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In condensed matter physics and related areas, topological defects play important roles in phase transitions
and critical phenomena. Homotopy theory facilitates the classification of such topological defects. After a
pedagogic introduction to the mathematical methods involved in topology and homotopy theory, the role of the
latter in a number of mainly low-dimensional statistical-mechanical systems is outlined. Some recent activities
in this area are reviewed and some possible future directions are discussed.
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1. Introduction

Topology is the appropriate mathematical framework for the study of spaces which can (and
cannot) be continuously deformed into each other. Continuous deformations include twisting and
stretching but not tearing or puncturing. Thus a cube and a sphere are topologically equivalent
entities. Similarly a square is equivalent to a circle in topological terms. A square is, of course,
quite different to a circle in that there is a lack of differentiability at its vertices. The appropriate
mathematical framework to deal with this aspect is differential geometry. Since differentiability
necessitates continuity, differential geometry is, in a sense, more restrictive than topology. However,
while the former may yield more concrete results, topological arguments generally only lead to
existence or classification statements.

This paper contains a short pedagogic review of certain topological concepts in statistical
physics, with a focus on homotopy and its consequences. The first part (sections 2–4) summarizes
the basic conceptual and calculational tools used in the determination of the homotopy groups
for simple topological spaces. The second part of the paper (sections 5–9) contains a review of
recent progress in statistical mechanical models where topological concepts play a crucial role.
Conclusions are outlined in section 10.

2. Basic notions of topology

We begin by introducing some basic topological notions, with the primary objective of being
able to study continuity in mind. We refer the reader to the literature (e.g., [1]) for basic proofs,
which are all rather straightforward.

Definition 1 If X is a set and T = {Xi} is a collection of finitely or infinitely many subsets of
X, then we say X is a topological space with a topology T (i) if ∅ ∈ T , X ∈ T , (ii) if {Xj} is a
finite or infinite subset of T , then the union ∪jXj ∈ T and (iii) if {Xj} is a finite (not infinite)
subset of T , then the intersection ∩jXj ∈ T . The sets Xi are called open sets.

With this definition, the topology consisting only of ∅ and X is the one with the least number
of open sets. For the largest topology, all possible subsets of X and, indeed, all points in X are
open sets. The latter is called the discrete topology. In Euclidean or Cartesian space Rn, one
more commonly employs the usual or ordinary or Euclidean topology, in which the open sets are
restricted to n-balls or open intervals. Definition 1 is crucial when analyzing continuity, which is the
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basic purpose of topology. The reason why infinite intersections are not allowed in the definition is
that such a construct may give rise to open sets under the usual topology which consist of a single
point. This is not what we usually understand by an open interval and would render useless the
following definition of continuity.

Definition 2 If X and Y are topological spaces and if f : X → Y , then f is continuous if the
inverse of an open set in Y is open in X.

We examine this definition using an example of the usual topology in R, taking X = Y = R, and
the discontinuous function

f(x) =

{

x + 1 if x > 0 ,
x if x < 0 .

1

x

f(x)

Figure 1. Illustration of the topological defini-
tion of continuity.

The function is depicted in figure 1. It is
also demonstrated in the figure that while the
inverse of some open sets in Y are open sets in
X , this is not the case if the open set in Y is
inclusive of part of the discontinuous zone. So
definition 2 captures the notion of discontinu-
ity. Moreover, a moments consideration renders
it clear that usage of f rather than f−1 in def-
inition 2 would be useless, as f always takes
open sets (in X) into open sets (in Y ).

We now move on to a number of other basic
definitions of topology.

Definition 3 A neighborhood of a point x ∈ X is a subset N which contains an open set Xi

containing x. I.e., x ∈ Xi ⊆ N ⊆ X.

Note that N doesn’t have to be open (for example, if X = R, with the usual topology the closed
interval [5, 7] is a non-open neighborhood of the point x = 6). But all open sets Xi containing x
are neighborhoods of x.

Definition 4 A subset U is closed if its complement X − U is open. The complement of an open
set is called closed.

By definition, X is open. Since its complement is ∅, the latter is closed. Similarly, since by definition
∅ is open, its complement X is closed. So ∅ and X are examples of sets which are both open and
closed.

Definition 5 If U is a set, its closure, written U , is the smallest closed set in which U is contained.
Because arbitrary intersection of closed sets results in a closed set, one may write U = ∩αVi, where
Vi are all closed sets containing U .

So, for example, the closure of the open set (5, 7) is the closed interval [5, 7].

Definition 6 The interior U0 of a set U is the union of all open subsets of U .

Thus the interior of the closed interval [5, 7] is the open set (5, 7) and the interior of a closed disk
is an open one, for example.

Definition 7 The boundary b(U) of a set U is the complement of its interior within its closure:
b(U) = U − U0.

Note that U ∩ b(U) = ∅ if U is open.

Definition 8 A subset U of X is dense in X if its closure U = X.
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For example, with the usual topology on R, there are no open subsets of the set of rationals Q. So
the interior Q0, which is the union of all open subsets of Q, is ∅. In this case b(Q) = Q − Q0 = Q.
This means that the boundary is the closure. However, since b(Q) = R, we have that Q = R.
Therefore the set of rational numbers is dense in the reals.

Definition 9 Given a set U and a (finite or infinite) family of sets V = {Vi}, if U is contained
in ∪iVi we say that V is a cover of U . If all sets Vi are open then V is an open cover.

For example, the set of open intervals (−n, n), where n ∈ N, is an open cover of R under the usual
topology.

Definition 10 A set U is called compact if every open cover has a finite subcover (say {V1, V2, . . . ,
VN}), such that U ⊂ V1 ∪ V2 ∪ . . . VN .

In fact, for a set to be compact, it has to be closed and bounded (and vice versa). Essentially this
means it has finite volume.

Definition 11 A set U is called connected if it cannot be written as U = U1 ∪ U2 in which
U1 ∩U2 = ∅. It is simply connected or 1-connected if any loop in it can be continuously contracted
to a point. A domain is a connected open set.

X Y Z

Figure 2. Space X is simply connected while Y

is connected but not simply (it is multiply or
non-simply connected) and Z is not conected.

This definition is illustrated in figure 2.
For a set to be simply connected it must

consist of one component and have no holes.
Higher-dimensional holes are, however, al-
lowed, such as the three-dimensional cavity en-
closed by the 2-sphere, which is a simply con-
nected space.

If the set itself can be continuously con-
tracted to a point it is said to be contractable.
All contractable sets are simply connected but
the converse is not true. For example, the

sphere is simply connected but not contractable – for, if it is reduced to a single point, it is
no longer a sphere. Contractibility is stronger than simply connected and means the space has no
holes or cavities of any dimension.

Our central theme is the study of continuous deformations of spaces from one to another. In fact,
much information will be gleaned from circumstances in which this is not possible. Indeed, if such
continuous deformations are prohibited, then there must be some obstacle in the way. These are
called topological invariants. We attempt such continuous deformations through homeomorphisms
(“homeo” and “morphism” coming from the Greek words for “similar” and “shape”, respectively).

Definition 12 If X and Y are two topological spaces then f : X → Y is a homeomorphism if it is
continuous and if there exists a continuous map g : Y → X such that f ◦ g = 1Y (the identity map
in Y ). The map g is also a homeomorphism and g ◦ f = 1X (the identity in X). I.e., f = g−1 and
vice versa.

X Y

f = F(x,0)

f = F(x,1)

F(x,t)

2

1

Figure 3. Representation of a homotopy F (x, t)
between two maps f1 and f2.

