of two unknown “self-consistent”
parameters. We incorporate the defining equations for these parameters into the generating functi-
onal via stationarity conditions. That is, we extend functional 2 {G*I +X,U;TJ } to a functional
U[G, ¥ so that its variations w.r.t. G and ¥ vanish. We have

opv 1J619] 0)—1 -1

5 = et (R (4.22)

opv 1 660

G G26G0)-1

It is now a straightforward way of writing down the new functional

-a L (4.2b)

V(G YU T =2{G " +5,U} — B rInG — B trln {G(O)‘l “x-g|l. @3

We moved in this functional the external potential from functional 2 to the last term describing
the electron gas in an effective medium ¥ and an external potential 7. It is easy to verify the
validity of stationarity equations

SU[G,Y]
T =0 5 (44&)
00 (G5
—a— =0, (4.4Db)

where the former condition is the Dyson equation and the latter is an equation for the effective
medium (self-energy) 3.

In the above formal replacement we excluded the bare propagator G(©) from the many-body
perturbation expansion, i e., expansion of functional 2. We have not yet introduced any reduction
or simplification of the perturbation expansion. The self-energy can be anything and hence we do
not know yet how to simplify the evaluation of functional 2. The aim of the above construction
is not to reduce the number of diagrams contributing to the functional 2 but rather to offer a
method for simplifying the evaluation of a renormalized perturbation theory. Such a simplification
is offered by the limit to infinite spatial dimensions. This limit leads to suppression of nonlocal
spatial fluctuations in order to keep the energy linearly proportional to the volume as required by
thermodynamic consistency. To take advantage of this simplification one must have the perturba-
tion expansion reformulated in terms of the renormalized propagators G and the self-energy 3.
And this is just representation (4.3). One can easily show [7] that the asymptotic behavior of these
two functions for interacting and disordered electrons reads

G = G [d] + G a2 (4.52)
3 — ydiag [d()] + Eoff [dﬂi/ﬂ , (45b)

where G928 and Y4128 are the diagonal elements in the direct (lattice) space. Taking the limit
d — oo in equation (4.3) with the asymptotics (4.5) we obtain directly the generating functional
of the dynamical mean-field theory of disordered and correlated electrons

VG, Y] =Q{GTe ~1 4 pdieel — g-lrIn G — 37 lrln [G@H — ypdiag _ g1 (4.6)
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Mean-field functional (4.6) is a non-perturbative representation for mass renormalization rep-
resented by the self-energy 3. It does not suppress any physical process (Feynman diagram), but
rather simplifies the evaluation of sums over intermediate states. This simplification lies in the
relaxation of momentum conservation that does not hold in individual vertices [8]. Only the total
momentum in each diagram remains conserved so that translational invariance of the equilibrium
state is guaranteed. This is, on the one hand, an advantage, since quantum-dynamical fluctuations
are not affected by this simplification. On the other hand, we are unable to find exact expressi-
ons for the self-energy in most interacting models. This makes us use approximations within the
DMFT to reach quantitative results (i. e., to find an impurity solver). There is another restriction
to the application of the mean-field functional (4.6). It uniquely determines only local quantities
being irreducible vertex functions, either one- or more-particle ones. It is due to the fact that only
local one-particle quantities appear in this functional. Once we want to define nonlocal two-particle
functions we do not have a unique definition of the full two-particle propagator [7]. In particular
we cannot represent the full two-particle vertex in the limit of high spatial dimensions as a solu-
tion of a single Bethe-Salpeter equation. We have to choose its appropriate representation via a
Bethe-Salpeter equation with a local (d = oo) irreducible vertex according to the physical quantity
we are interested in so that only leading-order terms are kept. In any case, due to summations
over intermediate scattering processes, we have to keep terms of the order O(d~!) in non-local
two-particle functions. Since spatial coherence of two-particle functions is generally important for
stability of equilibrium states and for the existence of phase transitions, we have to go beyond the
strictly local representation and turn to two-particle functions and their renormalizations.

