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Abstract. In the paper we theoretically consider the dynamics of the inner field generated by
recharging trap waves propagation and spatial-temporal features of the photoinduced light
scattering caused by these phenomena in the ferroelectric photorefractive crystals with two
donor levels under steady illumination by laser beam. The transverse instability of the inter-
acting light beams plays an important role and both the photovoltaic current from each
donor level and the diffusion mechanisms of carrier transfer are taken into account in the
proposed theory. For the first time it has been shown that, under the definite relation between
the photoionization velocities and anti-collinear Glass vectors of the donor levels, among all
possible scenarios of transverse instabilities the boundary circle will be realized in the perfect
crystal. Due to this phenomenon the periodical photoinduced light scattering appears in the
system. The great attention has been paid to the generalization of the results in the form of
master equation for the inner field dynamics and to the description of the optical autowaves
generation in ilmenites. All the main theoretical results are in a good agreement with the
available experimental data.
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Introduction

Ferroelectric photorefractive crystals (PRC) are one of
the basic materials for dynamic holography and infor-
mation processing. But rather often it is impossible to
predict the response of the material to laser illumination.
For example, various dynamic effects appear in the scat-
tering light even under steady irradiation by laser beam
of these materials: periodic pulsation (optical autowaves
[1]), non-stationary maxima [2,3], chaotic bursts and
optical vortices [4] and so on. In this paper we consider
the dynamic halo scattering appeared in LiTaO3, doped
with 0.05 wgh. % of Cr [5], and the generation of optical
autowaves recorded in LiNbO3, doped with 0.02?20.07
wgh. % of Fe [6]. Such distinctive features of these effects
as a rather regular spatial conic structure and impulse-
like time behavior lead to the appearance of the scatter-
ing ring (hallo) on the screen perpendicular to the pump
wave direction. This ring spreads out and temporally dis-
appears. The process is periodic in the case of autowave
generation.

For the adequate description of such effects in PRC, it is
necessary to evolve the theory in which the transverse insta-
bility of the interacting light beams plays an important role
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and both the photovoltaic (PV) and the diffusion mecha-
nisms of carrier transfer are taken into account [7-11].

We used the following well-known phenomenon as
the basic idea for the evolving of the theory. The non-
uniform time-dependent inner photoinduced field appears
in PRC even under steady laser illumination. It can be
detected due to the linear electro-optic (EO) effect. The
theoretical interpretation of this phenomenon based on
the analysis of space and temporal dependences of the
degree of completion of the crystal impurity levels (traps).
Under definite conditions, the non-uniform and non-sta-
tionary traps completion proved to be energetically pre-
ferable. In this case, either damping or periodic recharg-
ing trap waves can propagate in the crystal in the linear
approximation [12]. The spatial structure and evolution
of the scattered light is determined by this inner field in
accordance with EO-effect.

In the paper, we consider the dynamics of the inner
field generated by recharging trap waves propagation
and predict spatial-temporal features of the photoinduced
light scattering (PILS) caused by these phenomena. To
run ahead, notice that the aforementioned dynamic ef-
fects disappear in the theoretical consideration of the
model systems with one donor level and traditional PV-
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current density (see for details (15b), where real roots are
absent at A\, = 0). Thus, as distinct from [12, 13] and our
previous model [21] with one donor level, but rather spe-
cific expression for PV-current density, in this paper we
consider the system with two donor levels and we have
taken into account that each level supplies photoelec-
trons to the conductive band, i.e. these two components
of the photocurrent exist with different Glass vectors. In
contract to [12], we have investigated not only the longi-
tudinal structure of the recharging waves, which exists
even in the case of pure longitudinal photovoltaic cur-
rent, but have paid sufficient attention to their transverse
structure appearing due to the transverse photovoltaic
current in ilmenites. The authors of [12] have obtained
the dispersion relation “frequency — wave vector” for one-
dimensional waves (i.e. in pure longitudinal case). Be-
low we will derive the analogous relation for three-di-
mensional waves. In such case, the diffusion current com-
pensates the transverse photovoltaic one owing to the
absence of the inner field transverse components. The
compensation can lead to the generation and stabilization
of the transverse periodical recharging waves. It is possi-
ble under the definite frequency and wave vector values
depending only on PRC material parameters and laser
pump wave intensity. The latter result means that this
phenomenon is theoretically possible under the steady
illumination of the sample by incoherent but rather pow-
erful light beam. Thus, similar phenomena can be regis-
tered under the PILS investigation of a weak coherent
signal beam in the crystal irradiated by a powerful inco-
herent reference light beam with an appropriate wave-
length.

1. The problem

Let us consider the dynamic photoinduced effects in PRC
without inversion center. We will be interested in reali-
zation of the transverse instability generation threshold
for the electric fields in PRC under steady illumination
by a laser beam along polar (optical) axis.

In order to obtain relevant results, let us calculate the
interaction of the laser beam with the dynamic hologram
(photoinduced spatially non-uniform inner field) recorded
by itselfin the crystal within the framework of the pertur-
bation theory.

Our calculations correspond to the following geom-
etry: the pump wave vector is directed along the crystal
optical axes Z, the pump polarization vector &, lies in
the XY-plane, the coordinate origin coincides with the
pump beam center on the front plane of the crystal. The
crystal of the C3y symmetry group is considered infinite
in the transverse directions X,Y as the pump beam diam-
eter used in the wave equation is much smaller than the
transverse crystal sizes, and has definite thickness /in Z-
direction.

For this case, we shall find the inner electric field in
the non-depleted pump wave approximation with defi-
nite intensity. The dynamics of inner field is determined
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from the system of equations for the degree of completion
of donor and acceptor levels by electrons, the concentra-
tion of electrons in the conduction band, and from the
Maxwell equations, which can be reduced to the Poisson
equation for the quasi-static electric field. Hereinafter
acceptor levels are considered rather deep and therefore
completely filled by electrons, and donor levels are con-
sidered to be so shallow, that thermal release of electrons
into conduction band is possible.

Then we shall discuss the interaction of the high-fre-
quency laser pump beam with the dynamic holographic
grating (recorded by the aforementioned spatial-non-ho-
mogeneous photoinduced inner field allowing for linear
EO-effect) in the crystal and analyze the features of the
diffracted light.

