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Applicability of the method of intermediate problems to the investigation of the energy eigenvalues and eigen-
states of a quantum dot (QD) formed by a Gaussian confining potential in the presence of an external mag-
netic field is discussed. Being smooth at the QD boundaries and of finite depth and range, this potential can
only confine a finite number of excess electrons thus forming a realistic model of a QD with smooth inter-
face between the QD and its embedding environment. It is argued that the method of intermediate problems,
which provides convergent improvable lower bound estimates for eigenvalues of linear half-bound Hermitian
operators in Hilbert space, can be fused with the classical Rayleigh-Ritz variational method and stochastic
variational method thus resulting in an efficient tool for analytical and numerical studies of the energy spec-
trum and eigenstates of the Gaussian quantum dots, confining small-to-medium number of excess electrons,
with controllable or prescribed precision.
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1. Introduction

Various theoretical and experimental aspects of the physics of nano-sized and low-dimensional
systems have been under steady uninterrupted development for decades, but only in the last ten-
fifteen years of research activities in the field, considerable extra momentum has been gained
which can be partly ascribed to the progress in nanofabrication of these systems, partly to the
development of new experimental techniques but, most of all, to a general continuous trend and
desire to diminish the size of components of integrated electronic circuits down to the so-called
mesoscopic scale. Among low-dimensional systems of various kinds, quantum dots are potentially
fit for many practical applications and are currently thought to be promising building blocks for
novel electronic, spintronic and optoelectronic devices.

Reliable estimation of the energy spectrum and eigenstates of a quantum dot is a typical purpose
of almost every theoretical study because their properties crucially stipulate the relevant physical
characteristics of the quantum dot standing alone as a part of electric circuits or interacting with
the environment through its various interfaces.

As a matter of fact, nearly all the mathematical methods, developed within the domain of quan-
tum mechanics so far, have already been employed in the theory of quantum dots in various specific
applications though on a varying scale. The most frequently applicable methods of approximate
calculation of eigenvalues and eigenstates of realistic physical models of low-dimensional quantum
systems, quantum dots among them, are various numerical methods which permit either direct
calculations of the magnitudes in question without proper error estimates or, at best, provide the
calculations with nonincreasing or even convergent upper bounds for the eigenvalues. The widely
applicable Rayleigh-Ritz method does it but, again, without error estimates.

To control the error of the approximations provided by the upper bounds for some quantity
it would be enough to derive the corresponding lower bounds which are highly desirable to be
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convergent. Therefore, the development of regular methods to construct such bounds bears a lot
of theoretical and practical significance but represents a much more challenging task than deriva-
tion of the upper bounds. As to various models of quantum dots, the most suitable ground to
fulfill this task would be the method of intermediate problems ascending in its basic idea to the
maximum-minimum characterization of eigenvalues of half-bounded Hermitian operators in Hilbert
space introduced by H. Weyl [1] and elaborated later by numerous contributors [2,3] with regard to
the problems of classical and quantum mechanics. Being supplemented with regular Rayleigh-Ritz
or newly developed stochastic variational method [4], the method of intermediate problems may
serve as a powerful tool for investigation of the energy spectrum of few-body quantum systems
with prescribed or controllable precision and would permit to verify the results obtained by other
numerical and analytical methods [5]. A stochastic variational method can also be developed on
its basis [6] permitting, in principle, the construction of improvable lower bounds for energy eigen-
values of realistic models of quantum dots confining a relatively large number of excess electrons.
Numerical studies of the latter systems proved to be especially difficult and time-consuming if un-
dertaken by means of direct numerical solution of the underlying Schrödinger equation leading to
highly multidimensional grids, or by regular variational approaches resulting in prohibitively large
sets of basis states. It is worth noting, that whenever a particular algorithm based on the method
of intermediate problems is applied in order to get lower bound estimates for energy eigenvalues,
the corresponding eigenstates would result immediately as a concomitant outcome of the calcula-
tions. Error estimates for the so derived eigenstates can also be obtained but, which appears to be
more effective, such error estimates can also be derived for the approximate eigenstates calculated
within the framework of the Rayleigh-Ritz regular or stochastic variational method [4] provided
that the lower bound estimates for the corresponding energy eigenvalues are known. Equally, under
the same premises, expectation values (matrix elements) of physically relevant operator variables
(dipole or quadruple moments of a quantum dot, for example) calculated with respect to these
Rayleigh-Ritz approximate eigenstates can be given their respective error bound estimates too.