With this concept we can categorise all
topological spaces into equivalence classes.
Spaces belong to the same class if they are
homeomorphic to each other. To characterize
homeomorphic equivalence classes we need
topological invariants (which are not broken
under homeomorphism). These include the di-
mension of the space, properties such as com-
pactness and connectedness and the powerful
concept of homotopy, to which we now turn
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(“homo” and “topos” come from the Greek words for “same” and “place”). Homotopy is to conti-
nuous maps what homeomorphism is to topological spaces – homotopy continuously distorts maps
while homeomorphism continuously distorts spaces. The concept is illustrated schematically in
figure 3 in the context of the following definition.

Definition 13 Let X and Y be topological spaces and f1 and f2 be continuous maps from X to
Y . Then f1 is homotopic to f2 and vice versa if f1 can be continuously deformed into f2 in the
sense that there exists a continuous function F : X × [0, 1] → Y , such that

F (x, 0) = f1(x) , F (x, 1) = f2(x) .

Homotopy is an equivalence relation and categorizes all continuous maps from X to Y into homo-
topy equivalence classes which are unchanged under homeomorphism.

The various so-called homotopy groups provide deep insights into topological phenomena in
physics, and we now introduce these.

3. The fundamental or first homotopy group

If spaces can be continuously deformed into each other without breaking or tearing then they
belong to the same homeomorphic equivalence class. Clearly, a simply connected compact space X
(one with no holes) is not in the same homeomorphic equivalence class as a non-simply connected
space Y (which has a hole). To quantify this rather intuitive statement we consider loops and
classes of loops within each space.

Referring to figure 4, it is clear that while loops α and β in space X and α′ in space Y can be
shrunk to a point, β′ in Y cannot (because the hole encompassed by β′ forms an obstruction). We
say α and β are homotopic while α′ and β′ are not, and write

α ' β , α′ '/ β′ .

� � �� � �� �� �

X Y

’

’

Figure 4. All loops in space X are homotopic.
This is not the case in space Y , which has a hole.

In fact every loop in space X can be continu-
ously shrunk to a single point (the constant or
identity loop) and there is one homotopy class
of loops there. In space Y , loops can enclose
the hole any number n ∈ Z times and one may
regard clockwise orientation as positive n and
anticlockwise orientation as negative n. There
is an infinite number of homotopy classes of
loops in Y , each associated with this winding
number n.

Loops can be combined (multiplied or added). For example α ∗ β is taken to mean traversal
firstly of loop α and subsequently of loop β. Inverse loops can also be defined, so that α−1 has the
same location but reverse orientation to α. The product α ∗ α−1 is then homotopic to (not equal
to) the identity loop.

In fact, since a loop α is homotopic to an infinite number of other loops, it is more convenient to
consider just one loop, representative of that homotopy class, or better, to consider the homotopy
class itself – which we label [α]. Products of classes are defined as classes of products: [α] ∗ [β] =
[α ∗ β], and, in particular, [α] ∗ [α−1] is equal to (not merely homotopic to) the homotopy class of
the identity loop. The set of homotopy classes defined in this manner has the properties of closure,
asociativity, the existence of an inverse and an identity. Therefore it forms a group.

Definition 14 The group of homotopy classes of loops in a topological space X based at a point x0

is denoted by π1(X, x0) and is called the fundamental group or first homotopy group. If [α], [β] ∈
π1(X, x0), then their product is defined as [α] ∗ [β] = [α ∗ β]. The identity element is the class of
all loops homotopic to the degenerate loop comprised soley of the point x0.
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At this point, we remark that, in the general definition 14, the fundamental group is seen to
depend on the base point x0. This rather cumbersome burden disappears if one restricts one’s
considerations to pathwise-connected topological spaces. A space X is pathwise-connected (also
called path-connected or 0-connected) if every pair of points x0, x1 ∈ X are connected by a path
γ (i.e., γ : [0, 1] → X such that γ(0) = x0 and γ(1) = x1). This is actually a stronger concept
than that of connectedness in definition 11, i.e., connected spaces exist which are not pathwise-
connected. For the topological spaces encountered herein the two concepts coincide.

Before stating the theorem establishing the redundancy of a base point in considerations of the
fundamental group structure of most useful topological spaces, we recall some basic concepts from
group theory.

Definition 15 An Abelian group is one in which the elements commute, i.e., if G is an Abelian
group, for a, b ∈ G, ab = ba.

For example, Zn is the cyclic group generated by a single element which satisfies gn = 0 where 0
is the identity element. All cyclic groups are Abelian.

Definition 16 A group homomorphism f between two groups G and H is a map which preserves
the group structure, i.e., for a, b ∈ G, f(ab) = f(a)f(b).

This definition is sufficient to ensure that the identity is mapped to the identity and that the
inverse map is preserved. A counter-example in the group of reals under multiplication is the sine
function, which is not a homomorphism because sin (ab) 6= sin a sin b.

Definition 17 A bijective map f is both injective (also called one-to-one and for which a 6= b ⇒
f(a) 6= f(b)) and surjective (also called onto and for which ∀b ∈ H, ∃ a ∈ G s.t. f(a) = b).

Definition 18 A bijective homomorphism between groups G and H is called an isomorphism. We
write G ∼= H.

So a homeomorphism is a continuous isomorphism. (The word “isomorphism” is derived from the
Greek, meaning equal shape.)

Theorem 1 If x0, x1 belong to the pathwise-connected topological space X, then π1(X, x0) ∼=
π1(X, x1).

X

� � �� � �� � �
� � �� � �� � ���

Y
X

T

p

Figure 5. Spaces X and Y (which consists of a
tail T glued on to X at the point P ) are of the
same homotopy type but are not homeomorphic.

This theorem establishes the independence
of π1(X, x0) from x0 for reasonable topological
spaces. We now seek to address the question
to what extent does the fundamental group de-
pend on X itself. It turns out that it is also in-
dependent of X up to homeomorphism. I.e., if
X is homeomorphic to Y , then π1(X, x0) is es-
sentially the same as (isomorphic to) π1(Y, y0).
In fact one can do better than that, but we
need yet another new concept, namely homo-

topy type, which is broader than homeomorphism. It is given by relaxing the equality in defini-
tion 12 to homotopy.

Definition 19 Topological spaces X and Y are said to be homotopy equivalent or of the same
homotopy type if there exist continuous maps f : X → Y and g : Y → X such that

f ◦ g ' 1Y , g ◦ f ' 1X .

So two homeomorphic spaces are necessarily of the same homotopy type, but the converse is
not the case. Refer to figure 5 where the space Y is formed from space X by connecting a “tail”,
as illustrated, and let f(x) = x, and g(y) = y if y ∈ X , while g(y) = P if y is in the tail. Clearly
X and Y are not homeomorphic (since f ◦ g 6= 1Y in the tail), but they are of the same homotopy
type. Thus sets of the same homotopy type have the same essential structure – they are the same
up to stretching, twisting or compression but not under cutting.
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Theorem 2 If the pathwise-connected topological spaces X and Y are of the same homotopy type,
then

π1(X, x0) ∼= π1(Y, y0) .

In particular, if X and Y are homeomorphic, then their fundamental groups are isomorphic:
π1(X, x0) ∼= π1(Y, y0). Note that the converse does not necessarily hold. Nonetheless, this es-
tablishes the central result that the fundamental group is a topological invariant of a space.

The fundamental group plays a critical role in the classification of topological defects in stati-
stical physics and beyond. Fortunately it is possible to determine this group in most cases. To do
that, we need the following definition.

Definition 20 Let R ⊂ X. If there exists a continuous map r : X × [0, 1] → X, such that

r(x, 0) = x ∀ x ∈ X , r(x, t) = x ∀ x ∈ R , r(x, 1) ∈ R ,

then R is called a deformation retract of X and the map r is called a retract.

� � � �� � � �� � � �
� � � �� � � �� � � �

� � �� � �� � �
	 	 		 	 		 	 	

XC

Figure 6. The circle C (dashed) is not a defor-
mation retract of the full space X.