2. The dynamics of inner field in the constant
pump wave approximation

2.1. The general system of equations

In accordance with papers [13] the system of equations
for the inner field in the quasi-homogeneous region of the
PRC has the form:

m"'

S = ypnamp +(splo +o)(r -np), p=12 ()
+ + .

%:M+dn2+dlvl”, (1b)

o ot ot e

dIV( ) Are(—ng + 1y +1n3), (Ic)

Tn:eﬂneéf +eDgrad(ng) + Z( Np—n ) IOGp (1d)
p=12

Where the following designations are introduced: n,
is the concentration of free electrons, n? is the concen-
tration of donors for “p”’-level, np is the concentration
of ionized donors (traps) for “p”-level, g, is the capture
coefficient of electron by the “p”-kind trap, s, is the
photoionization coefficients, 1 is the pump 1ntensrty, S0
is the thermalization coefficient, e is the absolute value
of the electron charge, j, is the density of electron cur-
rent , £ is static dielectric permittivity, m is the electron
mobility, D is the diffusion coefficient, Gpx = B Pume eE]
is the Glass vectors (the double convolution of the PV-
tensor with the pump wave polarization e,). As distinct
from [12, 13], in the density of the PV- current (see 1d), we
have taken into account that each level supplies photo-
electrons to the conductive band, i.e. these two compo-
nents of the photocurrent exist with different Glass vec-
tors.

The system (1) must be supplemented by initial and
boundary conditions. The latter conditions represent the
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field state at the sample boundaries z=0and z = /. Let us
discuss the cases of free and short-circuited samples. In
the literature [14—15], one can find the detailed descrip-
tion of the spontaneous polarization (Py) screening in the
uniaxial ferroelectrics without illumination. The main
results of these works can be formulated as the following
statements. The screening is internal for the stationary
state of single-domain ferroelectric with not rather broad
band gap and therefore does not noticeably influence on
the distribution of the inner field and spontaneous induc-
tion in the sample. Thus, in the case of the short-circuit
condition, the sample can be treated as the sample with
free surface, and one can apply to it the solutions for the
fields obtained in [15] for the free one. These solutions
correspond to the small purely longitudinal constant in-
ner field in the bulk of the crystal,i.e.at {; <z</{-{
(is the crystal thickness, /. is the correlation length), and
sharply dependent over z coordinate strong longitudinal
field in the surface layer (SL), i.e. at 0<z</,
{—1{.<z</(.Herewewould like to emphasize that the
influence of the bulk photovoltaic effect is negligibly
small in SL because of the negligibly small P, and strong
symmetry disturbance near the surface (in [14 p.167], it
was shown that G ~ P,) and thus in this region.

The system (1) has been solved when using the pertur-
bation theory [12] at ¢ <</ and the aforementioned
statements about the constant inner field.

1) The only stationary (s) spatial uniform solution of
(1) can be chosen as zero approximation: Eq = = const(lo) G

nps = const, Ngg =const, whichat £, <z</ -/ isvalid
either for short-circuited or for free sample It smoothly
sews together with solution [14-15] in the SL due to
G=0.

2) Small dynamic corrections to this stationary solu-
tion of (1) can be obtained as the first approx1mat10n
Ef =Eg+Ef (X Y,21), np—np +np Ne = Ng +1.
In order to use the aforementioned stationary solution
[15] as good zero approximation, in accordance with the sta-
bility theory, the transverse dynamic components of the inner
ﬁeld must satisfy the trivial boundary conditions in SL:

y(xy,O<z<€C,t) Ef (xy,ﬂ l.<z</t)=0.

Only these conditions prov1de the longitudinal form of the
field in SL and continuity of its tangential components at
the crystal boundaries. If the SL has the real thickness
and the solutions are analytic, Ef (x,¥,2,t)=0.Also
the longitudinal dynamic inner field %omponents have to
satisfy trivial boundary conditions. They are zero at the
internal boundaries of SL for free sample, i.e.
Ef (x Y, z={¢,t)= Ef (x y,z=0—{.,t)=0. In this
casé, the bulk sources (photomduced fluctuations in the
vicinity of defects) are seeding for the generation of the
transverse. The potential difference between the elec-
t(rodes is zero for lshort-circuited sample, i.e

Iﬁf , (X, Y, z,t)dz =0, and the photoinduced fluctuations

0
of the inner field at the initial moment ¢ = 0 can be treated
as the seeding.
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2.2. The stationary solution of the system

Neglecting the existence of circular currents in PRC, in
stationary case (1b) is reduced to the condition of ne-
glecting the magnetic field in PRC [9, 12]: j,=0. When
taking into account that all values are time independent,
one nonlinear equation in particular derivatives for the
concentration of free carriers ng can be obtained instead
of (1). Its only spatial uniform solution can be represented
in the form:

splo+so 0
Np» (2a)
YpNes +Splo *+So

npS:

+ -
_ Y pNpsSpl oG
Es = Z ep(spsl p+ IC))' (20)

where 7, is the root of the following cubic equation:

Sylo + S
_ p'o 0
fles = z N +Slo +59 P G)
p=1,2yp es T Splo *So

For rather high intensities the expressions (2,3) ad-
mit the asymptotic form:

S |0
nte=—P = n0=

S

P ypNes +splo
Splo 00 1o

0.0 p—~Np

yp(n1+n2)+splo

_ Splo 0
Nes = s
p:lzypnes‘*Sp 0
Sy, |
- p'o 0 0,0
= np — Ny +n;. @)

0.0
pz2 Vp (N +n3)+splo

Taking into consideration the discussion from item
2.1, we will use (2-4) as zero approximation for inner
field dynamics in the bulk of the crystal.