2. Quantum dot formed by a Gaussian confining potential

In what follows, a model of a quantum dot confined by a Gaussian potential in an external
uniform magnetic field B will be considered

H =

N
∑

i=1

1

2m∗
e

(

p̂i +
e

c
Â(ri)

)2

+

N
∑

i=1

V̂ (ri) +

N
∑

i<j

e2

εr̂ij
+

N
∑

i=1

g∗µB

~
B · Ŝi . (2.1)

Here m∗
e is the electron conduction-band mass, e is the absolute value of the electron charge, g∗

is the effective g factor and indices i, j label the electrons. The Coulomb interaction between the
excess electrons is assumed to be proportional to the inverse effective dielectric constant of the
bulk material ε and an the inverse interelectron distance rij = |ri − rj |. The vector potential Â(r),

(B = rotA) is introduced in the symmetric gauge, Â(r) = B/2(−y, x, 0), and V̂ (r) is the attractive
Gaussian potential

V̂ (r) = −V0 exp(−r2/2R2) (2.2)

with the depth of the potential well V0 > 0 and the range R, and r = |r|, where r = (x, y) for 2D
quantum dots and r = (x, y, z) for 3D quantum dots.

For the sake of simplicity and clarity, we limited our present research to the case of two-
dimensional quantum dots, though, as will be seen later, generalization of the outlined approach
for the case of three-dimensional spherical quantum dots embedded into a supporting matrix is
straightforward.

The usage of a Gaussian potential is advantageous in comparison with other commonly em-
ployed types of potentials. This potential possesses the finite depth and range so that it can confine
only a finite number of the excess electrons, which fact mimics the actual experimental situation
properly. In the vicinity of the dot center this potential can be approximated by the parabolic po-
tential routinely applicable in countless dot model studies so far. Therefore, the whole body of the
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theoretical results obtained for parabolic potentials presently would hold at least approximately
for Gaussian potentials for some range of model parameters.

3. The one-electron eigenvalue problem

3.1. The one-electron Gaussian quantum dot model

To our knowledge, no analytical solutions have been obtained so far for the one-electron eigen-
value problem set by the Hamiltonian

Ĥ(i) =
1

2m∗
e

(

p̂i +
e

c
Â(ri)

)2

+ V̂ (ri) +
g∗µB

~
B · Ŝi (3.1)

with the attractive Gaussian potential (2.2) even without an external magnetic field though several
attempts have been undertaken to solve this problem for the latter case approximately [7–11] due
to the role the potentials of this type play in nuclear physics describing the scattering of complex
nuclei [12]. Contrariwise, normalized eigenstates of the Hamiltonian

Ĥ0(i) = Ĥi0 + Ĥsi0 =
1

2m∗
e

(

p̂i +
e

c
Â(ri)

)2

+
g∗µB

~
B · Ŝi (3.2)

are well known [13] and can be presented as

Ψnmσ(r, φ, s) = ψnm(r, φ)χσ(s) =
1√
2π

eimφRnm

(

r2

2a2
0

)

χσ(s), (3.3)

where χσ(s) is a spin function and the radial part is given by

Rnm(x) =
1

a0

√

n!

