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A new stochastic model of economy is developed that takes into account the choice of consumers are the de-
pendent random fields. Axioms of such a model are formulated. The existence of random fields of consumer’s
choice and decision making by firms are proved. New notions of conditionally independent random fields and
random fields of evaluation of information by consumers are introduced. Using the above mentioned random
fields the random fields of consumer choice and decision making by firms are constructed. The theory of
economic equilibrium is developed.
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1. Introduction

The proposed stochastic model of economy contains a new approach to the description of
consumer choice and making a decision by firm. This description is based on real observations
of consumer choice that is described by probability measures ensemble given on budget sets of
consumer. This description differs from classical description of consumer choice and making a
decision by firm because consumers and firms make their choice and decision having information
about the state of economy and their choice or decision depend on the available information. Our
approach permits to construct random fields of consumer choice and making a decision by firms
that are dependent random fields. This is very important because as Pareto showed the distribution
of wealth for several nations has a power law. This result it is impossible to obtain if we restrict
ourselves to classical description of consumer choice and take into account that consumers make
their choice independently [6]. We develop the theory of economic equilibrium that is as strict
as in the classical approach [2]. We also develop algorithms of finding equilibrium states that are
constructive and are also applicable to the classical case [4,5].

Such an approach solves the problem that the wealth in several societies is distributed according
to Pareto law [7,6].

2. General notions

The paper presents some results expounded in detail in [1]. Let S € R} be a set of possible
goods that are ordered and B(.9) is Borell o-algebra of subsets of S. For example,

S:{:c:{:ci}?zl,:cER?_,ngcigci,z‘:l,n}, c; >0, i=1,n.

We assume that the set of possible prices K is also ordered and it is a certain subcone of the
cone R}, B(K?) is Borell o-algebra of subsets of the set K. Suppose that in an economic system
there are m firms that are described by technological mappings F;(x), X;, i = 1, m, where X is
an expenditure set of the i-th firm, F;(x) is the set of plans at the expenditure vector z € X;. It is

convenient to assume that the firms are ordered and for further consideration a set of productive
m

processes I'; = {(z,y), z € X; C S, y € F;(x)} of the i-th firm is only important. By I'" = [] T';

i=1
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we denote the direct product of the sets T';, i = I, m. By [I™]¥ we denote the k-multiple direct
product of the set I, B([['™]*) is Borell g-algebra of subsets of the set [["™]*, k = 1,2, .... Budget
set of an i-th insatiable consumer is given by the formula

X(ip,z) :{:L'a z €S, (p,:E>:K¢(p,Z)}, pGKfﬁ, ZGFm, i=1,1,

where K;(p,z) is a profit function of the i-consumer. Further we use the following notation:

{X(kp’sz)k, B(X(kfz)k)} is the direct product of budget spaces

(X3, .00 BXS, )Y i=Tk k=Too

for every s =1, 1.

Definition 1 A technological mapping F(z), x € X, belongs to a class of CTM (compact techno-
logical mappings), if the domain X C S is a closed bounded convex set such that 0 € X, 0 € F(0),
and F(z) is a Kakutani continuous technological mapping that takes the value in the set of the
closed convex bounded subsets of the set S. Moreover, there exists a compact set Y C S such that
F(z) CY, for allx € X.

Definition 2 A set of functions K?(p,u), i = 1,1, defined on the set K% x '™, that take the
values in the set RY, we call profit prefunctions of consumers if it satisfies conditions:

1. K9(p,u) is a measurable mapping of the measurable space {I'™, B(I'™)} into the measurable
space {R', B(R")} for every p € K7, i =1,1;

!
2. For every p € K the set D(p) = [ Di(p) is non empty, where
i=1

Di(p) ={uel™, Kl(p,u) 20}, i=11

3. K{(tp,u) = tKQ(p,u), ¢>0, (p,u)e K} xI™ i=11

Definition 3 Let m firms be described by technological mappings Fzﬁ), r € X;, i = 1,m,
and an i-th consumer have the vector of property b;(p,z) > 0, @ = 1,l. Assume that for every
(p,z) € KT x I'™ there exist productive processes

(Xl(p,Z),Y;(p,Z)), Xl(pwz) EXM Y;(p,Z) GE(XZ(p7Z))7 1= 1am7
that satisfy the conditions:

1. (Xi(p,2),Yi(p,2)) is a measurable mapping of the measurable space {I'™, B(I'™)} into the
measurable space {I';, B(I';)} for every p € K%, i =1,m, where B(I';) is Borel o-algebra of
subsets of the set T';.