2.3. Linearized system for dynamic
components

Using (1a, lc, 1d), after elementary transformations (1b)
can be rewritten as:

divﬁ%%ﬁf +eun.E¢ +eDgrad(ng) +
s

—ng)spIOGpEZO. )
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After neglecting the existence of magnetic field in PRC
[9, 12], one can obtain that:

£ 0 - _
——E¢ +eun,Es +eDgrad(ng) +
o HN E ¢ grad(ne)
0 = _
* z(”p"”g)sp'oep‘o' (6)
p=12
We will find the solution of (1) in the form:

Ef =Es+Ef (X y,21), n;=ngs+ﬁ;, Ne = Ngg + 1,
‘Ef (X,y,21) <<|és|, << n:;S' |n| << Neg)

(7
with the boundary conditions for the inner field in the
short-circuited sample:

/
Es X‘y(x, y,z1) =0, J'Ef ,(X,y,z,)dz =0,
0

/
Efz(x, y,zt=0)=v(XY,2), J'v(x, y,z)dz=0. (8)

Here V(X,Y,2)~V(Q) ~ lgat (/. <z</-{.) is small
photoinduced fluctuation seeding with rather broad spa-
tial-temporal spectrum. Representation (7) allows us to
linearize the system for small dynamic components. In
the first approximation the properties of the solutions of
(1) should be agreed with the stability theory: at the sta-
bility threshold the dynamic components have to be not
increasing functions of time t and transverse coordinates
X,y and analytical functions of z, i.e. the Fourier image
at variables t,x,y and the Laplace image at variable z
must exist. Then:

Ef (X, Y,2,t) :qudQ [ (G, Q) exp(igF +iQt),

A(x,y,zt) = qudQﬁ(q,Q)exp(iqr +iQt), 9)

My (% ¥,2,1) = [ dddQ (y @) expliar +i0t),

where qr =q,z+qyx+dyYy, 0z =0z +iqy,

(92,97, 0x, Ay, Q) O (=00, 09) ,

Linearized system for images represents itself the ho-
mogeneous one of algebraic equations:
ANps =(Splo + s + Vpnes)ﬁ;,
o= ATy 4
1(60) = 2 6] +0F 1), (1o
4—|QU +eu(nesu +AE )+|qun— Enpsp oGp =0.

p=12
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On solving (10) one can obtain the relations:

nt=- Y pps n
P iQ+sylo+so+Yphes
. - nt 71
n:—w + Z : VpNps H ,(11a)
4re L, 1Q+splo+so +ypne.SH
and the vector equation:
he(fo -0
U(1+imep)—i(QU)§+ > ,ppr
p:1’2 IQP + p H
1
p i 11b
D p_12 |Qp + fp ( )

Before solving the latter vector equation let us rewrite
it in appropriate variables in the case when the dark con-
ductivity can be neglected, i.e. s,/ >> s¢. After this the
(11b) has the form:

-1
U(1+iQ pmp)—i(QU)%+ z fp(fp =1 ma

& iQp+pr

%Q—péﬁ%—ﬁ%ﬂ

Hereinafter the following designations are used:
Tm = £/4meng is the Maxwellian time, T =1/splg is
the photoionization time of electron for “p”’-level do-
nors, m, = T,,/T,, is the ratio of these times, Sy = s5,/sy is
the ratio of the photoionization coefficients,
(4 =,JeD/4meuny is the diffusion length (if the Ein-
stein ratio is valid eD = ukgT, the diffusion length coin-
01des w1th the Debye screenmg radius [14]),

12)

Lgp =€y ps / ame? HNes is the photovoltaic (drift)
lengt h p/ld Is the ratio of these lengths,
fo= np n s 1S the ratio of the donor concentration to

the trap one for “p”-level (f, > 1), hy = nps/n% , sub-
scripts p, k = 1,2. Also the d1mens1onless variables are
introduced: Q Glq, Q,=Qr1

The expression (12) allowing for the boundary condi-
tion (8) U =0, leads to the dispersion relation for the
longitudinal Q. and transverse Q;components of the wave
vector:

-1
ho(fp-DH
iQp+ fp H

A % %O,
-L2 |Q +f

(1+ime |QZ§+
p=1 2

do.- Y
0
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Qn=-i (13)

1
E /\ —
pD% i E
&) |Q|D+fp

p

The absolute transverse instability threshold can be
determined from the conditions:

Im(Q) = Im(Qp) = 0. (14)

Really, the component Qin (14) must be real as the
component of the Fourier transform wave vector (9). Thus,
one can find the expression for Wy from the condition
Im(Qp) = 0 (hereinafter the subscript f underlines the defi-
nite solution of the obtained equations). As the result the
more compact expression for O can be derived:

Q
p
Q=Y Ao 5 (15a)
2 2
P2 Qptip
The equation for the frequency Q, = Q/1, acquires the
form:

1- fk :/\pk%_ fp H
2 2 2 2
QF + 1} Q2 +12Q

and it is biquadrate. Notice, that real roots are absent in
(15b) at A, = 0, therefore the aforementioned dynamic
effects disappear in the theoretical consideration of the
model systems with one donor level and traditional PV-
current density.

The expression for the longitudinal wave vector Q.
was found from (13) after substitution of Q,, from (15b).
Atrather high intensities (see below (19-20) f, — 1) these
solutions can be simplified as:

iA 1
~_ PZ 4 _
Qu2==3 = % iQp+pr¥

p=L2

(15b)

O_ iA 1
F.|0 . -@1+iQ .
F E)Z 5 % 0,1, (L+iQpmy). (16a)

:]_'2

If the following inequality is valid [A,.| >> 1, i.e. the
diffusion is small /; >> /,, the equation (13) is simplified
and the expressions for Q. obtains the form:

= DZLzApzé_ iQle’ fp E+
. (1+imep) |
1
3 iy
00, - (1+imep)1 |
PR (6t
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In a general case, we designate the roots of the square
equation (13) as Qr1 and Qp.».

Let us analyze the existence and find the simplified,
suitable for analysis expressions for the roots of (15b).
The graphical study of (15b) shows that the sufficient
condition of the existence of the only pair of its symmetri-
cal roots is as follows:

~ fo(f =D

f (fp =1

The more important sequence of (17) is the following
statement. The transverse components of Glass vectors
for two donor (impurity) levels must be antiparallel. Note,
that their co-linearity follows from the assumption that
the small photoactive impurity concentration does not
break the initial crystal symmetry. The latter determines
the structure of photovoltaic tensor, i.e. its non-zero com-
ponents and the relations between them. Actually, the
symmetry of the crystal matrix determines non-zero, in-
dependent components of the PV-tensor in the eigen co-
ordinate system, i.e. the existence and the direction of
the straight line, the Glass vector is directed along or
against it. The magnitude of the Glass vector cannot be
determined from the symmetry properties. The donor at-
oms can generate photoelectrons with different velocities
both in the abovementioned direction and in the opposite
one depending on their specific properties. What the
physical meaning concerning to the origin and structure
of these levels can be derived from the anti-colinearity of
their Glass vectors components? Up to date we can pro-
pose the following model.