(n+ |m|)! exp
(

−x
2

)

x
|m|
2 L|m|

n (x), (3.4)

where L
|m|
n (x) is a generalized Laguerre polynomial. The corresponding eigenvalues are

Enmσ = Enm + Eσ = ~ωc

(

n+
|m| +m

2
+

1

2

)

+
g∗µB

~
Bσ, (3.5)

where σ = ±1/2, n = 0, 1, . . . , m = 0,±1, . . . and µB is the Bohr magneton. It is seen that the
magnitudes ~ωc = (~eB)/(m∗

ec) and a0 =
√

(~c)/(eB) provide natural characteristic energy and
length scales. The energy eigenvalues (3.5) are infinitely degenerate and form the so-called Landau
levels. Due to this feature, the method of the intermediate problems cannot be applied directly to
this type of models. At the same time, the total angular momentum component

∑

i L̂
i
z is preserved

for the models (2.1) and (3.1) as well as the total spin component
∑

i Ŝ
i
z . Therefore, instead of the

model (3.2) with infinitely degenerate energy spectrum (3.5) as well as instead of the model (3.1)
one can consider a sequence of models reduced to subspaces labeled with the angular momentum
quantum number m and the spin quantum number σ. The energy contribution of the spin part of
the Hamiltonian (3.2) is trivially accountable and thus can be omitted. Therefore, further studies
can be limited to the treatment of the reduced Hamiltonian

Ĥi(m) =

∞
∑

n,n′=0

|nm〉〈nm|
(

Ĥi0 + ˆ̃V (ri) − V0

)

|n′m〉〈n′m| (3.6)

using the method of intermediate problems. Here an identity transformation of the Gaussian po-
tential was introduced

V̂ (r) ≡ V0

(

1 − exp(−r2/2R2)
)

− V0 ≡ ˆ̃V (r) − V0 , (3.7)

where the addition energy V0 can be currently dropped and then restored only upon the completion
of all the calculations. As will be seen in the next section, the necessity of this transformation stems
from the positivity condition (3.13).
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3.2. Basics of the method of intermediate problems

To make this proceeding self-contained, some technicalities of the method of intermediate prob-
lems are outlined here in brief. The starting point of the method is the standard time-independent
Schrödinger equation

Hψ = Eψ, (3.8)

where H is some Hermitian operator with respect to the inner product (φ, ψ) =
∫

φ∗ψdτ in Hilbert
space. It is assumed that all continuous energy levels of H are higher than the lowest discrete energy
levels of one’s interest. Let us also assume that these discrete eigenvalues of H can be ordered in
a nondecreasing sequence,

E1 6 E2 6 · · · . (3.9)

Eigenstates ψi, corresponding to the eigenvalues Ei, satisfy the equation

Hψi = Eiψi , (3.10)

and are assumed to be orthonormalized, so that

(ψi, ψj) = δij , (3.11)

where δij is Kronecker’s delta. It is further assumed that the Hamiltonian H can be decomposed
as

H = H0 +H ′, (3.12)

where H0 has the known eigenvalues and eigenstates and H ′ is an arbitrary Hermitian operator
which is to be positively definite in the sense that

(ψ,H ′ψ) =

∫

ψ∗H ′ψdτ > 0, (ψ 6= 0) (3.13)

for every ψ in the domain of H . Hereafter, it is assumed that the lowest part of the discrete
spectrum of H0 is below its continuous spectrum and that the corresponding discrete eigenvalues
can be ordered in the same manner (3.9) as the ones belonging to the total Hamiltonian H

E0
1 6 E0

2 6 · · · . (3.14)

The corresponding orthonormalized eigenstates ψ0
i satisfy the equation

H0ψ0
i = E0

i ψ
0
i , (ψ0

i , ψ
0
j ) = δij . (3.15)

Since H0 6 H in the sense of inequality

(ψ,H0ψ) 6 (ψ,Hψ) (3.16)

for every ψ in the domain of H , it follows from the Weyl comparison theorem [1] that

E0
i 6 Ei, (i = 1, 2, . . . ). (3.17)

Therefore,the eigenvalues of H0 already provide a rough lower bound to the eigenvalues of H . The
Hamiltonian H0 is called the base Hamiltonian as usual. It is worth noting that the decomposition
(3.12) is not unique and can be tailored to meet the requirements of a particular problem in
question.