The means via which we can introduce renormalizations into two-particle Green functions are
the Bethe-Salpeter equations. They introduce two-particle irreducible vertices and the way the
full vertex is to be constructed from them. If we further use the Schwinger-Dyson equation (3.8)
we can replace an approximate diagrammatic representation of the self-energy by a diagrammatic
representation of 2PI vertices A%. And if the approximation on a 2PI vertex is sufficiently simple
we can even construct the generating functional ®. To demonstrate this way of renormalizing the
many-body perturbation theory we choose the simplest approximations with the bare interaction
such as the 2PI vertex (Hartree approximation at the two-particle level). In this way we obtain
three approximations commonly called fluctuation-exchange (FLEX) [9]. If A®® = U then the
Bethe-Salpeter equation yields the full vertex

U

Toor (kK q) = ————, 4.7

(kF:0) = T (17)
where we denoted the electron-hole bubble
1

Xoor(q) = BN Z Go(K")Gor (K" +q) . (4.8)

k!’

It is a great simplification of this simplest two-particle approximation that the full vertex I' depends
only on a single transfer four-momentum that remains conserved during the multiple electron-hole
scatterings introduced by the Bethe-Salpeter equation.

Using the Schwinger-Dyson equation (3.8) we obtain a dynamical correction to the Hartree
self-energy
Xo—o(q)

14+ UXo—0(q) (4.9)

ASe(k) =~ > Go(k+q)

This equation closes the approximation and all physical quantities can be determined explicitly,
including the generating thermodynamic potential. That is, we can integrate back equation (3.2)
and we obtain an explicit generating functional for this approximation

PRPAIT G = _ﬂi/\f > 'm0 {UX (q,ivm) — [l + UX; | (q, ivm)]} - (4.10)
qm

This renormalized RPA is one of a few approximations the generating functional of which we know
explicitly in analytic form.
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The same also holds for a renormalized T-matrix approximation (TMA) summing electron-
electron multiple scatterings, the generating functional of which reads

(I)TMA[U7 G] = _ﬂi_/\[ Z eil/mO+ {UYTl(q7 iym) - ln[l + UYTl(q7 iym)]} ’ (4'11)
qm

where we denoted the particle-particle bubble

Vour(@) = 5 3 Galk)Girlg = ) (4.12)

k!’

The third approximation with multiple pair scatterings the analytic form of which we know ex-
plicitly is the bubble-chain approximation summing all the ring diagrams. Its generating functional
for the Hubbard model reads

; . 1 i . .
‘I)Rlng[Uv G](CL lym) = 257-/\[ Ze m0™ In [1 - UQXTT(qa lym)Xll(qa 1Vm)] . (413)
qm

It is needless to say that we obtain the TMA if A{{ = U and the ring approximation if A(TJL =U
in the appropriate Bethe-Salpeter equations.

Although the FLEX-type approximations just discussed start with a Bethe-Salpeter equation
for the two-particle vertex and the generating diagrams for these approximations are chosen at the
level of two-particle irreducible vertices, we did not go beyond the simplest approximation with the
bare interaction. It is kind of a two-particle version of the Hartree approximation and due to the
ambiguity in two-particle irreducibility we have three simplest two-particle approximations. These
simplest approximations do not contain vertex corrections and no charge renormalization has been
achieved. To do so we have to go to a more intricate (dynamical) approximations for two-particle
irreducible vertices.

5. Charge renormalization and parquet equations

To reach a qualitative improvement upon the FLEX-type approximations from the preceding
section we have to achieve a self-consistency at the two-particle level. That is, we have to introduce
nonlinear equations for the two-particle irreducible vertices. A systematic renormalization of the
many-body perturbation theory including vertex corrections was proposed by De Dominicis and
Martin [10] who reformulated the perturbation expansion in such a way that not only the bare
one-particle propagators are replaced by their renormalized versions but also the bare interaction
is simultaneously replaced by renormalized two-particle vertices. Their construction was a bold
extension of the very first attempt to self-consistently mix the electron-electron and electron-hole
scatterings from [11]. The two-particle self-consistency achieved by a nonlinear mixing of different
scattering channels is now called the parquet approach. Since its introduction to non-relativistic
many-body theories by De Dominicis and Martin the parquet construction has been used to a
number of problems in condensed matter [12-17]. Here we show how to use the parquet scheme in
practice in order to derive a manageable approximation with a charge renormalization applicable
at intermediate and strong-coupling regimes.