Both or at least one of the donor levels is made of
photoactive impurity atoms. Firstly, they substitute some
kind of lattice atoms or locate in the interstice and join
into the first donor level. If the impurity atom valence
does not coincide with the substituent atom one, the ex-
cess charge appears in lattice, which is not energetically
favorable. As a result, at the distances less than a few
lattice constants from the impurity atom, the appearance
of the compensative charged center, consisted of lattice
atoms or another impurity atom in opposite charge state,
is a most probable. As a whole, this spatial complex looks
like some cluster with a dipole moment and, as a conse-
quence, with some asymmetric potential. The magnitude
of the asymmetry is quite enough to cause the noticeable
PV-current in the sample [22]. We assume that the afore-
mentioned compensative centers or their nearest
neighbors join into the second donor level. The photo-
electron generation takes place at the both ends of such
complexes. Owing to the different neighbors and oppo-
site charge state of complex atoms, their photoionization
and capture coefficients, other parameters are different,
and the generated photoelectrons have oppositely directed
velocities. For example, the aforementioned compensa-
tive centers can rather strongly asymmetrically absorb
free carriers. This absorption causes the macroscopic PV-
current in the non-equilibrium conditions [14, p.174],

“1<Ap < (17)
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direction of which is opposite to that, generated by the
photoionization of the impurity atoms.

Hereinafter we assume that such characteristics of
donor level atoms as the photoionization or/and capture
coefficient are significantly different (for example,
S51>>1). The similar “nonequivalence” of the levels can
significantly simplify the consideration of the problem.
Thus, in the case when the inequality is valid:

a0
in 5

equation (15b) can be approximately rewritten in the form

f
1- ﬁ = N1, which has the simple solution

o =l [Aa 11T
Tq /\21 +1

The latter exists at

(18a)

(18b)

1
_1</\21<_1+f—. (18C)

1

Let us study the dependence of the frequency Wyand
wave vector grfrom (15a, 18b) over such material param-
eters as pump intensity /; and photoactive impurity
concentration ng.

For the sufficient intensities above the threshold the
asymptotic formulae (4) are valid, i.e.:

_YpPes

0, .0
. Yp(n +n3)

Splo

f +1=1

—

P Splo

+ 0 0,0
A = GpoNps _ H3paV pSpMp Hyw (g +n2) +s¢lo
pk ~ + H 0 H 0,0 -
Gyonks  OGkaVkSkNe Vp(nL +n2) +splo

0
_)GpDVp”p
01
Gy Ny
= 0 = 0
702 =00V Splo Cp¥ oM
gp d .
H e Homd+nd)+s,lp €D
(19)

The threshold intensity /¢ can be determined as the
one, at which the real roots of (15b) appear. The more
detailed analysis shows that the approximate estimation
for I is valid:

IC = max

k=12
p¢]|1 ST S

e+ 1 _1%
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Hereinafter let us suppose that both donor levels were
created due to the interstitial of the same impurity atoms
to the crystal, then: ng ~Ny-

When substituting of (19) in (15a) and (18b) the fol-
lowing approximate formulae can be obtained:

1 —i Qf(’f'Nd)Tmo
oUr (&, Ng) ot (&, Ng)Ng '
1 i Qf(E-Nd)Tmo

dia(€,Ng) =00so(&,Ng) -

Z 'N = ’

Arz2( Na) ag¢ (&, Ng) ! 0qs (€, Ng)Ng

= qta(€.Ng) = dr2(§, Ng) = : '

dtz1(£.Na) = dtz2(£. Na) oo (A +INg /Ny
(21a)

where the dimensionless variables and designations are
introduced:

&=s1lg/ying, Ng =(n’+n3)/ng, Qo =yino,

o = Guying  nd Gz _ G,
oo =——— , 0 =—= ,
eD n](_) + ng Gll] GZD
L - E
™ = e (21b)

ng is the matrix atoms concentration (that is why N,can
be measured in percents). It can be easily shown that al-
ways (f,» = —(%, and in the case of weak diffusion the

inequality |q'f22| << |q'm| is valid. Really, if the inequal-
ity |0qu(E, Ng )| >>1 is valid, one can derive the ap-
proximate expressions:

1 —i Qf(ElNd)TmO
o0&, Ng) 0t o(§,Ng)Ng '
1, 2@ N

d:a(€,Ng) =0u¢ (&, Ng) -

&,Ng) = ’
02§ Ng) 09 (&, Ng) Iaqu(E,Nd)Nd
” " o (E/Ng +1P
~qta(&,Ng) = dfpa(E,Ng) = o Ny
dta(¢:Ng) = d%2(§. Ng) oo (Ao1 +Ng  E/Ng
2lc)

At high intensities, inequality (18a), providing the va-
lidity of the results (21a), acquires the form:

— A Eig >>1
Ao +1[0s

Asit follows from (21c), results (21a) for the frequency
and wave vector are valid, if only the absolute value of
N\y1 is not very small.

Hereinafter the subscript of Glass vectors would be
omitted. In fact, when discussing the vector features of
the problem it is sufficient to take into account the co-

linearity of the transverse components of the aforemen-
tioned vectors.

@1d)
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We would like to emphasize that the following scal-
ing exists in (21a). Namely, the values of Q/Ny, g/ Ny
and complex gain iqy, depend only over one dimensionless
variable {/N,. The dependences of Q/(N Q) and g/
(Ngqor), imaginary and real parts of gain factor igz. over
&IN, are depicted in Fig.1.

Thus based on (9), we can rewrite general solution of
the inner field dynamic components in the form:

Ef (x,y,zt)=¢, ((C1 exp(i q lez)"' G, exp(i Afz2 Z))x

xexp(iQ ft+igs DFD)+ c.c.).
constants Cj , can be determined from (8).

(222)

QN Q)
20 T a

400

200

EINy

Finally, in accordance with (7-9, 15-16, 1806), we
can present the solution of the inner field in the form:

Er(xy,2.t) = Es +&,(U(2) expliQ s t +ig; o )+ cc.)

y4 . ‘)-1 A
U@ =Uo%<p(i%12)‘ ZZ :S((E: g))_lexp('quﬂ)%

U@ <<|Eg| tc <z<t-2t.