2. (Xi(tp, 2),Yi(tp, 2)) = (Xi(p, 2),Yi(p,2)), t>0, (p,z)e K} xI™.

A measurable mapping Q(p, z) of the measurable space {I'"™, B(I'™)} into itself for every p € K7,
given by the formula

we call a productive economic process if for every p € K7 the set of values Q(p,I'"™) of the mapping
Q(p, z) belongs to the set

m l

G(p) - {Z € Fmv R(p,Z) € S}a R(p,Z) = Z[yl - xz] + Zbk(paz)a

i=1 k=1

where bi(p,z) = 0, i = 1,1, is an initial vector stock of goods of the i-th consumer at the initial
moment of economy functioning.
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Definition 4 A set of functions K;(p, z), i = 1,1, given on the set K7 xI'™, that are measurable
mappings of the measurable space {I'™, B(I'™)} into the measurable space {RY,B(RLY)} for every
p € K%, we call profit functions of consumers, if there exist a set of profit prefunctions of consumers
Kio(p,z), i = 1,1, a productive economic process Q(p,z), given on the set K x I'™, such that
Q(p,I'"™) belongs to the set D(p) from the definition 2 and for every p € K7 there hold equalities:

1. Ki(p,z) = K)(p,Q(p,2)), (p,z) € K} xT™, i=1,l;

Definition 5 Let [ consumers be described by profit functions K;(p,z), i = 1,1, given on the
set K x I'™, and m firms be described by technological mappiriFi(:E),:E € X;, i = 1,m. The
description of consumers is completely given if for every s = 1,1 and on every direct product

{X(kp’ir)k’ B(X(k;;,sz)k)} of budget spaces

{X(si”“z%)’ B(X(spiazi))}, =

a probability measure

F;hwpk(Aﬂzlv'"’Zk)v A? EB(X(ICZ;,SZ);C)a s=1,1,

1s given for all
{pr.opiy € (KPR, {z1,..,z} € [I™F, k=1,2,....

The measure F,, , (A®|21,..., z) is the probability that the s-th consumer chooses the collection

o
of goods from the set A° € B(X(Icz;sz)k) on the assumption that in the economic system the productive
processes {z1,...,zx} € [[™]F were realized on conditions that the prices vector {p1,...,pr} €
(K" was carried out correspondingly.

Definition 6 Let [ consumers be described by profit functions K;(p,z), i = 1,1, defined on the
set K x I'™, and m firms be described by technological mapping Fi(x),x € X;, i = 1, m.

If there exists a probability space {Q, F,P}, | random fields &(p), p € K%, i = 1,1, de-
fined on it, that take the values in the set of possible goods S and m random fields ((p) =
ni(p),....,n% ()}, pe K, on the same probability space that take the values in the set of possible
productive processes I'™ such that

P ({gz(pl)a e 7fz(pk)} € AZK(pl) =21y 7<(pk) = Zk) = Fél,...,pk (Ai|zlv ceey Zk)a
Al e B(X(’;;fz)k), i=1,1,

then the random field &;(p) is called the random field of choice of the i-th consumer that is described
by the probability measures ensemble

F; Az, z), A GB(Xk’i

@en) P L

17»»»,Pk(

the random field n°(p), s = 1, m, is called the random field of decision making by s-th firm relative
to productive processes.
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Theorem 1 Let X be a bounded closed convex set every point of which is internal for a set X
and F(x) is down convex technological mapping from the CTM class, given on the convex compact
set X1. For every sufficiently small € > 0 there exists a continuous strategy of firm behaviour

@), 4°(),  ¥°(») € F(2°(p))

such that
sup [o(p) = (y°(p) — 2°(p), p)| < e,
pEP
where
¢(p) = sup sup (y —z,p).
z€X yeF(x)
3. Axioms of random consumer’s choice and decision making by firms