The basic idea of the parquet approach is to take advantage of the fact that two-particle
functions reducible in one scattering channel are generally irreducible in the other channels. This
feature is a consequence of topological nonequivalence of different two-particle channels. If we
denote by K% the sum of all vertex diagrams reducible in the channel «, then we know that the
full vertex

I =A% 4K (5.1)

does not depend on the channel index a. We denote I the vertex irreducible simultaneously in all
two-particle channels. The irreducible vertex in the channel « then can be represented as a sum
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of the completely irreducible vertex I and reducible functions from the other channels. Thus, the
fundamental parquet equation can be written using equation (5.1) as

Ay =Ly + Y [rw, - Ag;/} . (5.2)
o' £a

It is not a closed equation. We exclude the full vertex I' from the parquet equation by using
the Bethe-Salpeter equations (3.4) to obtain a set of equations for the two-particle irreducible
vertices A%

A =1+ Y {1-[a"6d] @}71 [A7'GG| @ A (5.3)
o' Fa

that are now fully determined by the completely irreducible vertex I, and the one-particle propa-
gators G,. Note that there is no direct relation to the self-energy and the one-particle propagators
can be either fully renormalized or bare. That is, the parquet equations define a two-particle self-
consistency independently of the one-particle one. The solution of these equations are two-particle
irreducible vertices as functionals of the completely irreducible vertex and the one-particle propa-
gators

A® = LY [I[U; G, AJ; A, G . (5.4)

The parquet approximation is the simplest approximation in the parquet equations where we
replace the completely irreducible vertex I by the bare interaction U.

Even the simplest approximation in the parquet scheme does not allow for exact solutions. The
problem is that the parquet equations (5.3) are nonlinear integral equations for functions with
three variables that are mixed when different channels are mixed. Hence, there is no apparent way
of solving these equations either numerically or analytically. A numerical solution can be reached
only in the regions where the differences between the parquet and FLEX solutions are insignificant.
Since the effort with solving parquet equations pays off, one has to apply them in critical regions
close to poles in the Bethe-Salpeter equations. We cannot avoid approximations there.

First, the number of channels explicitly taken into account is reduced to two. Experience shows
that the best results are obtained if we equally treat the electron-electron and the electron-hole
multiple scatterings. Hence, we take into consideration only the ee and eh channels. Since the Hub-
bard interaction acts only between opposite spins we obtain a two-channel parquet approximation
for singlet vertices

A (kK q ﬁNZAeh (k,K';¢)Go(k+q)G_o (K +¢)

x [N Gk+d K +d5q—d)—U+AS (k+d K +d50—d)] . (5.5a)

A (kK5 q) Uf—ZA (kK +q—q5¢)Go(k+¢)G_o(k +q—q)

< [N (k+d' kg —d) ~U+ A" (k+d Kiq—d)] . (5.5)

Neither these equations are solvable and a numerical solution would demand a tremendous effort.
To achieve quantitative results one has to simplify these equations. We have to reduce the number
of relevant degrees of freedom of the vertices A and A°®. One gets a rigorous simplification in
high spatial dimensions where momentum convolutions reduce to Gaussian integrations [18]. This
simplification, however, does not affect frequency convolutions. In infinite spatial dimensions we
reduce the problem to a single impurity or to the DMFT where only frequencies do appear. Even
this situation is not solvable. To gain an impression of the behavior of solutions of the parquet equa-
tions one has to introduce further simplifications without a firm mathematical justification. The
simplest or mean-field-like approximation would be a static approximation to the vertex functions.
The vertex functions then become positive numbers and the parquet equations can be satisfied
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only at a single transfer frequency in two-particle bubbles X7 (¢q) and Y3, (k + k" 4+ ¢) We choose
their zero values and denote them Xy and Yj, respectively. With this static approximation we turn
the integral equations algebraic. We can easily solve them explicitly with the result