The deformation retract is a subspace of an
original space, formed by continuous shrinking.
In figure 5, the space X is a deformation retract
of space Y . Similarly an annulus, for example
can be retracted into a circle. A counter exam-
ple illustrated in figure 6, where the circle C is
not a deformation retract of the full space X
because the hole on the right is an obstruction
to such a retraction process. The usefullness of
this lies in the following theorem:

Theorem 3 If R is a deformation retract of a pathwise connected topological space X, then
π1(X, x0) ∼= π1(R, x0).

Deformation retracts can be used to construct a representative of a space, called a polyhedron,
which contains all the homotopic features of that space. One can then use an algorithm to calcu-
late its fundamental group. This algorithm is illustrated in the following examples.

S
1 1

3

2

Figure 7. Triangulation of an annulus.

Example 1 (the annulus) To determine the
fundamental group of an annulus, one firstly
deforms it to a circle S1 and then triangulates
that space using simplices (see figure 7). A 0-
simplex is a point, a 1-simplex is a line segment,
a 2-simplex is a triangle (including its interior),
a 3-simplex is a tetrahedron (including its inte-
rior), and so on. Here we have three 0-simplices
({1}, {2} and {3}) and three 1-simplices ({1, 2}, {2, 3} and {3, 1}). The 2-simplex {1, 2, 3} is not
involved as the cavity within the triangle is not part of the space (the annulus, by definition, has a
hole). Each 1-simplex corresponds to a group element, which we label g12, g23 and g31. Next, con-
struct a “scaffold” or contractable subpolyhedron which contains all the vertices of the triangulation
or polyhedron. In our case {1, 2} ∪ {2, 3} will suffice.

1 2

3

Figure 8. A subpolyhedron (dashed) spanning
the triangulation of S1.

This contractable subpolyhedron is illus-
trated for the present example in figure 8. Each
of the 1-simplices in the spanning subpolyhe-
dron gives the identity group element which we
denote by 0, so g12 = g23 = 0. We are left with
one non-trivial element, namely g31 ≡ g. The
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group generated by such an element is Z, the integers under addition. Therefore the fundamental
group of the annulus is π1(S

1) = Z.

Example 2 (the disc) The disc D or D2 is again triangulated by a triangle, but this time its
interior is included. This is the 2-simplex {1, 2, 3}. Such a 2-simplex gives a relation g12g23g

−1
31 = 0,

which, with g12 = g23 = 0 gives g31 = 0. So all elements of the group are the identity and
π1(D) ∼= {0}.

1 2 3 4

1654

Figure 9. The Möbius strip (left), its trian-
gulation (right) and a spanning subpolyhedron
(dashed).

Example 3 (the Möbius strip) The Möbius
strip, a suitable triangulation and a con-
tractable subpolyhedron are illustrated in fig-
ure 9. Each of the five 1-simplices contained
in the subpolyhedron give the identity group
element. There are seven remaining group el-
ements corresponding to the seven 1-simplices
outside the subpolyhedron (taking care to note
the left and right edges are the same). But there
are six 2-simplices giving six relations between
these seven elements. Only one non-trivial element remains and π1(Möbius) ∼= Z.

For any of these simple spaces, we can guess the fundamental group by imagining whether or
not loops straddling the structure can be deformed to a point.

a a

b

b

c

c

Figure 10. Formation of the projective plane
RP2 by identification of antipodal points on a
disc.

Example 4 (the projective plane) The real
projective plane RP2 is constructed by identi-
fying each pair of diametrically opposed points
on the boundary of a disc (figure 10). A path
connecting a point to its antipode is therefore
closed and constitutes a loop which cannot be
shrunk to a point. A trivial loop is only con-
structed by returning to the starting point (not
antipode). So, besides the identity, there is a
nontrivial group element, which is its own inverse and π1(RP2) ∼= Z2 ≡ {0, g}. To determine the
fundamental group of higher-dimensional spaces, van Kampen’s theorem is useful:

Theorem 4 If X and Y are topological spaces, the fundamental group of their product is the direct
product of their fundamental groups.

π1(X × Y ) ∼= π1(X) ⊕ π1(Y ) .

For example, the three-dimensional torus is given by T 2 = S1×S1 so π1(T
2) = π1(S

1)⊕π1(S
1) =

Z ⊕ Z ≡ Z2.

4. The higher homotopy groups

Only 1- and 2-simplices are used in the algorithm to calculate the fundamental (or first ho-
motopy) group. This means that π1 can only detect two-dimensional holes present in a space (or
combinations thereof, such as the two two-dimensional holes in the torus). For example, by con-
sidering shrinkage of a loop on its surface, it is easy to convince oneself that the fundamental
group of a sphere in 3-space is trivial: π1(S

2) ∼= {0}. Such one-dimensional loops are incapable
of detecting the three-dimensional interior of the sphere. To deal with this circumstance we need
higher homotopy groups.

While the reader is referred to the literature for the mathematial details [1], the basic idea is
straightforward and now outlined. The 1-loops we encountered hitherto can be thought of as elastic
bands tied at a basepoint x0. The two-dimensional equivalent of such an object can be thought
of as a balloon, with the neck anchored at x0. Such a 2-loop can encompass a spherical hole in
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much the same way as a 1-loop can enclose a circular one. Moreover, a balloon can be wrapped or
unwrapped an integer number of times around a sphere and a group structure can be built up in
an equivalent manner to the (homotopy equivalent classes of) 1-loops. In still higher dimensions,
n-loops can be defined.

Table 1. The homotopy groups of the n-sphere. The higher groups are Abelian but fall into no
easily distinguishable pattern.

πm(Sn)
n

m 1 2 3 4 5 6 7 8 . . .

0 {0} {0} {0} {0} {0} {0} {0} {0} . . .
1 Z {0} {0} {0} {0} {0} {0} {0} . . .
2 {0} Z {0} {0} {0} {0} {0} {0} . . .
3 {0} Z Z {0} {0} {0} {0} {0} . . .
4 {0} Z2 Z2 Z {0} {0} {0} {0} . . .
5 {0} Z2 Z2 Z2 Z {0} {0} {0} . . .
6 {0} Z12 Z12 Z2 Z2 Z {0} {0} . . .
7 {0} Z2 Z2 Z ⊕ Z12 Z2 Z2 Z {0} . . .
8 {0} Z2 Z2 Z2 ⊕ Z2 Z24 Z2 Z2 Z . . .
9 {0} Z3 Z3 Z2 ⊕ Z2 Z2 Z24 Z2 Z2 . . .

...
...

...
...

...
...

...
...

Definition 21 The homotopy class of n-loops in a topological space X with basepoint x0 forms
the n-dimensional homotopy group πn(X, x0).

It turns out that, while some but not all fundamental groups are Abelian, all higher homotopy
groups are Abelian. While there is no algorithm to calculate the higher homotopy groups com-
parable to the case of the fundamental group, nor is there a higher homotopy analogue to van
Kampen’s theorem, there are tools such as Freudenthal’s theorem:

Theorem 5 The m-dimensional homotopy group of the n-sphere πm(Sn) depends only on m − n
for m 6 2(n − 1).

An immediate consequences of this is πm(Sn) ∼= πm+1(S
n+1) for m 6 2(n − 1). Further, since

π1(S
n) ∼= {0} for n > 2, πm(Sn) ∼= {0} for n > m + 1. If n = m, one has (for n > 2) πn(Sn) ∼=

π2(S
2) ∼= Z.

Finally, although π0 is not a group, it is often used to denote the number of connected domains
or components in a space.

Classification of the homotopy groups of topological spaces is an active field of research and
has generated many surprising results. Table 1 illustrates this by listing πm(Sn) for small m and
n. While there is no overall identifiable pattern, as the dimension increases some regularity does
occur. In particular, πn+1(S

n) = Z2 for n > 3, πn+2(S
n) = Z2 for n > 2, πn+3(S

n) = Z24 for
n > 5 and so on.