The basic idea of the method of intermediate problems is to approximate the original Hamiltoni-
anH from below by a non-decreasing sequence of the so-called truncated intermediate Hamiltonians
H l,k. These Hamiltonians are to be constructed to satisfy the inequalities

H l,k
6 H l+1,k

6 Hk
6 H, (l, k = 1, 2, . . . ), (3.18)

H l,k
6 H l,k+1

6 H, (l, k = 1, 2, . . . ). (3.19)
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Therefore, the Hamiltonians H l,k increase whatever index k or l is increased and thus should give
improvable lower bounds for the lowest eigenvalues of the original Hamiltonian H . It was shown
[15] that the truncated Hamiltonians H l,k can be represented in a general form

H l,k = H l,0 +H ′P k, (l, k = 1, 2, . . . ). (3.20)

Here the Hamiltonian H l,0 is a truncation of the base Hamiltonian H0 of the order l defined as

H l,0ψ =

l
∑

i=1

(

ψ0
i , ψ

)

E0
i ψ

0
i + E0

l+1

[

ψ −
l
∑

i=1

(

ψ0
i , ψ

)

ψ0
i

]

, (l = 1, 2, . . . ), (3.21)

or, alternatively, in Dirac’s more transparent bra and ket notations

H l,0 =

l
∑

i=1

E0
i |E0

i 〉〈E0
i | + E0

l+1

[

Î −
l
∑

i=1

∣

∣E0
i 〉〈E0

i

∣

∣

]

, (l = 1, 2, . . . ) , (3.22)

where Î stands for the identity operator. Truncations of H0 satisfy the inequalities

H l,0
6 H l+1,0

6 H0, (l = 1, 2, . . . ), (3.23)

which were proved in general case in [17].
The operator P k defines a projection of an arbitrary vector φ in the domain of H onto the

subspace formed by a sequence of vectors p1, p2, . . . , pk :

P kφ =
k
∑

i=1

αipi , (3.24)

where constants αi should satisfy the equations

[

pj , P
kφ
]

= [pj , φ] =

k
∑

i=1

αi [pj , pi] , (j = 1, 2, . . . , k). (3.25)

Here an auxiliary inner product with respect to the metric operator H ′ was introduced as

[ψ, φ] = (ψ,H ′φ) =

∫

ψ∗H ′φdτ (3.26)

for every pair of vectors ψ, φ for which H ′ψ and H ′φ are defined. Vectors p1, p2, . . . , pk are to be
chosen linearly independent in the vector space with an inner product (3.26). These vectors are to
be normalizable but their explicit normalization is not required.

Projections P k become larger with the increase of the number k of the elements pi involved.
As a consequence, the following inequality holds

0 6 [φ, P kφ] 6 [φ, P k+1φ] 6 [φ, φ], (k = 1, 2, . . . ), (3.27)

which in the original vector space reads as

0 6 (φ,H ′P kφ) 6 (φ,H ′P k+1φ) 6 (φ,H ′φ), (k = 1, 2, . . . ). (3.28)

From equations (3.24, 3.25) it follows that

H ′P kφ =

k
∑

i,j=1

(H ′pi, φ)bijH
′pj , (3.29)

where bij are the elements of the matrix inverse to the matrix with terms [pj, pi]. As a consequence
of equation (3.28)

H ′P k
6 H ′P k+1

6 H ′, (k = 1, 2, . . . ), (3.30)
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and the intermediate truncated Hamiltonians Hk defined as

Hk = H0 +H ′P k, (k = 1, 2, . . . ) (3.31)

satisfy inequalities
Hk

6 Hk+1
6 H (3.32)

by construction if inequalities (3.30) are taken into account.
According to equations (3.23) and (3.30)

H l,k
6 H l,k+1

6 H l,0 +H ′
6 H, (l, k = 1, 2, . . . ). (3.33)

Therefore, the lowest ordered eigenvalues El,k
i of H l,k should satisfy the parallel inequalities

El,k
i 6 El+1,k

i 6 Ek
i 6 Ei, (i, l, k = 1, 2, . . . ), (3.34)

and

El,k
i 6 El,k+1

i 6 Ei, (i, l, k = 1, 2, . . . ), (3.35)

thus providing improvable lower bounds for the original eigenvalues Ei of the Hamiltonian H .
As was proved in [17], the so constructed Hamiltonian H l,k can have no continuous spectrum

and must have E0
l+1

as an eigenvalue of infinite multiplicity. Therefore, only those eigenvalues

of H l,k that are smaller or equal to E0
l+1

can be considered as lower bound estimates for the
eigenvalues of the initial Hamiltonian H .