(22b)

As a consequence, for the concentration of ionized do-
nors one can obtain the following expression:

Gy /(NgGoL) ... —= b
L0 .-

0.4

0.2

400

300

{0 10 20 30 40 50 ===

200

100

o 10 20 30 40 50
E/Ng4

Fig.1. The dependences of Q/(NzQg) (a) and gqs/(N gy (b), imaginary and real parts of qy. (c,d) on &/N, at different A,; values and
OoN,= 1000, 7, = 5 for (c,d): N,;=-0.1 (dash-dotted curves); —0.5 (dotted curves); —0.95 (dashed curves); —0.99 (solid curves). In the
insets to Figs (a,b) some parts of the aforementioned dependences are shown in details, and in the insets to figs (c,d) the same

dependences depicted at oN, = 1.
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YpUiz i_é‘x
Q% + (SpIO + ypnes)2 are
x(U(z)expGth +iG¢ oy +i¢p)+c.c.)],
Qy

SpIO +ypne£.

+ 7+
Np = Nps[1-

9pp = (22¢)

In accordance with (22c¢), the recharging trap waves
for different donor levels differ not only in amplitude but
also in phase.

In (19) the sign “+” must be chosen in expressions
(18b) for the frequency and the wave vector.
Up = V(g y»47-1) 18 the Fourier image of fluctuation spec-
trum (8). Note that in the case of weak diffusion (/;>> 1)
the inequality |q’f22| << |q’fﬂ| is valid. Thus, allowing
for q%,, = -4 and |q'f22| << |q'm| one can obtain that

qu2| <<|qul_| . Therefore, for the “thick” crystal (i.e. at
Q"fZLZ£| >>1), the expression (19b) for U(z) can be ap-
proximated as:

OE'><I3(isz12)+ qzzeXp(iszz(Z—f))E = Q2! >>1

U(g=

0

DIJIELD [:ID]]EII:I

f
Adia

P(iszlz)‘ %exp(i (Agz0z+ qul@)B = ial >>1.
Uiz H

(22d)

For the “thin” crystal (i.e. at

q"le,zf‘ <1), the expres-

sion (19b) for U(z) can be approximated as:

U(2) :Uo%)‘P(ianZ)‘szeXp(iszzz)E‘:

~Ug explaraz) (22¢)

After standard transformations it becomes clear that
the solution (22b) for U(z) in the case of short-circuited
sample also coincides with that in the case of the free
sample with weak diffusion and bulk fluctuations in the
quasi-neutral region of thesample ¢/ <z </ -/ .

As the conclusion of this item, we can predict that at
sufficient Iy> Icand G~ Bn# 0 (because ¢~ lon~ Gp),
the boundary cycle exists in the nonlinear system (1) in
accordance with the Wiener-Hopf theorem. Its spectrum
has maximum at [Q|= Qy, o= £q, i.e. the completion
degree of traps varies periodically both in time and in
space. This means that the stable recharging waves of
traps can propagate in the transverse crystal direction.

2.4. The qualitative analysis of the far field
diffracted irradiation. Optimum conditions for
the registration of dynamic effects

This wave creates the modulation of the inner field (22).
The latter due to EO-effect records the phase dynamic
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holographic grating (or lens) with the optical refractive
index modulation An ~ Ef | . Inits turn, the laser pump

wave will diffract on this oscillating grating. The follow-
ing evident speculation permits to determine the features
of the diffracted far field structure.

Taking into account (22), the dielectric permittivity
modulation has the form:

Ae = spR(z)(cos(qf oo )cos(Q it+o; )—

—sin(d ofg Jsin(@ e t+ ¢ ¢ ). (23)

Thus, the aforementioned grating can be treated as
the difference of two harmonic two-dimensional phase
gratings with the holographic vector g, space shift p/2
and oscillating amplitudes in accordance with cos(Qs)
and sin(Q) laws, correspondingly. The diffraction pat-
tern from each grating has two sharp maxima at angles

el

= fO
Gf =

24

=~

0

They look like bright spots, periodically appearing
and disappearing with relative intensities cosz(th) and
sinz(th). The superposition of the gratings leads to the
oscillations of the maxima in the vicinity of 5. The Glass
vector rotation and therefore the rotation of the vector
6+ ~G4¢p ~ Gp take place due to the pump polarization
rotation allowing for photoinduced delay [16]. Thus, the
spots transform into periodically running rings or arcs.
We would like to stress that the transmitted (“direct™)
wave consists of the bright central beam and weak (dif-
fracted) side components, whereas the reflected (“in-
verse”) wave has only side components, because our
theory is valid if |U (z)| <<|Eg].

Let us discuss the question about the features of laser
pump beam necessary for the optimum conditions for the
registration of the aforementioned dynamic effects. We
would like to remind that the inner field in FRC has been
found in the constant pump approximation, i.e. at
Iy(x,y,z) = const. In fact, we restricted ourselves by the
consideration of the rather smooth beam central part. On
numerous occasions such beams both theoretically and
practically can be modelled by the Gaussian beam:

0 gl _0C+y) B

AbY D= T D 7 208@+ini (D) g

)

Z_
nf(Z):—Zg,
Po

where z( is the coordinate of the beam focus. In this case
|Ae(ry =0)| >|Ae(rn =d)| . i.e. the FRC is equivalent to
the PR-lens, modulated by bulk holographic grating (23).
We will show further that such lens can significantly in-
crease the dynamic PILS intensity in comparison with
the case of the pure grating.
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Let us demonstrate this fact for the direct and inverse
scattering. Notice that the scattered wave arises deep in
the sample under the reflection and scattering of the pump
wave on the inner optical inhomogeneities due the re-
fractive index jumps on = Anprc + Angy- Then it rein-
forces passing through it in the photoinduced-bleaching
regime. It can be easily shown that the value of the scat-
tering seeding is proportional to the linear functional of
the product Ag and |4¢(x,y,z)| [21]. That is why in order
to obtain the highest intensity of a priori weak scattered
wave, both the maximum effective value of de = A&y, +
+ Agpr c and, much more important, the maximum coher-
ence of inverse scattering sources are extremely desir-
able. In other words, the phase of 8¢ in the vicinity of
different scattering sources must be matched with the
pump wave one in such a way to provide the maximum
coherence between these sources. This phase matching is
impossible for the waves scattered on the dark (growth)
imperfections of dielectric permittivity A&y, , because
Agq, has random structure and no relation with the pump
wave. Thus the waves scattered on the dark imperfec-
tions almost damp each other and would not be discussed
further. For the waves scattered on the photoinduced
imperfections of dielectric permittivity Agprc (see (23)),
within the framework of our approximations the phase
matching can be substituted by the following condition
in the effective scattering z-plane: the sum of the direct
wave and Agprc phases does not depend on transverse
coordinates. This is possible when the transverse phase
profile of the Gaussian pump wave (25) is compensated
by the optical phase delay owing to it transmission
through the sample with Agpr (). We’d like to remind
that Agprc(ly) ~ In(x,y,z) in accordance with the mecha-

nism of EO-effect (we used that ¢, << /). It turned out

that the condition of the maximum phase matching of
inverse scattering waves could be satisfied under the defi-
nite restrictions on the initial focus location z,. Let us
calculate this location by means of the following sim-
plest model.