U1+ AenXo) — A%, X0]Ys
(1 + AthO)Kl + Atho)(l + UYE)) - AghXOYO]

Aep =U — (5.6a)

and
[U(1+ AeeYo) — AEEYO]QXO

(1 + AeeYO)[(l + AecYO)(l + UXO) - AgeXOYO] .
The only input to these equations are the bare interaction and the static values of the electron-
hole and electron-electron bubbles. At half-filling we have 0 < Yy = —X,. We can see that the
bare interaction is screened by the electron-electron scatterings and enhanced by the electron-hole
scatterings, see figure 5.

Aee:U_

(5.6b)

1.2

08
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0.2}

0 02 04 06 08 1
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Figure 5. Static effective interactions calculated from the parquet equations with two channels.
We choose half-filling and denoted the RPA critical interaction U, = 1/Yy = —1/Xo.

The strong-coupling asymptotics of the irreducible vertices is A, — 1/2Yp and A — U+1/2Y,
and the full two-particle vertex does not approach a pole even for U — oo. This is a significant
change with respect to the single-channel RPA approach where a pole in this asymptotics causes
the approximation to break down for rather small interaction strengths U ~ U, = —1/X. Hence,
we can see that the parquet-type charge renormalization, even in its simplest static approximation
qualitatively changes the behavior of the FLEX approximations. Now we can use the calculated
irreducible vertices in the Bethe-Salpeter equations to determine the full two-particle vertex. Since
we have taken into account two-channels we build up the two-particle vertex as a sum of both
vertices from which we subtract the bare interaction. The correction to the Hartree self-energy
then reads

ok + Q) AenXo—05(q)  G_o(q—k)AeeYo—o(q)
A2 (k)= - UG- X,
Z |: 1 + AEhXU U( ) * 1 + AeeYa'fﬂ(q) ve U(k + q) g U(q)

(5.7)
and remains numerically stable up to infinite interaction strength. Hence, the static parquet ap-
proximation for the irreducible vertex can replace the bare U in the FLEX-type approximations
and extend the validity of the approximation defined by equation (5.6) and equation (5.7) from
weak to intermediate interaction strengths.

We cannot, however, rely on the static parquet approximation up to the strong-coupling regime
where we expect the Kondo behavior. The Kondo asymptotics is a hallmark for the genuine strong-
coupling limit of correlated electrons with enhanced electron-hole scatterings (half-filling). The
Kondo asymptotics is neither reproduced by the FLEX nor by the static parquets. To improve
toward the Kondo behavior one has to allow for dynamical vertex corrections. There is no system-
atic or rigorously controlled way of introducing a frequency-dependent charge renormalization but
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one can try to do this by keeping only the relevant bosonic transfer frequencies in the irreducible
vertices [19]. Although the way of simplifying the parquet equations to a manageable and stable
approximation is ambiguous, we developed a few physically motivated reductions in the frequency
dependence of the irreducible vertex functions that seem to qualitatively correctly reproduce the
Kondo asymptotics of the single-impurity Anderson model [20].

6. Disordered electrons in high spatial dimensions

Usefulness and strength of the parquet approach to reach qualitatively new results beyond the
mean-field or static approximations can be demonstrated more rigorously in a simplified situation
with noninteracting electrons elastically scattered on static impurities provided by the Anderson
model of disordered electrons. The self-energy correcting the propagation of the Bloch waves due to
scatterings on randomly distributed impurities is a function of the Fermi energy only. The vertex
functions then are the functions of two energies that are not dynamical variables. Then the parquet
equations for the vertex functions contain only convolutions of momenta and these convolutions can
be rigorously simplified in high spatial dimensions. Thereby we obtain a controlled simplification of
the parquet equations allowing for an (exact) analytic solution of the two-channel approximation in
the asymptotic limit to high spatial dimensions. The solution of the parquet equations in this limit
provides a mean-field theory for the Anderson localization transition nonexistent before [18,21]