Under uncertainty conditions the description of economy is given if for every fixed s, s = 1,1,
a family of finite dimensional conditional distributions

Fyoop (A 21, 2)
satisfies the conditions:
1) L (A¥|z1,...,2;) is a probability measure on the o-algebra of Borell subset A* €
B(X (k;;sz) k) for every fixed values of variables

{pl,...,pk}GKﬁk, {z1,..., 2} € ™k, k=1,2,...,

and for every fixed A, € B(S*) F5 . (AsN X(kp’sz)k |z1,...,2r) is a measurable mapping of

the measurable space {[I"™]¥, B([['"™]*)} into measurable space {[0, 1], B([0, 1])};
2) for every permutation 7 of indexes {1,...,k} there holds the equality

F? (HgAk|Z7T(1),...,Zﬂ.(k)) =F (Ak|21,...,zk), k:1,2,..

Pr(1)ssPm(k) P1;---5Pk T

where I19 A* is the image of the set A* € B(X(Iz;sz)k) under transformation II9 of the set S*

into itself: 10z = ey, ey}, ¢ = {21,..., 21} € S*¥. where 7 is a permutation of
indexes {1,...,k};

. k A . . . . ‘s
3) B o <AJ X z‘—l]_'[HX(ép"’zi) 21, .- .,Zk) =F5 b (AT|z1,...,25), Al eB (X(J;,,Z)j) ;

4) Fg

For ot (Ak|z1, ce zk) =Fp o (Ak|zl, ce zk) , Vt>0

and a family of unconditional finite dimensional distributions

Uprop(BY),  BF € B(L™%), pie K}, i=1Fk k=12...,
satisfies the conditions:

1) w;l)17~~~,pj (B]) = wl)la---apk (Bj X [Fm]k_j) ’ Bj € B ([Fm]]) )
k=j+1,7+2,..., ¢,,(T™)=1;
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2) for every permutation 7 of indexes {1,...,k}

d}pﬂ(l),m,pﬂ(m (Hlchk) = wphm,pk (Bk)a k= 1,2,...,

where I1} B* is the image of the set B¥ under transformation I} of the set [I"]* into itself:
Mz = {za(1)s- s 2ai) }> 2 = {21,---, 2k} € [[™]*, where 7 is a permutation of indexes

{1’ MR k};
3) wtl’hm,tpk (Bk) = wm,m,pk (Bk)a Vi>0, k=1,2,...;

4) If b;(p, 2) is a stock vector of goods of the i-th consumer, i = 1,[, at the initial moment of
the economy functioning that is a measurable mapping of the measurable space {I'"™, B(I'™)}
into the measurable space {S, B(S)} for every p € K7, and

G(p) - {Z erm, R(p,Z) € S} € B(Fm)a

where
m 1 )
R(p,z) = Z[yz -z + Zbk(pwz)’ 2" = (zi,yi) € Ty,
i=1 k=1
then for all p € K7
/ Yp(de) = 1.
G(p)

1
By (DX AL x ... % Ap) = /HF;I vvvvv " (AZ- mxgjz)km,...,zk) Ay (21, 20,
D =1

where D € [B(I'™))*, A; € B(S*), i = 1,1, we call the finite dimensional distributions of [
consumers choice and decision making by m firms, where

k k
A =1J45 D=]]Di ALeB(S), i=
s=1

i=1

1,I, s=1,k.

The economic sense of @, ., (D x A; x...x A;) is the probability that the i-th consumer chooses
a set of goods from the set AL € B(S) on the assumption that the firms have made a decision as to
the productive processes that belong to the set Dy € B(I'™) and the price vector in the economic
system is p, € K, i = 1,1, s=1,k.