The real PRC are replaced by the system composed of
the thin Gaussian lens with the main plain at z = 0, which
can significantly change only the phase of the incident
beam, and of the plane mirror at z = [ with reflection
coefficient R. The transfer function of the lens 7(x,y) [26]
can be exactly obtained from the geometrical specula-
tions, allowing for the expression (see (22b)) for
Anprc(lo):

e (10) = Xlo(x, Y, A+ v(2) expliQ ¢t +idiy 7 )+ ),
vu@
=

v(2) = (26a)

Also |Anprc(1y)| << 1 in agreement with our assump-
tions about the validity of the perturbation theory. Hav-
ing calculated the optical phase delay one can derive
that:
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S fexod
T(X,y) = exptkoxlg | exp=-
fortef =g

V(Z)eXp(|th+|QfDrD)+CC H~
%Hk" |0J’ 1+n2(8) dfﬁ

(C+y?) H d¢
pd+n? (&) FL+n? ()

[ |

0
de

= explikoxl of] exp - 'koX| L

y )
g | bnzef B

(26b)

The amplitude of the laser far field at z = £L, i.e.

after single (direct PILS) and double (inverse PILS) pass-

ing through the PR-lens can be obtained after the
Kirchhoff transformation as follows:

E;(x zp >>1()=

p:Yp:
kg ST

=9 J’dxdyT(X, Y) Ay (%, y,0) exp('ko|fp ‘r|)
Zp %

Eor(Xp,¥p.Zp <<0) =

= R:—O }dxdyTZ(x, Y)A (% ¥,0) exp(—iko|Fp - F|) (26¢)
p

2
koPg <<1, |Fp :

- L Xxp)? +(y-yp)*
Zp P 2z

if
p

Analyzing the integrants in (26c), the conditions of
the maximum phase matching can be reduced to the ab-

sence of transverse-dependent phase W of the functions
T(x,y)Ao(x,,0) and T*(x,y)Ao(x,y,0):

wfrix DAl yol=0 -

n ()= J— 2koxlo 2k0€“|§Rc(|0)
(1+n (z)) (L+n?(0))2
20 y) Ag (% y,O)] =0«
p 4koxl o 4k0€nPRC(|0)

¢ (0) = , (26d)
"o o 0f

Expressions (26d) can be simplified for small n40). In
this case both for direct and inverse PILS one can obtain:

(26¢)

+n (Z))

it |kolxlo| <<1 2o ~An3ec (10)kG pG!

Asit follows from (26d), if AnSpe <0, the pump beam
focus must be located in front of the PRC, and if
AnpRc >0, the pump beam focus must be located inside

the PRC.
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Hence, in order to register the aforementioned PILS-
effects successfully, it is desirable to use definitely fo-
cused (but not the plane) laser pump beams.

All material parameters of the crystal have been re-
garded as constants. Effectively, they vary because of
the aforementioned polarization vector rotation and such
growth peculiarities as non-homogeneous impurity dis-
tribution (i.e. the fluctuations of n,), the floating of the
crystallographic axes X due to the local symmetry break-
ing near defects (i.e. the fluctuations of Gp) [16]. That is
why the whole set of frequencies and wave vectors are
present in the real system. The final results must be aver-
aged over all fluctuating values within the framework of
the definite non-homogeneities model. For our theory this
result is the laser field changed by interaction with the
PRC in the far zone from the crystal, i.e. the diffraction
pattern on a screen.

As the final remark to this item, we would like to em-
phasize the following. Our theory predicts that high qual-
ity ferroelectric photorefractive ilmenites, in the case
when a photo-active impurity does not destroy their ini-
tial structure, can generate optical autowaves even un-
der stationary laser irradiation.

2.5. The discussion and analysis of the temporal
and spatial characteristics of the scattered
irradiation. Comparison with the experiment on
autowave PILS in LiNbOj:Fe

In this item, we restrict ourselves by calculation and
analysis of those basic characteristics of inverse scatter-
ing, which have been compared with the available ex-
perimental data on autowave scattering in LINbO; crys-
tals doped with 0.02+0.07 wgh. % Fe revealed before [6]
and intensively studied now in our lab.

Hereinafter in this item, we assume that it is possible
to neglect the dark conductivity due to sufficient laser
intensity Splg >>sp, i.e. to substitute s9=0.

We would like to remind that aforementioned inverse
scattering has the conic spatial structure with the cone
opening oscillating around 6y (see commentary to (22—
24)). It is appeared convenient to characterize these tem-
poral oscillations by the minimum angle 6,;, (i.e. the
angle of cone generation), the angle of the best visualiza-
tion G, (i.e. the angle of cone maximum intensity), and
the maximum angle 6,4 (i.e. the angle of cone disap-
pearance). The experimentally measured values of 6,4
and 6,,;, can be additionally limited by the resolution of
the register hardware. We determined these angles by
numerical simulation of Gaussian beam diffraction [17]
at the diffraction grating (23). It turns out that for a wide
region of parameters with high accuracy one can apply
clear and simple relations:

00 = (0t max O min)/2=01,
O¢ min = H10+,
Ot max = H20¢.
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Where Hy < 1, H, > 1 are positive constants. Thus,
the cone parameters are determined by the angle 6, which
increases with increasing the photo-active impurity con-
centration n, (in %), because n,;= const-N,. Finally from
(9, 21) we obtain:

0t (¢ ,ng) =
=00~ [ g Y T +T).
g'ld Eing +1 21 21 d :

Here 6, does not depend on 4, and dimensionless in-
tensity £ OIyand —1 > A\, > 0 are the fitting parameters.
Calculated in accordance with (27-28) dependences of
the angles Bin, 6y and 6, OVer impurity concentration
n4 have been compared with the experimentally obtained
ones in Fig.2.