The Anderson model of noninteracting electrons scattered on random atomic potentials is
defined by a Hamiltonian

ﬁA = Z tij/c\;f/c\j + Z Vﬁj@ , (6.1)
(i7) @

where the atomic potentials V; are uncorrelated random variables. The solution to this model,
that is the self-energy comprising the effects of scatterings of Bloch waves on the random potential
cannot be found exactly except for the mean-field limit, the solution in infinite spatial dimensions.
There, the exact solution is the well-known Coherent Potential Approximation (CPA) [22,23]. This
solution is generally considered to be a mean-field approximation for noninteracting disordered
electrons. It proved successful not only for model systems but also in realistic and first-principles
calculations [24,25]. Although very powerful for one-particle quantities, the CPA is not capable
of producing vertex corrections to the electrical conductivity [26] The transport properties of the
CPA are essentially determined by a single-particle (Boltzmann) term. In this approximation we
are unable to see any hints of electron localization due to vanishing of diffusion predicted by
Anderson [27]. To derive a quantitative mean-field-like approximation for this phenomenon is more
complicated and one has to go beyond the strict d = co limit.

In [18,21] we developed a mean-field-like theory of the Anderson localization transition in that
we used a renormalized expansion around the CPA solution. The small parameter in this expansion
is a difference of the renormalized one-electron propagator G(k, z) and the local CPA propagator
G"°(2): G(k,z) = G(k,z) — G°°(2). In the perturbation expansion around the local CPA we
can use the parquet construction for nontrivial renormalizations of two-particle irreducible vertex
functions. Notice that the parquet approach is not applicable in static local theories such as CPA,
since different two-particle scattering channels do not in fact exist. Even if we formally construct the
scatterings with electrons and holes, the result is the same and these channels are mathematically
identical. We have no tool for distinguishing an electron from a hole with local static diagrams
only. We must introduce either time or spatial distance to be able to discern the forward and the
backward propagation.

We generally mark with a bar the Green functions obtained from the expansion around the
CPA. Thus we can write the fundamental two-channel parquet equation

Puae (24 2-5@) = A (241,25 @) + Ao (24, 2 10) — 7(z4,2-) - (6.2)

The dynamical variables are only momenta k, k’. The bosonic momentum q and energies 2z, z_
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are external variables. We denoted the full local two-particle CPA vertex as

)\(Zl, ZQ)
1 2) = TG ) GG (6.3)
where the irreducible vertex A obeys a CPA equation
1 1 1 -
Aer,20) = —— |1 — . 6.4
17 = e |~ T B SVIG) TR SWIo >] 04

We remind that the local propagator G(z) = [ dep(e)[z — e — ©(z)] 7! and the self-energy %(z)

obey a Soven equation
1
= ) 6.5
(reoma=wi)., (09)

Now we have to determine the irreducible vertices A°" and A°® from parquet equations that are
constructed in the same manner as those for the interacting systems. The convolutions are taken
only over three-momenta and the completely irreducible vertex is the CPA vertex . We evaluate
momentum convolutions in the leading 1/d order, that is in the asymptotic limit to high spatial
dimensions. We choose zy = Ep +w + 10", 2_ = EFr —i0" and denote G4 (k) = G(k, 21 ). If the
electron-hole and the electron-electron bubbles are

1
xF (21, 22;q) = NEG(I{’ 21)G(q £k, 22) , (6.6)

respectively and x(q) = x(q) — G+ G_, we can prove that in the leading asymptotic order d — oo
the following relations hold

—ZX +q)G+(qd +k) = =Gi(q—k), (6.7a)

Q‘N &‘N

ﬁzi(%m)i(wm) X(a1 —a2) - (6.7b)