Theorem 2 Let a set of conditional finite dimensional distributions

% A ] ki .
Fpl (A |21,...,Zk), AzeB(X(p:Lz)k>’ i=1,1, s=1,k,

5o Pk

and a set of unconditional finite dimensional distributions ¥y, .. (D), D € B(I™¥), k=1, 00
satisfy the above formulated axioms. The function of sets given by the formula

i

l
Oy (DX Ay x .. x A = /HFppk (AN XL T2t 2k) AW, (15 20)
p =1

on the sets of the kind

Dy X...xDpx Al x ... x AV x ... x A} x ... x AF, Af € B(S), D; € B(I'™),
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where the set A; has the form A; = Al x ... x A¥ i = 1,1, and the set D is of the kind D =
Dy X ...Dyg, admits an extension on the measurable space

Vi = {[I x S, BI™) x B

that is, there exists a family of measures bl L* (E), given on the measurable space Vi, such
that for every fized {p1,...,pr} € K% and E € [B(I™) x B(S")]* every measure of the family
is a measurable mapping of the space L = {[[™] [B(I'™)]¥ into the space {R', B(R')} and the
extension is given by the formula

By (E) = / P Bty (1, 28).

(rmy*

The extension satisfies the conditions:

_ k
cI)P«(l),---m«(k) (HiE) = (I)p17~~~,pk (E)v E e [B(Fm) X B(Sl)] ’ (3)

r

ci)1717~~~,pk (A X (Fm X Sl)k_r) = (i)p17~~~,Pr(A)a A € [B(Fm) X B(Sl)] ) (4)

where I3 E is the image of the set E under transformation 102 of the set [[™ x SY* into itself:
2 {ws,...,wp} = {wa@y, -y Wrey } wi = {2,205, .. 2 € T™ x St and 7 is a permutation of
indexes {1,...,k}.

Theorem 3 The family of finite dimensional distributions @y, ... . (E), where {p1, ..., px}€ [K}]¥,
and E € [B(I'™) x B(SY)]¥, that was constructed in the theorem 2, satisfies the conditions of the
Kolmogorov theorem with the full separable metric space of state X = I'"™ x S' and the o-algebra
subsets ¥ = B(I'™) x B(S') and, thus, the family generates a unique measure P on the measurable
space {XT 3T} such that the family of finite dimensional distributions of a random field

vp(w) = {Co(p), &1 (D), -, &)} =w(p), wlp) e X", peKY,

coincides with the family ®,, . .. (E), that is,

P(we XT {1, (@), ., vp (W)} € B) =®PPe(E),  Ee [BI™) x B(SH]" .

By XT we denote the set of all functions, given on the set T = K, with the values in the set
X =T™ x S, ©T is the minimal o-algebra, generated by cylindrical sets of the kind

{wp) € X7 vy, (@), vp (W)} € EY,  Ee [BI™) xB(SH]" .

4. Conditionally independent random fields

Definition 8 Let {Q, F, P} be a measurable space. A family of sub o-algebras {B;,i € I} of the
o-algebra F is called conditionally independent with respect to a sub o-algebra B C F, if

M x51B p = [] M{x;|B}

Jels Jels

for every finite subset I, C I and a family of random values {X;, j € I}, where X; is Bj-measurable
positive random value.

Definition 9 Let [ random fields of consumers choice &1(p),...,&(p), p € K7, be given on the
probability space {Q,F, P} and take the values in the set of possible goods S, that is, they are
measurable mappings of the measurable space {Q, F} into the measurable space {S, B(S)} for every
fived p € K%, and let random fields of decision making by m firms ((p) = {n?(p),...,n% (p)} be
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measurable mappings of {0, F} into {I',B(I'™)} for every fived p € K%. The random fields of
consumers choice are conditionally independent relative to random fields of decision making if
o-algebras

conditionally independent relative to o-algebra Fo = F{((p), p € K1}, where o-algebras F;, i =
0,1, are minimal o-algebras generated by the family of random values {¢(p), p € K1} for i =0
and the family of random values {&;(p), p € K}'} fori=1,1.

In the next theorems, we assume that the productive economic process Q(p, z) and vectors of
initial stock of goods by (p, z), k = 1,1, are continuous functions of variables (p, z) € K7} x '™ with
the values correspondingly in the sets I'™, S. The next theorem is very important for a construction

theory of economic equilibrium.