Homotopy groups for other topological spaces have also been determined and some of those
more commonly used in physics are listed in table 2.

This completes the pedagogic introduction to homotopy. Equipped with the above topological
notions, one may now examine the role played by homotopy in statistical physics.
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Table 2. The homotopy groups of various useful topological spaces.

π1(R
n) ∼= π1(D) ∼= πm(Sn>m) ∼= πm>2(S

1) ∼= {0}
π1(T

2) ∼= Z ⊕ Z ≡ Z2

π1(T
n) ∼= Zn

π1(RPn) ∼= Z2 (n > 2)
πm(RPn) ∼= πm(Sn) for m > 2
πn(RPn) ∼= Z

5. Phase transitions and topological defects

Phase transitions are amongst the most ubiquitous and remarkable phenomena in nature and
involve abrupt or gradual changes in quantifiable macroscopic properties brought on by varying a
system’s parameters such as temperature, pressure or a coupling. Equilibrium statistical physics
which describes such phenomena is based on the premise that the probability that a system is in
a state S with energy E at a temperature T is

P (S) =
exp (−βE(S))

ZL(β)
, (1)

where β = 1/kBT , kB is a universal constant, and ZL(β) is the partition function which serves as
a normalising factor. It is given by

ZL(β) =
∑

S

exp (−βE(S)) . (2)

Here, and in the following, the linear extent of the system is indicated by the subscript L. Another
fundamental quantity is the free energy, fL(β), given by

fL(β) =
1

Ld
lnZL(β) , (3)

where d is the dimensionality of the system so that its volume is Ld. In the modern classification
scheme, phase transitions are categorised as first, second or higher order if the lowest derivative of
the infinite-volume free energy f∞(β) that displays non-analytic behaviour is the first, second or
higher one (see, e.g., [2]).

For an O(n)-symmetric model, the sites i of a d-dimensional lattice are occupied by n-dimensional
unit-length vectors ~si ∈ Sn−1 which may be considered to reside in an internal spin space. In gen-
eral then, n may be independent of the dimensionality d of the physical space or medium. For the
O(n) model, the energy of a given configuration is given as

E = −
∑

〈i,j〉

~si~sj , (4)

where the summation runs over nearest neighbouring sites or links of the lattice.
The n = 1 version of this construct is the Ising model. If n = 2, the spins live in a plane and

the model is referred to as the XY model. The O(3) version is called the Heisenberg model and
the limit n → ∞ corresponds to the spherical model. In each of these models, the system (and
the partition function in particular) is invariant under rotations in spin space. However, the order
parameter or spin expectation value 〈~si〉 may, in principle, not respect this symmetry. This very
common circumstance is referred to as spontaneous symmetry breaking. Let Tc or βc denote the
phase transition point. The conventional scaling scenario at such a transition is of the power-law
type in the reduced temperature t = T/Tc − 1. For example, this is the type of scaling which
characterises the standard temperature-driven paramagnetic-ferromagnetic phase transition in the
XY model in d > 2 dimensions.
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Table 3. Classification of topological defects. Here d is the dimensionality of the medium and m

is that of the defect.

m = 0 m = 1 m = 2 m = 3 . . .
d = 1 π0

d = 2 π1 π0

d = 3 π2 π1 π0

d = 4 π3 π2 π1 π0

... instantons

monopoles

vortices
domain walls



��

� �� �
 

 


Figure 11. Examples of an antivortex (or vor-
tex of charge −1) and a vortex (of charge 2) in
the XY model on a regular lattice. As contours
around the two bold points are traversed (coun-
terclockwise), spins rotate through −2π and 4π

respectively.

However, the existence of a phase with long-
range order is precluded in two-dimensional
models with continuous symmetry group and
continuous interaction Hamiltonian, such as
(4), due to the Mermin-Wagner theorem [3].
Nonetheless, a temperature-driven transition
can still exist – to a phase with topologi-
cal order. The two-dimensional XY model
has a famous infinite-order phase transition
of this type which breaks no system symme-
tries and is called the Berezinskii-Kosterlitz-
Thouless (BKT) transition [4,5]. The transition
is mediated by topological defects called vorti-
ces. Such vortices can be identified by tracking
the well-defined values of the spins ~si along a
given contour (see figure 11). Spins can rotate
along such a contour through 2nπ for n ∈ Z.
If n 6= 0, one speaks of a vortex (actually one
may refer to a negative-n vortex as an antivor-
tex). In the absence of the lattice, shrinking the
contour to a point would lead to a singularity in the presence of such a vortex.

From homotopy theory, it is clear that the winding number in the above two-dimensional
example is related to the fundamental group of the order-parameter space π1(S

1). In principle,
in a d = 2 dimensional medium, one could also have a line defect if π0 was non-trivial (since π0

denotes the number of connected domains in the medium, such a defect is called a domain wall). In
a d = 3 medium, defects of dimension 0, 1 or 2 may exist. These are point defects (monopoles), line
defects (vortices) or wall defects (domain walls), and are detected by π2, π1 and π0 respectively.
In general, then, an m-dimensional defect in a d dimensional medium is classified by πd−m−1(S),
where S is the order-parameter space. They are called domain walls (classified by π0), vortices
(π1), monopoles (π2), instantons (π3), etc. The classification scheme is summarized in table 3.

6. The BKT transition in the XY and step models

The XY model in two dimensions is the generic one for the study of the topologically-mediated
BKT transition. It is also used to study systems such as films of superfluid helium, Josephson-
junctions, superconducting materials, fluctuating surfaces as well as certain magnetic, gaseous and
liquid-crystal systems. Besides this model, transitions of the BKT type also exist in the ice-type
F model [6], antiferromagnetic models [7], certain models with long-range interactions [8], lattice
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gauge theories [9] and in string theory [10] amongst others. Thus a thorough and quantitative
understanding of the paradigmatic two-dimensional XY model is beneficial to a number of areas
within theoretical physics. The BKT transition in this model has come under intense scrutiny, and
only in recent years has the picture begun to become clear.

At low temperature, vortices and antivortices appear in pairs and there is quasi-long-range order
(meaning orientation of spins over small length scales). The correlation function characterises this
ordering and, with xi denoting the position of the ith site, its leading critical behaviour from
renormalization group (RG) theory is [5]

G∞(xi − xj) = 〈sisj〉 ∼ |xi − xj |
−(d−2+ηc) (5)

(with d = 2 in this instance). The correlation length in an infinitely large system is denoted by
ξ∞(t) and measures to what extent spins at different sites are correlated. It diverges in the massless
low-temperature phase. This divergence persists, with the system remaining critical with varying
η(β), up to β = βc at which η(βc) = ηc = 1/4.

According to the BKT picture, the number of vortex pairs increases as the temperature is
raised and they proliferate in the high-temperature phase. At the transition point, it becomes no
longer sensible to describe vortices as belonging to paired sets and they are said to unbind. In the
high-temperature phase, the dissociation of vortices destroys the order of the system. Above this
point, correlations decay exponentially fast with leading behaviour

G∞(xi − xj) ∼ exp [−|xi − xj |/ξ∞(t)] . (6)

The leading approach to the transition from the high-temperature phase is characterised by essen-
tial singularities,

ξ∞(t) ∼ exp
(

bt−ν
)

, (7)

C∞(t) ∼ ξ−2
∞ , (8)

χ∞(t) ∼ ξ2−ηc

∞ , (9)

for the correlation length, the specific heat and the susceptibility (which respectively measure the
response of the system to variations in the temperature and application of an external magnetic
field). Here b is a non-universal constant.