We used abbreviations Z = t?(G%)(G2) with (G3) = N=' 3", G4 (k)?. The functions G4 (k) and
x(q) form a closed algebra of Gaussian random variables with respect to momentum convolutions.
We can use equations (6.7) to simplify the parquet equations for the irreducible vertices A¢" and
Ace. Before we do this we use the electron-hole symmetry

Gk, z) =G(~k,z), (6.8a)
Py (Z+a 23 Q) = ke (Z+7 Z—3 _Q) = ka'fk(z+7 23 Q) (68b)

that acts on the irreducible vertices as follows
R (24, 71q) = Al (24, 21 -Q) = A%y (24,25 Q) . (6.50)

Using this simplification in the parquet equations with the electron-hole and the electron-electron
channels we obtain a single equation for a vertex ALS, (Ep +w +i0%, Ep —i07;q) = Ak (q)

_ 1 _ _ _ _ _
A () =7+ > Auaer(—q—k—k")G 1 (K")G_(q+k") [Mene (—q — k' = K") + A (q) = 7]
k/l
(6.9)
We apply the Gaussian rules (6.7) for the evaluation of momentum convolutions and reduce the
integral equation (6.9) to an algebraic one for an averaged vertex

Aa) = % > Asae(a) - (6.10)
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The asymptotic solution of the parquet equation (6.9) in high spatial dimensions reads
T ~ Aox(aq)
AMag)=v+Ao—F——,
1 —Aox(a)

where we denoted Ag = N~ a A(q). The only parameter to be determined self-consistently is the

(6.11)

superlocal vertex Ag. Summing both sides of equation (6.11) over momenta we obtain a mean-field
self-consistent equation for this vertex

A0:7+Ag;zq:1>j\(;%@. (6.12)

If we denote the standard irreducible vertex by Ag = Ag/(1 + AgG4G_), we can represent the

high-dimensional asymptotic form of the full two-particle vertex as a sum of three contributions
Rox(@)  _Aox(k+K +q)

1—Aox(@) 1—-Aox(k+k' +aq)

Tac (@) =7+ Ao [ (6.13)
The first term on the r.h.s. is the local CPA (d = c0) vertex, the second term is the nonlocal part
of the full CPA vertex [26] and the third one is a term missing in earlier calculations based on the
CPA or high-dimensional constructions. This term is required for the two-particle electron-hole
symmetry and is responsible for the so-called weak electron localization [28]. It is obtained only if
the electron-hole and electron-electron scatterings are treated on the same footing as done in the
parquet approach.

10

Figure 6. Phase diagram for Anderson localization for Ap = ¢V2, ¢ is the concentration of
impurities with the atomic potential V' and w is the energy half bandwidth. The hatched area
denotes localized states. From [21].

The parquet approach does not only correctly include the weak localization but due to its self-
consistency in the determination of the two-particle irreducible vertex it is capable of describing the
vanishing of diffusion due to strong scatterings of electrons on random impurities. To demonstrate
this we evaluate the density-density correlation function

1
oBA(q,w) = WZGf(QI(),(E+w+iO+,E—iO+;q). (6.14)
kk’

in the parquet approximation in high spatial dimensions. Then, in the limit of small frequency and
momentum transfer, we obtain:

27TTLE/AE

HiA ~
E (q7 LU) —iw + D]%((U)/Aqu ’

(6.15)

where ng is the density of states at the Fermi energy E. In this expression ng/Ag is the number
of extended states at the Fermi energy and DY (w)/Ag is the diffusion constant for these extended
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states. With the disorder strength increasing, the constant Ag — oo if A — A.. The critical disorder
strength \. determines the Anderson localization transition at which the diffusion in the random
system vanishes and the metal goes over to an insulator. A typical phase diagram calculated from
the parquet approximation with the Born approximation for the self-energy (coherent potential)
is plotted in figure 6.