Theorem 4 Let a random field nf(p,z,w;), (p,z) € K% x I'™, given on the probability space
{Q4, Fi, Pi}, be a continuous function of (p,z) € KT x I'"™ for every w; € §, take values in
S, i = 1,1, and a random field Co(p,wo), p € K7, given on the probability space {Qo, Fo, Po},
take values in the set I'™ and every realization of the field be continuous function of p € K.
MOT’@O’U@T’, let ng(tpvsz) = ng(pazaw)a 1= ]-ala t > 07 C()(tp,W()) = CO(paw(J)a JARS K?—a t> 0; and
Ki(p,2),i = 1,1, be profit functions of consumers that satisfy all the conditions of definition 4 and
be continuous functions of variables (p,z) € K7 x I'™. If

<77'L0(p7 Z7wi))p> > 07 771(]77 Z7w’i) = 7710(177 Q(pa Z),Ldi),
(p,z,w;) € K x T™ x €, 1=1,1,
P; (<n?(pazawl)ap> <OO) :]-a (p,Z)GKi era 2:77
then the random fields
K; i\s ) y Wi . T3
£(pow) = P, o wo))mp, P, wo)ws) ;15 5)

<7’Z(pa CO(pa wO)awi)7p>
are continuous on the probability space {Q, F, P} for each realization, where

l

l l
o=[[e F=[[x r=]]~,
=0 =0

1=0

that can be identified with random fields of choice of insatiable consumers on the same probability
space under the condition that ((p,wo) = Q(p, Co(p,wo)) are identified with random fields of decision
making by firms as to the productive processes.

The random field n¥(p, z,w;) is called the random field of evaluation of information by an i-th
consumer, i = 1,1[.

Definition 10 Let

771(]77 Co(p7w0)7w’i) = n?(pag(p7w0)7wi) = {n?k(pag(p7w0)7wi)}z=l5 1= 17la

and ((p,wo) = Q(p, Co(p,wo)) be the random field as in the Theorem 4. By demand vector of an
i-th insatiable consumer we denote a random field

Yi(p) = vi(p, wo, ws) = {Vix(P) } o1, @ = 1,1,

where

pkniok(pag(p7w0)7wi) 7 k=1,_n, i

|
—

%‘k(p) = %‘k(p,wo,wi) =
Zl n?s(pag(p7 w0)7wi)ps
s=
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A random field of choice of the i-th insatiable consumer is connected with the demand vector of
the i-th insatiable consumer by the formula

D@L pyg) = Kty Galpan)), =T
Pk

o~

&ilp) = { : (6)

k=1

~ik(p) has the following economic sense: the part of the profit of the i-th consumer he spends to
buy the k-th good.

A demand of society is described by a demand matrix ||v;; (p)||i?=1 All the statements proved
for the case of insatiable consumers are valid if not all consumers are insatiable.

Definition 11 An economic system is in the Walras equilibrium state if there exists a price vector
p*, m productive processes

(@i ("), i (@), = (p7) € X; yi () € Fi(27(p")), i=Tm,

such that the following inequalities

o(p*) < P(p*), (7)
(o(p™),p") = (¥ ("), p"), (8)
hold, where p* = (p3,...,pk) is an equilibrium price vector, F;(x) is a technological mapping of

the i-th firm, i =1, m.

Inequality (7) means that in the equilibrium state there exists a price vector p* while the demand
of society does not exceed proposition and the equality (8) means that the value of goods that
society wants to buy is equal to the value of goods offered for consumption. The price vector p*,
that guarantees the fulfilment of (7) and (8), is called equilibrium price vector.

Definition 12 Walras equilibrium state of economy is called optimal if the following conditions

(y; (%) — i (p*),p") = sup sup (y—z,p"), i=1,m,
z€X; yeF;(x)

are valid where X; is the expenditure set of an i-th firm, F;(x) is its technological mapping.

5. Theory of economic equilibrium

In the next theorem we assume that the matrix || (p)||i£1 x—1 s not necessarily generated
by random fields of evaluation of information by consumers and it is arbitrary which satisfies the
conditions of this theorem.