The truncation procedure (3.21) can be significantly improved from the point of view of practical
calculations if the original Hamiltonian H is formally decomposed as

H = H l,0 + (H0 −H l,0) +H ′ = H l,0 +H ′ +H ′′ = H l,0 + H̃ ′, (l = 1, 2, . . . ), (3.36)

where the difference H̃ ′ = H −H l,0 is obviously positive and can play the role played before by
the metric operator H ′. In this case the positive contributions from the operator

H ′′ = H0 −H l,0, (l = 1, 2, . . . ) (3.37)

to lower bound estimates are not simply neglected at will but rather carefully taken into consid-
eration on common grounds with the contributions stemming from H ′, thus making these bounds
higher than they might have been otherwise under the original truncation procedure (3.21).

3.3. Reduced linear algebraic problems for the one-electro n model

The eigenvalues and eigenstates of the intermediate Hamiltonians H l,k of any order (i.e. for
arbitrary magnitudes of the indices l and/or k) can be expressed analytically or calculated nu-
merically in terms of the known eigenvalues and eigenstates of H0 and an arbitrarily chosen set of
linearly independent vectors pi, (i = 1, . . . , k). For numerical calculations it is especially conveni-
ent to follow the observation made by W. Börsch-Supan [15] that any intermediate Hamiltonian
H l,k can be reduced to the finite-dimensional space M generated by the known eigenstates ψ0

i ,
(i = 1, . . . , l) of the base Hamiltonian H0 and the vectors H ′pi, (i = 1, . . . , k). This reduction
makes it possible to determine the eigenstates of H l,k lying in M along with the corresponding
eigenvalues from a linear algebraic problem of the order l+ k for one symmetric indefinite matrix
relative to another. This problem can be formulated in terms of the system of equations with
respect to γν

k+l
∑

ν=1

γν

(

Cµν −
(

E − E0
l+1

)

Dµν

)

= 0, (µ = 1, 2, . . . , k + l) , (3.38)

where

(Cµν) =

(

δµν (ψ0
µ, H

′pν−l)

(H ′pµ−l, ψ0
ν) (H ′pµ−l, H ′pν−l

)

, (3.39)

156



Method of intermediate problems

and

(Dµν) =

(

δµν/(E
0
ν − E0

l+1
) 0

0 (H ′pµ−l, pν−l)

)

. (3.40)

For the eigenvalues E which are not equal to E0
l+1 the corresponding eigenstates of H l,k are

given by

ψ (E) =

(

l
∑

ν=1

γνψ
0
ν +

l+k
∑

ν=l+1

γνH
′pν−l

)

(

E − E0
l+1

)−1
, (3.41)

and E0
l+1 is an eigenvalue of H l,k of infinite multiplicity.

Sometimes, another special choice for vectors pi is possible

pi = (H ′)−1ψ0
i , i = 1, 2, . . . , k. (3.42)

As was shown in [14], k eigenvalues of the intermediate Hamiltonian Hk can be found by the
solution of the matrix eigenvalue problem

k
∑

j=1

{

[E0
t − E]δjt + bjt

}

γj = 0, 1 6 t 6 k, (3.43)

where bji is the matrix inverse to that with elements

(ψ0
i , pj) = (ψ0

i , (H
′)−1ψ0

j ). (3.44)

For the thus found eigenvalues E the corresponding eigenstates of Hk are given by

ψ(E) =
k
∑

t=1

γt(E)ψ0
t . (3.45)