7. Conclusions

In this paper we discussed the role that the Green functions play in renormalizations of the
many-body perturbation theory. In most situations of physical interest we are unable to exactly
solve the microscopic models and we have to resort to approximations. The most straightforward
way of reaching the quantitative results in interacting and disordered electron systems is the
many-body perturbation expansion. A mere perturbation expansion in a small parameter is of little
significance for cooperative phenomena that we are mostly interested in. The only way of capturing
at least the qualitative features of collective critical phenomena is to introduce renormalizations
into the perturbation expansion. In order to treat the critical points and singularities emerging
there one must leave the mass shell and formulate the perturbation expansion with non-equilibrium
perturbations and use Green functions with complex energies. At present there is no alternative to
Green functions in critical regions of phase transitions of correlated and disordered electrons. To
combine exact equations of motion for Green functions with a diagrammatic input embodied in a
renormalized theory is actually the modern way of using the many-body perturbation theory with
Feynman diagrams

In this paper we reviewed the ways of achieving various stages of renormalizations of the many-
body perturbation expansion. We argued that there are two fundamental concepts of renormaliza-
tion connected with two contributions to the microscopic Hamiltonian: kinetic energy and inter-
action. The standard way of treating the renormalizations was introduced by Baym and Kadanoff
and amounts to finding the one-particle self-energy as a functional of the renormalized one-particle
propagator and the bare interaction. In this approach the Feynman diagrams are explicitly taken
into play at the one-particle level. In this way we achieve an explicit renormalization of the dis-
persion relation and the kinetic energy. We then speak about mass renormalization. Although the
Baym and Kadanoff construction is formally exact it is very difficult to find approximations for
the self-energy that would accurately describe a critical behavior of Bethe-Salpeter equations for
two-particle Green functions. The mass renormalization scheme does not presently provide a suit-
able framework for a reliable extrapolation of the many-body perturbation theory from the weak
to the strong-coupling regimes. Mass renormalization alone is insufficient in the strong-coupling
regime and is unable to explain or reproduce the Kondo strong-coupling asymptotics in the impu-
rity models. We can conclude that renormalizations introduced only at the level of the one-particle
self-energy are suitable for weak and moderate coupling.

If we want to reliably extrapolate the many-body perturbation theory to the strong-coupling
regime, we have to introduce explicit charge renormalizations. That is, we have to replace not only
one-particle irreducible diagrams within the self-energy, but also to replace two-particle irreducible
diagrams with two-particle irreducible vertices in the perturbation expansion. The diagrammatic
input into approximations with charge renormalization lies at the two-particle level. One could
directly approximate the 2PI vertices diagrammatically. Hovewer, this approach is not very effec-
tive, since we cannot easily introduce non-perturbative vertex corrections to the bare interaction.
There is, however, an elegant way of introducing a two-particle self-consistency. It is offered by
the parquet approach introduced into the non-relativistic many-body theory by De Dominicis and
Martin. The parquet approach utilizes topological nonequivalence of different two-particle irre-
ducibility channels and assumes the diagrammatic input to a completely irreducible two-particle
vertex. The vertices irreducible in individual channels are then determined by parquet equations.
The full two-particle vertex is defined via a Bethe-Salpeter equation and the self-energy is defined
from the Schwinger-Dyson equation. Such an advanced method of renormalization of the pertur-
bation theory may become very efficient if an appropriate simplification of the parquet equations
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is found. It is presently the major obstacle to a wider application of the parquet approach in many-
body theories that we do not have a systematic and mathematically controlled way of reducing
the parquet equations to a manageable form with an explicit solution.

In spite of lacking the systematic ways of reducing the complexity of the parquet equations in
many-body theories we substantiated the potential prospects of the parquet approach. Already the
simplest static approximation on the irreducible vertices in two-channel parquet equations led to
significant improvements upon the single-channel FLEX approximations in intermediate coupling.
We also reported the first evidence that simplest dynamical irreducible vertices in the parquet
approach with the electron-hole and the electron-electron channels may qualitatively correctly
reproduce the Kondo strong-coupling asymptotics.Research in this direction is under way.