The “BKT scenario” is thus taken to mean a phase transition which (i) exhibits essential
scaling behaviour and (ii) is mediated by a vortex-binding mechanism. This picture is based on
perturbation theory [4,5] and a variety of techniques have been employed for over thirty years in
attempts to verify it.

6.1. BKT scaling behaviour

These attempts at verification have included non-perturbative simulational and high-temperature
series analyses of the XY model. In particular, verification of the analytical BKT RG prediction
that ν = 1/2 and ηc = 1/4 and accurate determination of the value of βc proved elusive. Typically
the critical temperature was determined by firstly fixing ν = 1/2. However, measurements of ηc

then yielded a value incompatible with the BKT prediction. The elusiveness of such unambiguous
corroborative evidence led to the essential nature of the transition in the d = 2 XY model being
questioned [11]. An extensive overview of the status of the model up to 1997 is contained in [12].

A self-consistency analysis, based on Lee-Yang zeros, was used in [12,13] to show that the ther-
mal scaling forms (8) and (9) (and similar formulae for other quantities) are mutually incongruent
as they stand, and have to be modified to include multiplicative logarithmic corrections. In fact,

C∞(t) ∼ ξ∞(t)−2 (ln ξ∞(t))q̃ , (10)

χ∞(t) ∼ ξ∞(t)2−ηc (ln ξ∞(t))
−2r

, (11)

and
G∞(xi − xj) ∼ |xi − xj |

−ηc (ln |xi − xj |)
−2r

, (12)
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with q̃ = 6 and where RG indications implicit in [5] are that r = −1/16 = −0.0625. Besides this
implication, the first indication of the existence of a non-zero correction exponent r was presented
by Butera and Comi using high-temperature series expansions [14]. On the other hand, arguments
that BKT theory implies the absence of multiplicative logarithmic corrections, i.e. r = 0, have also
been recently made [15,16].
The formulae (10) and (11) refer to thermal scaling on infinite lattices. Such systems are not

Table 4. Estimates for the critical point βc for the XY model as well as the logarithmic-correction
exponent r for the BKT universality class from a selection of recent papers.

Authors Year Method βc r

Kosterlitz & Thouless [5] 1973 RG −0.0625
Irving & Kenna [12,13] 1996 FSS 1.113(6) −0.02(1)
Patrascioiu & Seiler [21] 1996 thermal 0.077(46)
Campostrini, Pelissetto, 1996 thermal 1.1158(6) 0.042(5)
Rossi & Vicari [22] 1.120(4) 0.05(2)
Janke [17] 1997 FSS, −0.027(1)

thermal 0.0560(17)
Hasenbusch & Pinn [23] 1997 RG 1.1199(1)
Jaster & Hahn [18] 1999 FSS, −0.0233(10)

thermal 0.056(9)/0.070(5)
Balog, Niedermaier, Niedermayer, 2001 RG, 0
Patrascioiu, Seiler, Weisz [15,16] thermal
Tomita & Okabe [24] 2002 FSS 1.1194(8) 0.038(5)
Dukovski, Machta & Chayes [25] 2002 FSS 1.120(1)
Chandrasekharan & Strouthas [19] 2003 FSS −0.035(10)
Hasenbusch [26] 2005 FSS −0.056(7)

amenable to computational techniques as one may only simulate finite-size systems. There, finite-
size scaling (FSS) theory predicts that the role of the correlation length is played by the lattice
extent L. For example, the susceptibility at criticality (t = 0) scales as [13]

χL(0) ∼ L2−ηc (lnL)−2r . (13)

Verification of the BKT scaling scenario then requires numerical confirmation of the thermal for-
mula (11) and/or the FSS formula (13). In [12,13], the hitherto conflicting results for ν, βc and ηc

were finally resolved. However, the analysis resulted in an estimate of −0.02(1) for r, a value in
conflict with the RG prediction of r = −1/16 = −0.0625 from [5].

This prompted the shifting of the focus of recent numerical studies of the XY model to the
determination of the logarithm exponent r. Indeed, in [17–19], FSS analyses using (13), yielded
values compatible with that of [12,13] but incompatible with [5] (see table 4 and [20] for an
overview). Nonetheless, it was clear that the resolution of the ν-βc-ηc controversy is achieved by
taking the logarithmic corrections into account. The most precise numerical estimate for the critical
temperature for the XY model is βc = 1.1199(1) [23], a value obtained by mapping the model onto
the body-centered solid-on-solid model (which is exactly solvable), and thereby circumventing
the issue of logarithmic corrections. Indeed, the recent analyses which have included logarithmic
corrections have resulted in estimates for βc compatible with this value and with η = 1/4 for the
anomalous dimension.

The study of the XY model contained in [17] employs the Villain formulation, which has
an action different to (4) and leads to a different value for quantity βc (which is nonuniversal).
Similarly, in table 4, [18] and [19] contain studies of a lattice grain boundary model and a lattice
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gauge theory respectively. Although the critical temperatures for these models bear no relationship
to their XY counterpart, they have the same scaling behaviour as they are in the same universality
class. Thus the value for the logarithmic exponent r should be the same as in the XY model.

It was further suggested in [12,17] that since taking the logarithmic corrections into account
leads to the resolution of the leading-scaling puzzle, in the same spirit numerical measurements for
r may become compatible with the RG prediction if sub-leading scaling corrections are taken into
account. In this case, (13) is more fully expressed as

χL(0) ∼ L2−ηc (lnL)
−2r

{

1 + O

(

ln lnL

lnL

)}

. (14)

This was tested in [12,17], but the lattice sizes available (up to L = 256) were too small to resolve
the issue. (For a similar situation in the q = 4 two-dimensional Potts model, see [27].) The problem
was revisited recently in [26] in which a very high precision numerical simulation achieved lattices
as big as L = 2048. Using the alternative ansatz

χL(0) ∼ L2−ηc (C + lnL)−2r , (15)

with C an additional free parameter, this analysis gave r = −0.056(7) provided suitably large
lattices are used (with L > 256). This value is compatible with the analytic prediction r = −0.0625.
In [6], a very careful study of the F model, which is exactly solvable and has a BKT-type phase
transition, further elucidates the necessity of using sufficiently large lattices when numerically
analysing the models with highly subtle logarithmic corrections.

It is interesting to note that, with the exception of [24], all of the FSS-based analyses of table 4
yield a negative value for r, in line with the BKT prediction. It is rather surprising that, in table 4,
all of the thermal scaling analyses (as well as [24]) yield positive values of r – far from the RG
prediction that r = −0.0625. This indicates that the FSS approach may generally be more powerful
than the thermal scaling one, although more extensive computational analyses would be required
to compare this approach to [26].

Recently, Berche et al. have used a conformal map to rescale distances on the lattice so that
it is less sensitive to finite-size boundary effects and then to determine η(β) at any temperature
in the critical phase [20,28,29]. In particular, their numerics yield accurate agreement with the
analytic prediction ηc = 1/4 at the transition point. It is interesting to note that this agreement
was achieved very straightforwardly using moderate computational effort and without recourse to
enormous lattices. Rather surprisingly, the evidence showed no noticable logarithmic corrections
to the order-parameter density profile at the transition [28,29] (see also [30]), but was clearly
supportive of the existence of such corrections in the correlation function [20,29]. However, the
lattices used were not sufficiently large to unambiguously confirm the quantative behaviour of the
logarithmic corrections.

6.2. BKT vortex unbinding

The second crucial aspect in the BKT scenario is the vortex unbinding mechanism. For the XY
model the energy of a single isolated charge-n vortex on an L×L lattice is proportional to n2 lnL/a
where a is the lattice spacing (which never vanishes in a real physical system made up of atoms).
The total energy of two vortices of charge n and −n centred at x1 and x2 is, however, proportional
only to n2 ln |x1 − x2|/a. At low temperatures, then, vortices occur mostly in vortex-antivortex
(dipole) pairs. Mutual cancellation of their individual ordering effects means that such a pair can
only affect nearby spins and cannot significantly disorder the entire system. Topological long-range
order exists in the system at low temperature. As the temperature is raised, then, the vortices
proliferate and the distance between erstwhile partners becomes so large that they are effectively
free. I.e., the BKT transition is one from a phase of dipoles to a plasma of vortices, which render
the system disordered.