Moreover, if an eigenfunction ψ0
t of H0 with an eigenvalue E0

t is not employed in forming any
element pi, then ψ0

t is also an eigenfunction of the intermediate Hamiltonian Hk with the same
eigenvalue E0

t . Unlike the Hamiltonian (3.20), the Hamiltonian Hk for the special choice of pi vec-
tors (3.42) may also possess a continuous spectrum which can be shown to be identical to that ofH0.
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For the particular single electron model
(3.6), the HamiltonianH ′ in (3.12) can be iden-

tified with ˆ̃V (ri) thus satisfying the positivity
condition (3.13). For any fixed angular quan-
tum number m and any given order l of the in-
termediate Hamiltonian (3.20) the vectors ψ0

i

must be identified with the first l + 1 func-
tions ψnm, n = 0, 1, . . . , l. Correspondingly,
the eigenvalues E0

i , i = 1, . . . , l + 1 are Enm,
n = 0, 1, . . . , l defined in equation (3.5). In our
present numerical calculations the vectors pi,
i = 1, . . . , k coincide with the first k eigenstates
ψnm, n = 1, . . . , k. Actually, this choice ensures
that the contribution to all the requisite matrix
elements from the operator of the kind (3.37)
is zero. What seems to be much more impor-
tant is the fact that this choice made possible

an analytical calculation of all matrix elements appearing in (3.38), thus increasing the precision of
the results. For convenience, the condition k = l was fulfilled throughout all the calculations. The
upper bound estimates on the energy eigenvalues of the Hamiltonian (3.6) were obtained by the
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standard Rayleigh-Ritz method using a set of p eigenfunctions ψnm as the base set. The numbers
l, k and p of the functions involved in all these calculations were chosen to ensure the coincidence
of the corresponding upper and lower energy spectrum bound estimates up to the sixth digit. Ex-
emplary results of these calculations are shown in figure 1 where ten lowest eigenvalues for each
of the three different values of angular momentum m = −1,m = 0 and m = 1 are plotted via
the Gaussian potential range R. It is seen that the originally degenerate at R = 0 eigenvalues
become nondegenerate as the potential range R increases to the magnitudes comparable with the
characteristic magnetic length a0 and return to degeneracy again upon a further increase of the
potential range, thus restoring the structure of Landau levels.

4. Two- and many-electron Gaussian quantum dots

In general, Gaussian quantum dots in a magnetic field containing two or more excess electrons
can be treated using the method of intermediate problems in the same way as the simple one-
electron quantum dot was treated above with the only difference that now the electron-electron
interaction is to be taken into account. This interaction is repulsive and the additional interacti-
on term

∑N

i<j V̂ (rij) in H ′ satisfies the positivity condition (3.42). Therefore, all the prospected
difficulties in applying the method would not be of conceptual but rather of technical nature due
to cumbersome and laborious calculations. Of course, the Fermi statistics should be accounted
for when constructing many-electron functions ψ0

i and pi. Thus, the functions ψ0
i should be anti-

symmetric with respect to pairwise electron permutations eigenfunctions of the total angular and
spin momentum built of the one-electron eigenstates (3.3). The amount of the required calculations
drastically depends on the proper choice of the functions pi. It is quite reasonable to anticipate that
the stochastic variational method for the calculation of the lower bound estimates to eigenvalues,
proposed in [6], will be useful in significantly cutting down the size of the {pi} sets.

For the two-electron quantum dot the special choice (3.42) of pi functions looks advantageous.
In this case

(H ′)−1 = ( ˆ̃V (r1) + ˆ̃V (r2) + V̂ (r12))
−1 (4.1)

and all matrix elements (3.44) can be reduced to calculating the three-dimensional integrals. For-
mally, further reduction to two-dimensional integrals is also possible but at the expense of elliptic
functions showing up in the integrands. It was found that either three- or two-dimensional integrals
can be calculated numerically by means of the Gauss-Kronrod adaptive method. The same choice
(3.42) can be employed in general case of a quantum dot containing N electrons. The resulting
matrix elements should be calculated by the methods of numerical multidimensional integration.