Let us discuss the temporal spectrum of scattering
waves. The theoretical (see Eq.(21)) and experimental
dependences of the autowave frequency Q; over the pump
intensity I are presented in Fig.3. To all appearances,
we possess the experimental data for the linear part of the
aforementioned dependence, i.e. for high-quality sam-
ples (n; = const) and rather high 7, (see Fig.1a and
Eq.(21)). The investigation of the process at smaller
intensities proves the existence of an intensity threshold:
the autowave PILS loses its periodical structure and even-
tually splits into random flickering spots at intensities
smaller that the definite for each sample critical intensity
I¢. Within the framework of our theory for 7y > I~ the
autowave frequency does not depend on the crystal thick-
ness. Possibly, this dependence is present below the in-
tensity threshold. The temporal dependence of the
autowaves intensity averaged over ring can be easily cal-
culated when using the theory of mathematical diffrac-

o

40 0, et 0,

0.02 0.04 0.06 0.08

Rges Yo
Fig.2. The dependences of O, (filled squares), 6, (empty
squares), Bn.x (empty triangles) on Fe concentration in LiNbOs.
The best agreement with the experiment was obtained at & = 2.5,
Ny = -0.1, 6, = 340°, H; = 0.632, H, = 1.382. The dependence of
the ratio 6, on ny at different A, is shown in the inset: Ay} = —0.99
(dash-dotted curve), (dotted curve), —0.3 (short-dashed curve),
—0.1 (long-dashed curve), —0.01 (solid curve).
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tion [18]. In comparing the result with the experimen-
tally obtained autowaves evolution (see inset in Fig.3),
to our mind, the qualitatively compliance in general dy-
namics of the process is evident, the differences of the ex-
perimental and theoretical profiles on the period is related
with the linearity of the theory. In fact, we omitted all
nonlinear terms in the initial system, i.e. neglected the pos-
sibility of the crystal to generate sub- and super-harmonics.

Let us calculate such important characteristic as the spa-
tial correlation coefficient of the inverse scattering, herein-
after designated as K ;. Namely, let us derive the correla-
tion function of the two points “a” and “b” on the screen
(characterized by angles 6, and 6,) with different (in gen-

eral) time-averaged intensities j,(8,) = <<] NCN T)>>
T
and j,(6p) = (( i, r))) . By definition,
T
2)2(6)i2(6b)
=2 (. =R
(i2620F +(1.6,))

In fact, we calculate K,;, for two different “flickering
spots” or parts of “flickering arcs” or points of “irregu-
lar rings”. Within the framework of the models of non-
homogeneities proposed in our previous works [21], the
conic cross-sections with various vectors 6y, 8, and am-
plitudes R,, R; can be realized in the points “a” and “b”.
These amplitudes R, ;, do not depend on the angles 6y,

and 8. For the case, when side maxima are good re-
solved (i.e. (r]G_,z)2 >>1)and

0y =0p =013 =01y,
0.4

Kab = (29)

(30)

0.6

Qf, Hz

0.3

0.2|20

0.1

1 mW
0 0.005  0.01

0 5 10 15 20
lg,mW

Fig.3. Theoretical (solid curve, calculated by Eq.(21a) at Ay} = 0.1,
s1=0.053 mJ7!, N;= 0.03%) and experimental (filled squares)
dependencies of autowaves frequency Qs on Iy. Upper inset: the
experimental (bold curve) and theoretical (fine curve)
dependences of the averaged over the ring autowave intensity
(in arbitrary units) on time. Lower inset: theoretical dependence
of autowaves frequency Qy on /j in the vicinity of the threshold at
the same fitting parameters.
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Equation (29) can be essentially simplified and re-
written as the function of dimensionless intensity &, intro-
duced in item 2.3. In accordance with the numerical cal-
culations (see Fig.1b), even at pump intensities a little
larger than I¢, the expression (28) can be used for 6y
Using (28) and (30), one can obtain that

0q=6p =01y =0, =

/' Ny
s P Dz € NG +1).

Therefore, K, can be presented as:

=6pNgy

Heo(A s +3/(€ 1 Ng +2))H
o Narerr
K2 &o(A21 +1/(E 1 Ng +1)) H

e plota ),

Kap(&) =

& =slo/yy,
&0 = N372(Agy +1)(Cos(08,, 1) ~Cos(06y, Bi)
~1< Ay <0,

- 1
Jath Nd§+/\mg

The dependence of the spatial correlation coefficient
K, over &/N; and comparison with recently obtained

(3D

K,
0.6
0.4
. 7S (-
0.2 0.214 . -
' 0.6ff-~
i v
g 10 20
L]
0 5 10 15 20 25
o
0 5 10 15 20 25

10, mW

Fig.4. The dependences of the measured and calculated at Ay; = 0.1
and Jog = 0.07 mW spatial correlation coefficient K,;, on the
intensity /j at the different angles between the detectors: 10°
(empty squares and solid curve at Ky = 0.021, &, = -30.59 mW),
30° (filled squares and dashed curve at K(y=0.019, & = -30.59
mW), 90° (empty triangles and dotted curve at Ky = 0.09, & = —
12.74mW), 180° (filled triangles and dash-dotted curve at K, =
0.0356, & = -22.94 mW). The dependence of K, over I at K, =
0.3 and different &, is depicted in the inset: &y = —2.08 mW (dash-
dotted curve); —-4.16 mW (dotted curve); -8.32 mW (dashed
curve); —16.64 mW (solid curve).
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experimental data are represented in Fig.4. Then, in or-
der to obtain the dependence of K, over pump intensity
Iy, it is sufficient to make the substitution &/N, - Iy/lyk in
(31). In the case, the values &, Iyx and K|, are fitting
parameters. If the parameter /\,; could not be found from
the critical intensity value or other experimental data, it
also could be regarded as the fitting one. Without further
limitations one can assume that 0 < Ky < 1 and &, can be
both positive and negative. Under comparing the depend-
ence K,;, on [ with the experiment, we used (31) and,
therefore, considered the register detectors placed on the
ring in accordance with (30) assuming that they were the
point ones (i.e., we approximate the real apparatus func-
tion by the Dirac delta-function). The latter approxima-
tion is pertinent only if 84 << |9b - 9a| (6;1s the angular
detector size).