Last but not least, the parquet approach and non-perturbative charge renormalization become
invaluable in the description of Anderson localization in disordered noninteracting electrons. The
parquet approach in this model with only elastic scatterings can be used only if nonlocal fluctuations
are included, hence beyond the mean-field approximation. Unlike the case of interacting electrons,
disordered electrons allow for a systematic and controlled simplification of the parquet equations.
This simplification is offered by the limit to high spatial dimensions where momentum convolutions
reduce to Gaussian integrations. The parquet equations with the electron-hole and the electron-
electron scatterings can be solved in high spatial dimensions asymptotically exactly. Their solution
is capable of describing vanishing of diffusion induced by strong randomness and appears to be a
mean-field theory of Anderson localization.

To conclude, the many-body perturbation theory when accompanied by nontrivial mass and
charge renormalizations involved in one- and two-particle Green functions can become a very pow-
erful means of quantitatively describing and qualitatively understanding the physical phenomena
driven by strong electron-electron interaction or randomness beyond the limits of the adiabatic
Fermi-liquid theory.
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dyHkuiT FpiHa B nepeHOpMOBaHiii Teopil 30ypeHb 6araTbox Tin
AN CKOpeNlbOBaHMX Ta HEBMNOPAAKOBAHUX €/IeKTPOHIB

B.AHiWw

IHCTUTYT disnkn, Akapemisa Hayk Yecbkoi Pecnybnikm, Ha CnoaHue 2, CZ-18221 lNpara 8, Yecbka
Pecny6nika

OTpumaHo 3 TpaBHs 2006 p., B ocTaToyHOMY Bumisai — 12 TpaBHsa 2006 p.

3pobneHo ornag cnocobiB BBeAEHHS NepeHopMyBaHHSA B Teopii 30ypeHb 6aratbox Tin. MigkpecneHo Ba-
XIMBY POJIb TEXHIKM dYHKUi MpiHa Npu ekcTpanonsauii nepTypbaTtnBHMX NigxoniB cnabkoro 3B’a3Ky Ha
BUMNaZ0K MPOMIXKHOIO Ta CUbHOro 3B'A3Ky. OkpeMo 06roBOpeHO MacoBe Ta 3apsaoBe NepeHopMyBaH-
He. MNeple mae Micue Npy po3rmsaai Camoy3rogXeHOro PiBHAHHS A/ BAACHOI eHeprii, o OTPUMYETbLCS
3 piarpam ®eiiimaHa B Mexax nigxony bBelima Ta KapgaHoBa. lpyre mae micue npu po3risai camoyaro-
IDKEHUX PIBHAHb 1S9 ABOYACTMHKOBUX HE3BIOHMX BEPLUMH. MpoaHanisoBaHo 3apsaoBe NeEPEHOPMYBAHHS,
3anponoHoBaHe [e [domiHiticom Ta MapTiHOM, Ta nokasaHo, L0 Moro peanisaLis 3a 4ONOMOrolo nap-
KETHOro MiAxo4y MOXe CTaTh MOTY>XXHUM crnocoboM BUKOPUCTaHHS AiarpamMHOro nigxony Teopii 6aratbox
TiN y HenepTypOaTUBHMX pPEXMMAX i3 KOONEePaTUBHNUMM SBULLLAMMU, LLIO BEAYTb A0 OANEKOCAXHUX 3B'A3KIB
Ta KPUTUYHOI MOBEAIHKM 3 CUHIYNSIPHOCTSIMU ABOYACTUHKOBUX DYHKLIV piHA, CNPUYNHEHUMUN CUIBHOIO
B32EMOJIEI0 YN CUIIbHUM CTaTUYHUM 6e3nafoM.

KniouoBi cnoBa: es1ekTpoHHI kopensuii, BunaakoBui noteHuian, pyHkuii IpiHa i 6araro4acTmHkoBa
Teopisi 30ypeHb, peHopMasiidalis Macy i 3apsiay, NapKeTHI PIBHSIHHS, BEJMkKa PO3MIPHICTb MPOCTopy

PACS: 05.30.Fk, 75.20.Hr, 72.15.Rn
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