It was long believed that adjusting the vortex-binding dynamics of the XY model may disable
the BKT transition mechanism, leading to a different one or the absence of a transition of any type
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[31]. With this in mind, the step model is derived from the XY model by replacing the Hamiltonian
(4) with

E = −
∑

〈i,j〉

sgn (~si~sj) . (16)

While the configuration space for this model is globally and continuously symmetric, as in the
XY case, its interaction function is discontinuous. The energy associated with a single vortex for
this system is expected to be independent of the lattice extent, leading to the expectation that
the disordered vortex-plasma phase may exist for all temperatures. If this is the case, there was
expected to be no vortex-driven phase transition in the model; if there is a phase transition, it was
expected not to be of the BKT type. Indeed, early studies supported this assertion (see [12] for a
review up to 1997).

In [12,13], strong and clear evidence was presented that a transition exists in the model, and,
that it belongs to the same universality class as the XY model in two dimensions (with even the
corrections to scaling, insofar as they could be discerned, being the same as those for the XY
model). Because of the dissimilar vortex energetics of the two models, this came as a surprise.
The question then arose as to how a transition mediated by vortices (in the XY model) can be
insensitive to the energetics of such vortices.

In [32], the Mermin-Wagner theorem was extended to discontinuous interaction functions in-
cluding that of the step model (16). The issue of the phase transition there was again addressed in
[33], where further evidence for the existence of a BKT transition in the step model was presented.
In [33], the approach was to focus on numerical analyses of the helicity modulus, which experiences
a jump at the transition (for a similar approach to the XY model see [34]). The main point of
[33] is that the cost in free energy for a single vortex is proportional to lnL/a and that this is the
feature which stabilizes the low-temperature (dipole) phase. I.e., this inhibits proliferation of free
vortices in the low-temperature phase. It further explains the occurence of a transition in the step
model. The support for the existence of a BKT transition in the step model given in [33] indicates
that the BKT vortex scenario is more general than was heretofore realized.

7. The diluted XY model

A vibrant current area of research is the question of the role and consequences of the presence
of impurities in various systems, including the XY model. The occurrence of physical impurities
renders any model more realistic, as such defects are often present in actual (and porous) systems.
These physical impurities are modelled by removing (diluting) the sites or bonds of the lattice.
Clearly, if the dilution is sufficiently strong the percolation of spin-spin interactions across the
lattice is curtailed and it is effectively broken into finite disconnected sets. This occurs at the
percolation threshold. In that circumstance, no phase transition can occur for any model, as a true
phase transition necessitates a thermodynamic limit. More moderate dilution is generally expected
to lower the transition temperature relative to its value for a pure (undiluted) system.

The special feature of the XY model is the presence of vortices as the mechanism mediating
the transition. It turns out that vortices are attracted to the physical impurities (vacant sites or
bonds) and the vortex energy is reduced at such a vacancy. Therefore as the dilution is increased,
more vortices can be formed and the consequent amount of vortex-induced disorder in the system
is increased. This in turn may enhance the lowering of the critical temperature to such an extent
that it vanishes even before the percolation threshold is reached.

This issue is addressed in [35–38]. According to the Harris criterion, disorder does not change
the leading scaling behaviour of a model if the critical exponent α associated with the specific
heat of the pure model is negative [39]. This is the case for the XY model in two dimensions [35].
Thus the critical temperature in the diluted d = 2 XY model can be safely (albeit approximately)
identified as being the location at which η(β) = 1/4. The vanishing of the critical temperature
then gives the critical vacancy density in that model. In [36] the critical temperature was reported
to vanish at site-vacancy density ρ ≈ 0.3. However, for d = 2 regular lattices, the percolation
threshold (the density of vacancies required to disconnect the lattice) is ρ ≈ 0.41. Thus the work
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of [36] suggests that, indeed, the critical temperature vanishes before the percolation threshold is
reached. In a later study, however, Berche et al. suggested that the critical site-density is closer to
the percolation threshold [37]. Support for the latter result also recently appeared in [38]. These
more recent studies – which concern the site-diluted version of the model – indicate that the
vortices do not, in fact, strongly enhance the lowering of the critical temperature in the d = 2 XY
model.

This conclusion is further supported by a similar recent study [40] for the bond -diluted XY
model, which favours the general scenario depicted in [37,38] over that of [36].

The above studies concern the value of the critical temperature in diluted two-dimensional XY
models. The precise scaling behaviour of the thermodynamic functions at the phase transition is
also of interest. The Harris criterion concerns only the leading scaling behaviour (which does not
alter in the XY models considered here) and does not predict what effect dilution can have on the
quantitative nature of the exponents of the logarithmic corrections in the negative-α case. This
would be an interesting avenue for research in the future, and the two-dimensional XY model
offers an ideal platform upon which to base such pursuits [41].

8. O(n) and RPn−1 models

In this section, a selection of recent results in non-Abelian O(n) models in two dimensions and
in RPn−1 models in two and three dimensions are discussed, focusing on certain aspects that are
still unresolved. For work on the O(n) models in three (as well as two) dimensions, the reader is
referred to the literature [42].

8.1. Non-Abelian O(n) models in two dimensions

It is widely believed that there are fundamental differences between models with Abelian and
non-Abelian symmetry groups. The O(2) symmetry group of the XY model is Abelian and all
O(n) groups with n > 2 are non-Abelian. From the Mermin-Wagner theorem, any continuous
symmetry of the O(n) type cannot be broken in two dimensions [3]. On this basis, there cannot be
a transition to a phase with long-range order in any O(n) model with n > 2 there. (The n = 1 case
is discrete, and the corresponding Ising model possesses an ordered phase in d = 2 [43].) As we
have seen, in a two-dimensional theory, topological defects of dimension m can exist if the (1−m)th

homotopy group, π1−m, of the order-parameter space (which for O(n) models is the hypersphere
Sn−1) is non-trivial. From table 1, the only non-trivial homotopy group of the form π1−m(Sn−1)
is π1(S

1) ∼= Z. This is the condition that gives rise to point defects (vortices) with integer charge
in the n = 2 case (the d = 2 XY model). The binding of these vortices at low temperature is the
mechanism giving rise to the BKT phase transition [4,5].

For n > 2, therefore, conditions are not supportive of the existence of stable topological defects
of this type in two dimensions and the majority belief is that there is no distinct low-temperature
phase and consequently no positive-temperature phase transition in these models [44]. There is a
vast literature on the d = 2 O(n) models with n > 2 and the reader is referred to [42] for a review.
Furthermore, while perturbation theory predicts that these n > 2 models are asymptotically free,
there is no rigorous proof to this effect. (Asymptotic freedom means that the effective strength of
interactions vanishes as the energy is increased.) This notion has been questioned and in [16,21,45]
evidence in support of the existence of phase transitions of the BKT type in these models has been
given, as well as heuristic explanations of why such transitions could occur and a rigorous proof
that this would be incompatible with asymptotic freedom.