An alternative approach (3.38) can also be employed in the case of the two-electron Gaussian
quantum dot. In this case it is convenient to choose the pi functions in the form pi = r12ψ

0
i ,

but such a choice may be not optimal and can lead to prohibitively large sets of pi functions.
An expediency of using the correlated Gaussians [4,18], as a much more effective choice for pi, is
currently being investigated. This choice looks promising for Gaussian quantum dots containing
small-to-medium number of electrons.

5. Conclusion

It was shown that the energy eigenvalues of practically important and realistic models of quan-
tum dots formed by a Gaussian confining potential and placed in an external magnetic field can be
estimated with arbitrarily prescribed precision by means of the standard Rayleigh-Ritz method,
the method of intermediate problems being complementary to each other. Two-side improvable
error bound estimates can be found for the eigenvalues while the corresponding eigenstates come
out as a by-product of the applied methods together with their error bound estimates as well.
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1 I,-./.0. 12.312./4,/5 i1. 6.7.8.9:;<=2,=0;. >0?:i,2 8, @<-:=2 119991, A<-iB
2 I,-./.0. .3<C3./4,<D EiF/:/ i1. @.@.G<H<;I?<=2,=0;. @3.C<;<Hi4,2, 14–?, 03143 J/D=, K:C2D,2
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W?H<=<CI9.X-B F2-.<-<=,i-.X 13.<Y0 ZC<1i[,/\ F2Y24 Y< Y<-;iY[3,,B =;2-,/\ F,243,X 3,3CHiD .2=;2-,/\ -.2,i= :=2,.<=<D .<4:/ (J]), -E<C1<=2,<D 0.C/10I4/1 >20-<=/1 Z<.3, î2;<1 = ZC/-0.,<--.i F<=,i_,X<H< 12H,i.,<H< Z<;B. G0Y04/ H;2Y:/1 ,2 HC2,/ î J] .2 12I4/ -:i,43,i H;/?/,0 .2 C2Yi0-=F291<YiD, ^35 Z<.3, î2; 1<[30.C/10=2./;/_3 -:i,43,3 4/-;< ,2Y;/_:<=/\ 3;3:.C<,i=, E<C10I4/43C3F ^3 C32;i-./4,0 1<Y3;X J] F H;2Y:<I HC2,/^3I C<FYi;0 1i[ J] .2 DD <.<43,,B1. 7CH013,.09.X-B,`< 13.<Y ZC<1i[,/\ F2Y24, `< F2?3FZ3409 F?i[,i Z<:C2`3,i F,243,,B Y;B ,/[,X<D HC2,/ î =;2-,/\
F,243,X ;i,i5,/\ ,2Zi=F=’BF2,/\ aC1i.<=/\ <Z3C2.<Ci= 0 >i;X?3C.<=<10 ZC<-.<Ci, 1<[3 ?0./ Z<9Y,2-
,/5 F :;2-/4,/1 =2Ci2 î5,/1 13.<Y<1 A3;3B-Ai.^2 .2 -.<\2-./4,/1 =2Ci2 î5,/1 13.<Y<1, Y2I4/ =C3F0;X.2.i 3E3:./=,/5 F2-i? Y;B 2,2;i./4,/\ ./ 4/-;<=/\ Y<-;iY[3,X 3,3CH3./4,<H< -Z3:.C0 .2 =;2--,/\ -.2,i= H20-<=/\ :=2,.<=/\ .<4<:, `< 0.C/10I.X =iY 12;<H< Y< -3C3Y,X<H< 4/-;2 ,2Y;/_:<=/\3;3:.C<,i=, F :<,.C<;X<=2,<I .2 F2Y2,<I .<4,i-.I.
bcdefgi hcfgi: jklmnoki nopjq, krlsmi tmlpummv, krlsmi snlmq, kuwxmv nl mqymv zwlmq{i
PACS: 73.21.La, 85.35.Be, 75.75.+a, 03.65.Ge, 02.30.Tb
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