Theorem 5 Let technological mappings Fi(x), v € X}, i = 1,m, be down convez, belong to CTM
class, a productive economic process Q(p,z) and a family of profit prefunction K?(p,z), i = 1,1,
be continuous mappings of variables (p,z) € R} x I'™ and random fields of decision making by
firms satisfy the conditions of the theorem 4. Moreover, if the productive economic process Q(p, z)
satisfies the condition

R(p, Q(p, 2)) >

07
R(p,Z) = é[y’t - Ii] + i bj(p,Z),

Jj=1

peR, p#0 zeI™, (9)

then for every continuous matriz || (p)||i=7f w1, given on R, the rows of that satisfy the condi-

tions
n

k=1
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and continuous realization z(p) = {zi(p) = (zi(p), v:(P)) Y21 of random fields of decision making
by firms n0(p), i = 1,m, the set of equations

l m l
Zm (P)Di(p) = pi | > _lyi(p) — zix(p)] + Z bir(p,2(p)|,  k=T1n (11)

i=1

is solvable in R™, where D;(p) = K?(p, z(p)), i=1,l.

Theorem 6 Let technological mappings F;(z), x € X}, i = 1,m, be down convez, belong to CTM
class, a productive economic process Q(p, z), a family of profit prefunctions K2(p,z), i = 1,1, be
continuous mappings of variables (p,z) € R’} x I'™, and random fields that describe the consumers
and firms satisfy the conditions of the Theorem 4. Then with probability 1 there exists the Walras
equilibrium state, that is, for every realization of random fields that describe consumers and firms
there exists a corresponding price vector p* € R} such that the economic system is in Walras
equilibrium state. Moreover, if realization of random fields that describe the consumers and firms
1s such that between them there exist realizations that are arbitrary close to optimal behaviour
strategies of firms in the sense of the Theorem 1, then with probability 1 there exists an optimal
Walras equilibrium state.

Theorem 7 Let technological mappings F;(z), z € X}, i =1,m, a productive economic process
Q(p, 2), a family of profit prefunctions of consumers K?(p,z2), i = 1,1, satisfy the conditions of
the Theorem 6. Random fields that describe the consumer’s choice and decision making by firms
are continuous with probability 1. Moreover, if a productive economic process Q(p, z) satisfies the
condition

R(p,Q(p,z)) >0, peR}, p#0 zeI™, (12)
Rip.2) = Sl —ail + 5,0,

i J

then for every continuous on RY demand matriz ||y (p)||é’=7f7k=1, that satisfies conditions of the
Theorem 6, and a realization of random fields of decision making by firms z(p), that is, with

probability 1 every Walras equilibrium price vector p satisfies the set of equations

l m l

> in®)Di(p) = pi | > _lwin(p) — zin(P)] + Y bir(p, 2(p)) | , k=T1n. (13)

i=1 i=1 i=1
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IHbopmauiiiHa MoaeNib eKOHOMIKU

M.C.loHuyap

IHCTUTYT TeopeTuyHoi ¢isukm iMm. M.Boronio6oera,

ByJl. MeTponoriyHa, 14 6, Kuig, 03143, YkpaiHa

OtpumaHo 11 nunHsa 2005 p., B OCTaTO4HOMY BUMMaAi — 7 niotoro 2006 p.

P0O3BMHEHO HOBY CTOXaCTUYHY MOAENb EKOHOMIKM, fIka BPaxOBYE B3a€MO3aNIEXHICTb BUNaAKOBUX MONIB
BMOOpPY cnoxmneavie. MobyaoBaHO akciomaTuKy Uiei Moaeni. JloBeaeHo iCHYBaHHS BUNAAKOBUX MOJIB BU-
60py CNOXMBaYiB Ta NPUAHATTS pilleHb GpipMamn. BBeAeHO HOBE NOHATTS YMOBHO HE3aNeXHMX BUNaaKo-
BUX MOJiB, 32 ONOMOIOI0 SKMX NoOyA0BaHO 3a3HayYeHi Bunaakoei nons. NMobyaoBaHO TEOPil0 €KOHOMIYHOT
piBHOBaru B Lii moaeni.

Knio4oBi cnoBa: TexHO/I0rYHI Bigo6paxeHHs, MPUAHATTS pilleHb gipMamy, BUPOOHUYME NpoLec

PACS: 89.65.G
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