Perturbative and high-temperature series expansions [14] as well as Monte Carlo calculations
for n > 3 [46] have been performed, and these do not support the existence of such a BKT-like
phase transition in these two-dimensional models. Instead they are in agreement with perturbation
theory and the asymptotic freedom scenario. Nonetheless, the controversy has not been entirely
resolved [47] and it is plausible that inclusion of logarithmic considerations in these considerations
could help in the search for a precise unambiguous resolution.
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8.2. Liquid crystals and RP n−1 models

The liquid-crystal state is a phase of matter which exists distinct from (i.e., not a mixture
of) the solid and liquid states. Unlike in a normal liquid, which is isotropic, in a liquid crystal
the properties are directional dependent. This is because the molecules of the liquid crystal are
elongated in one direction in three-dimensional physical space. On the lattice, each molecule may
be represented by a directed rigid rod. Such a direction is without orientation, so that the system
is unchanged by flipping the rod. For the n-component model the Hamiltonian is

E = −
∑

〈i,j〉

(~si~sj)
2
, (17)

where ~si are n-component unit vectors and the quadratic form gives that −~si and ~si describe the
same direction [48]. The symmetry group for this n-vector model is RPn−1. This is the space in
n dimensions formed by identifying antipodal points on an (n − 1)-sphere Sn−1. Alternatively,
restricting to one of the hemispheres of Sn−1, the real projective space RPn−1 can be considered
as equivalent to the (n − 1)-disk, Dn−1, with antipodes on the boundary Sn−2 identified (see
example 4 of section 3).

For n = 2, the real projective space RP1 is topologically equivalent to the circle S1 in 2-space
and the trigonometric identity 2 cos2 θ = 1 + cos (2θ) leads to the model (17) being equivalent to
the XY model.

In three dimensions, then, the condition for the existence of topological defects in the n-
component model is the non-triviality of π2−m(RPn−1). Since RPn−1 is connected and π0(RPn−1)
is trivial, there are no two-dimensional (wall) defects in a three-dimensional medium for any n.
In the liquid crystal case where n = d = 3, table 2, gives that π2(RP2) ∼= Z so that point de-
fects (monopoles, called hedgehogs in this instance) may exist. (In addition to hedgehogs, if the
system is finite in extent, there may exist pointlike topological entities called boojums, which
loosely speaking are like half-hedgehogs – see [49] and references therein.) Also from table 2, since
π1(RP2) = Z2, line defects (called disclinations) can exist in the n = d = 3 system. Indeed, this is
reflected in the tendency of such molecules to align themselves into linear or threadlike patterns.
Such materials, which can cause polarization of light, are called nematic liquid crystals after the
Greek prefix “nemato” meaning threadlike. Actually there are other types of liquid crystal states
beyond the nematic one and the reader is refered to the (vast) literature [50].

Similarly, in two dimensions, point defects (vortices) owe their existence to the non-triviality
of π1(RPn−1), which is isomorphic to Z2. Even though only point defects can exist in the two-
dimensional version, one often also generically refers to a nematic phase here too.

Perturbative RG analyses of the RPn−1 model (which neglect the effects of topological de-
fects) predict no transitions in two dimensions [44] and a second-order one in three dimensions
for n > 3 [51]. However, numerical and experimental research indicates that the three-dimensional
RP2 transition is, in fact, weakly first-order [48,52,53]. The three-dimensional RP3 model also has
a first-order transition [54] and is closely linked to frustrated spin systems which have been exten-
sively studied (for a review of theoretical, numerical and experimental work, see [55]). The large
n limit of the d = 3 RPn−1 model also possesses a first-order transition [56]. It seems clear that
topological defects are responsible for the first-order phase transition in both the three-dimensional
RPn−1 models and their frustrated magnetic counterparts [55].

Since the RG approach fails in the three-dimensional model (where there is, in fact, a first-
order transition), it is possible that it also fails in two dimensions and that this failure is due to
the transitions being topologically driven [57]. Indeed, it has been shown that, in two dimensions,
while perturbative RG predictions match well with Monte Carlo measurements when the model
has trivial homotopy, there is a clear disagreement between the two approaches when topological
defects are present [58].

The two-dimensional RPn−1 models were considered in [57], with n = 3 and n = 40. In the
nematic n = 3 case, evidence was presented for a transition described by a diverging correlation
length and susceptibility but a cusp (as opposed to a divergence) in the specific heat was reported.
Similar to the two-dimensional XY case, both the correlation length and the susceptibility appeared
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Table 5. Summary of the status of standard O(n) and RPn−1 models and some recent develop-
ments considered in this paper. Here m is the defect dimension.

Model d Homotopy group, Status
defect type (and m)

XY /RP1/O(2) 2 Z, vortices (m = 0) BKT transition (see section 6)
& step model

O(n) 2 No defects No transition (majority opinion – e.g.
for n > 3 [14,46,44,42], but see also [16,21,45,47])

RPn−1 2 Z2, vortices ∀ n No transition [44] (perturbation theory);
for n > 3 (m = 0) 1st-order transition [56,60] (n → ∞);

BKT or 2nd-order transition
for n = 3 [57,59,61,62];
No transition for n = 4 [65]

O(n) 3 n = 2: Z, vortices 2nd-order transitions
(m = 1); n = 3: Z, (see [42] and references therein)
monopoles (m = 0);
no defects for n > 4

RPn−1 3 n = 3 only: Z, 2nd-order transition [51] (from
for n > 3 monopoles (m = 0); perturbation theory);

n > 3: Z2, vortices/ 1st-order transition [56] (n → ∞);
disclinations (m = 1) 1st-order transition [48,52,53] (n = 3);

1st-order transition [54,55] (n = 4)

to remain infinite below the critical temperature. Despite the scale of the study performed in [57],
it was not possible to distinguish between essential scaling and standard power-law scaling as the
transition is approached from the high-temperature phase. The importance of the defects was,
however, clearly demonstrated, in that they carry most of the energy and the transition appears
to be again mediated by their unbinding with increasing temperature. The d = 2, n = 3 case
was also analysed in [59], where a second-order phase transition was favoured. In [57], a numerical
analysis of the n = 40 case was also compared with analytical results for n = ∞. The latter has a
topologically mediated first-order transition for all d > 2 [56]. The possibility of (lattice-dependent)
first-order transitions at large or infinite N was discussed in [60].

The powerful conformal techniques used in [20,28,29] were similarly employed in [61], favouring a
nematic/isotropic topologically-mediated transition in the two-dimensional RP2 model and a close
similarity with the two-dimensional XY model. The effect of the suppression of the topological
defects was explored in [62] where it was demonstrated that the apparent phase transition may be
completely eliminated. The suppression is achieved by the introduction of a chemical potential term
associated with the defects, making the formation of topological charges energetically expensive.

The suppression of the monopoles in the three-dimensional Heisenberg model (which is also non-
Abelian) also leads to the disappearance of the transition there [63]. Similar work was applied to the
nematic/isotropic transition of the three-dimensional RP2 model in [52]. The first-order transition
between the nematic and isotropic phases weakens as the disclination core energy is increased and
eventually the transition line splits into two continuous ones separating three distinct phases with
a new topologically-ordered isotropic phase between the nematic and conventionally isotropic ones.
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However, while the work of [57,59,61,62] favours a second-order or BKT-type transition with
divergent correlation length in the n = 3 case, and (see also [64]), another study [65] of the RPn−1

defects in a d = 2 model of tops favours the absence of a true phase transition there (at least for
n = 4). Instead it is claimed that there is a crossover in the correlation length. There it is argued
that the defects disorder the system for all temperatures and the correlation length remains finite.

Therefore, the situation in the d = 2 RPn−1 models is still not satisfactorily clear and the
precise nature of the phase transitions in these models is still under question.

In table 5, a summary of the status of the standard O(n) and RPn−1 models and the associated
homotopy groups is given, together with a selection of recent papers.

9. Highly nonlinear models

Universality is the notion that the existence and type of phase transition in a model, and the
critical exponents that describe it, depend only on the dimension, the symmetries present and the
range of interaction. One can broaden the scope of the models discussed herein, while maintaining
these three characteristics, by altering the interaction to the form

E = −
∑

〈i,j〉

Pk (~si~sj) , (18)

where Pk(x) is the kth Legendre polynomial. Then k = 1 and k = 2 correspond to the O(n) and
RPn−1 models appropriately. The k = 4 version has P4(x) ∝ 35x4 − 30x2 + 3 and has the same
symmetries as the k = 2 version but a higher degree of nonlinearity.

In d = 3 dimensions, the inclusion of the P4 interaction enhances the first-order transition
present in the k = 2 model for n = 3 (i.e., the RP2 model) [66]. Similarly, in two dimensions,
the n = 3, P4 model was found to have a strong first-order transition [67]. In two dimensions, the
claimed (but disputed) continuous transition in the n = 3, P2 model (i.e., the RP2 model) and
the first-order transition in the n = 3, P4 model can be eliminated by suppression of defects [62].
Finally, in two dimensions, a BKT-like transition was recently observed in the n = 2, P4 model
in [68]. There, the crucial role of topology in such models is again exhibited and new questions
are raised regarding the detailed nature of that transition. These latest results demonstrate yet
again the importance and ubiquity of topologically mediated transitions in contemporary statistical
mechanics.

Recently another type of non-standard n-vector model has come into vogue. This is given by a
nonlinear Hamiltonian of the type

E = −
∑

〈i,j〉

(1 + ~si~sj)
p
. (19)

If p = 1, this recovers the standard O(n) models. There, for d = 2, the n = 2 version has the BKT
transition discussed above, while for n > 2 there is no positive-temperature transition. In [69], [70]
and [71] numerical evidence for the existence of first-order transitions in the n = 2, n = 3 and
n = ∞ (spherical) models respectively in d = 2 dimensions for sufficiently large p was proffered.
A rigorous proof of the existence of first-order transitions in these models was given by van Enter
and Shlosman [72] These transitions can occur in d = 2 dimensions despite the implications for
zero magnetization coming from the Mermin-Wagner theorem [3] and despite the high-p models
sharing the same dimension, symmetries range of interaction as the standard p = 1 versions.

In three dimensions, where the Mermin-Wagner theorem does not apply, the standard O(n)
models, given by (19) with p = 1, have second-order transitions described by n-dependent critical
exponents. Again, the traditional notions of universality would imply that such behaviour is inde-
pendent of p. However, sufficient nonlinearity (sufficiently large p) can cause first-order transitions
in these models and the rigorous proof of [72] extends to these d = 3 cases too.
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Table 6. Summary of the status of some highly (i.e., sufficiently) nonlinear models and some
recent developments considered in this paper. Here m is the dimension of the defects.

Model d Homotopy group, Status
defect type (and m)

n = 2, P4 2 Z, vortices (m = 0) BKT-like transition [68]

n = 3, P4 2 Z2, vortices (m = 0) 1st-order transition [62,67]

n = 3, P4 3 Z, monopoles (m = 0) 1st-order transition [66]
Z2, vortices (m = 1)

Nonlinear O(n) 2 n = 2: Z, vortices (m = 0); 1st-order transition for
no defects if n > 3 n = 2, 3,∞ [69–71]

and generally [72,73]

Nonlinear RPn−1 2 Z2, vortices (m = 0) 1st-order transition [73]

Nonlinear O(n) 3 n = 2: Z, vortices (m = 1); 1st-order transition [72]
n = 3: Z, monopoles (m = 0);
no defects for n > 4

Nonlinear RPn−1 3 n = 3 only: Z, monopoles (m = 0); 1st-order transition [73]
n > 3: Z2, vortices (m = 1)

In [73], it is rigorously shown that various sufficiently nonlinear models of the RPn−1 type also
exhibit first-order transitions in d > 2 dimensions. Here, the Hamiltonian is of the form

E = −
∑

〈i,j〉

(

1 + (~si~sj)
2
)p

. (20)

From these recent developments, it is clear that the notion of universality has to be extended to
include the degree of nonlinearity as a significant factor. For an overview of recent developments
in nonlinear models, see [74] and table 6.

10. Conclusions

Topology plays an important role in condensed matter physics. In particular, homotopy theory
facilitates the understanding and classification of the conditions which permit the existence of
topological defects – domain walls, vortices, monopoles and so on. After an expeditious introduction
to the essentials of homotopy theory, a variety of topologically mediated phase transitions has been
surveyed, starting with the BKT transition in the XY model in two dimensions – the paradigm for
such studies. After three decades of work, the detailed perturbative RG predictions of [4,5] have
been confirmed in that model through taking multiplicative logarithic corrections into account.
Furthermore, recent progress in confirming the vortex-binding mechanism as that mediating the
phase transition in the XY model has been reviewed to complete an account of the current status
of one of the most beautiful and remarkable models of theoretical physics.

Besides the XY model, a number of other phase transitions have been briefly examined, some
of which are topologically-mediated. Some open problems have been highlighted, the resolution of
which now stands at the forefront of modern analytical and numerical investigations into statistical
mechanics.
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28. Berche B., Fariñas Sánchez, A.I., Paredes V R., Europhys. Lett, 2002, 60, 539; Berche B., Phys.

Lett. A, 2002, 302, 336.
29. Berche B., J. Phys. A, (2003), 36, 585.
30. Hashim R., Romano S., Int. J. Mod. Phys. B, 1998, 12, 697. Palma G., Meyer T., Labbé R., Phys.
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Questions and answers

Q (Alexander López): You use the homotopy groups to calculate a relation between the di-
mensionality of the medium and that of the defects. How do you know to which topology
(explained in the first part of your lecture) it corresponds?

A It is easier to conceive of the relationship working the other way around, in a sense. Given
the dimensionality d of the medium, the issue is what type of topological defects may exist.
The answer to this question is that m-dimensional topological defects may exist if πd−m−1 is
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non-trivial. Put another way, if πd−m−1
∼= {0} for all m, then no (stable) topological defects

exist.

Q (Rafael Rangel): You can look for the possible defects but do they exist?

A Topology cannot tell us whether they actually exist. It merely tells us if the conditions are in
place for the existence or non-existence of such defects. Thus topological statements that rule
out the existence of certain objects are stronger than the ones which permit their existence. If
topological considerations allow for the existence of defects, we must then appeal to physical
arguments to decide whether or not they actually exist. I.e., topology gives us the necessary
but not sufficient conditions for the existence of defects.

Q (Bertrand Berche): What can you say about the stability of these solutions? Can you use
homotopy arguments to comment on the stability of possible defects?

A The topological entities we have discussed are stable in the sense that no continuous defor-
mations can transform them away. Homotopy is the tool which determines whether or not a
defect is stable. As we have seen, one maps the defect in physical space onto a generalized
loop in the order-parameter space. If this loop can be continuously contracted to a point, the
defect is not stable. This gives rise to the idea of the winding number. Such charges must
be conserved and it is this fact that guarantees the stability of an isolated defect. However,
defects and anti-defects can mutually annihilate. Indeed, this is what happens in the d = 2
XY model, for example, as the temperature is lowered - the vortices and antivortices start to
coalesce and eradicate each other. In this sense topology ignores energetic arguments, which
may lead to the absence of defects.

Q (Wolfhard Janke): Can you comment explicitly on the RP2 case?

A For RP2, in a d-dimensional medium, topological defects of dimension m may exist if
πd−m−1(RP2) is non-trivial. Thus domain walls of dimension m = d − 1 would possibly
exist if π0(RP2) is non-trivial. This is not, however the case, because RP2 is simply con-
nected. Vortices may, however exist, in any dimension. These are (d−2)-dimensional entities
in d-dimensional space (see table 3). In this case, π1(RP2) ∼= Z2, so only one type of vortex
exists and that is its own anti-vortex. I.e., if two vortices meet, they annihilate each other.
In three dimensions, on the other hand, since π2(RP2) ∼= Z, monopoles of any integer charge
can exist in a medium with this order-parameter space.
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