We would like to stress that autowave PILS was ob-
served only in the case of the focused (but not the plane)
Gaussian pump beam with the beam focus located di-
rectly in front of the PRC. This fact is in a good agree-
ment with the conclusions of the item 2.4 (see (26d)).

In our laboratory all the above-mentioned dynamic
effects (see Fig.2) have been registered only in the high-
quality LiNbOj5 single crystals doped with Fe. Similar
effects have not been found in any other samples. In ac-
cordance with the conclusion of the item 2.3, we explain
these results by the presence of the non-zero component
G~ only in the ilmenite LiNbOj3 and its absence in all
other investigated samples.

The process of autowave PILS by crystal strongly de-
pends on a laser light wavelength. Namely, autowaves
are almost absent at wavelengths more than 0.44 pm.
This fact can be explained by the extremely sharp (actu-
ally threshold) dependence of the such material param-
eters as photoionization and capture coefficients as well
as PV-tensor coefficients on the energy of quanta absorbed
by PR-medium, i.e. over laser irradiation wavelength.
Really, the light quantum must have the sufficient energy
for the donor ionization and for the photoelectron cast-
ing to the conduction band.

Having analyzed all the aforementioned results we
can formulate the following statement concerning the
origin and structure of donor levels in LiINbO3:Fe. Both
of the donor levels are made of iron atoms Fe™(I) and
Fe*2(IT), which substitute lithium Li*! and Nb™> atoms
as Fe*3(LIT) centers, correspondingly. Really, these Fe*?
centers occupy different cation sites in pairs to keep the
charge equilibrium. This conclusion is confirmed by other
independent investigations [23-25]. The Fe™3 trap-center
can be transformed into Fe*? donor-center after special
preparation of the sample, such as heating, annealing,
or preliminary laser irradiating. In fact, autowave PILS
exists only in as-prepared samples.

Thus, though the real temporal spectrum of PILS has
been approximated by the delta-function in our linearized
theory, the main spatial and temporal characteristics of
the process obtained in this way are in a full agreement
with the available experimental data.
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3. Generalization of results. The master
equation for inner field evolution

It is worth to emphasize that the main result of the paper
is the running holographic grating (20), obtained from
the microscopic equations (1) in the item 2. All the pecu-
liarities of PILS by the grating can be easily described
qualitatively (see the end of item 2.3) and obtained by
standard methods of diffraction theory [18]. In order to
generalize the obtained results over more wide class of
systems, we would like to formulate the following prob-
lem.

It is desirable to derive and to analyze the pheno-
menological equation for inner field dynamics by
synergetic methods, the Fourier- and Laplace-images of
which have the same structure as (12), but the material
constants have the most general form. Then, instead of
the specific initial system (1), the general equation for
inner field can be postulated. The behaviour of its coeffi-
cients at the instability threshold almost determines the
system dynamics. Using H. Haken terminology [19] here-
inafter we regard the equation as master equation.

3.1. Master equation

Let us discuss a semiconductor PR-medium with local
(e.g., usual conductivity, bias, photovoltaic) and non-
local (e.g., diffusion) mechanisms of carrier transfer. The
main features of its zone structure with respect to carriers
releasing under light illumination can be described by
some many-level system (e.g., a conductive band and ion-
ized donor levels) with the concentration of charge carri-
ers in the conductive band N, and the concentration of p-
type donor atoms N,,. The density of each type of mate-
rial current is proportional to the concentration of defi-
nite carriers.

After standard but cumbersome transformations, the
initial system (1) can be reduced to that of equations de-
scribing the inner electric field Erand the dynamics of
carrier concentration N,. Suppose that the system can be
linearized near the stationary points. The existence of
such points hereinafter is postulated.

Really, one can linearize it in the vicinity of the
some stationary point Ef =Eg+&5 (X y,zt), N, =

= Nes +N(X, Y, zt), and after standard transformations
obtain the linearized equation for &. Let us generalize and
simplify this equation in such a way that its structure ap-
pears to be the clearest and the number of parameters be-
comes minimum and varying in the widest range. The fol-
lowing equation satisfies all the aforementioned conditions:

EH%%]( +grad; (divz (Ef ))+
H T
+ Agltivg e )+ fetaive e+ @ mpel-For -D)=0
- H
(32)
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Here the dimensionless variables are introduced: time
T =t/1,,, radius vector ¢ =F /¢ 4 and constants: the rela-
tive drift length Ap ~ Loy /g, m,= 1,/T,, F,= f,T,/T,
(f,> 1). Other designations used here are the same as in
(12), in this item we consider them as real constants (all
positive except /).

It will be proved that the obtained equation (32) for
the renormalized inner field is the master equation. It
coincides with the one investigated in details in refer-
ences [7-9,20] at m, = 0 or F, = . Let us discuss the
sense of each term in (32). Essentially, this equation rep-
resents the conservation law of the net current in the sys-
tem. Indeed, the term (1+ Jd /dr)ef is the bias and con-
duction current, the term grads (divs£¢) is a general-
ized non- local (diffusion) current, and the last term
(1 Cﬁ/dr Adiv;£ is the local (photovoltaic) photo-
current. Notice ti‘-dt F, are not zero in the general case of
model two-level system of sluggish PR-medium with a
non-local response and asymmetrical potential of
photoactive impurity centers.

3.2. The analysis of the spatial-temporal system
spectrum

The (32) can be solved by the method of integral transfor-
mations (as (9)), i.e.

£ (1) = [dadal @ 0) explad +ior) (33)

where G = q |Z 2+ QDZ - Thus, the equation for the im-

age has the form:

m
U(1+iQ)—i(qU)x§q- A %—_ P Bﬂ—o.(34)
p:zl,Z P |Q+Fp@_

Again, let us generalize and simplify this equation in
such a way that its structure appears to be the clearest
and the number of parameters becomes minimum and
varying in the widest range. -

In the case, when F; >> F,, m; ~ my and vectors A
are co-linear, (34) can be reduced to the more simple dif-
ferential equation with real scalar parameters B, C and a
real vector parameter /\, which satisfies all the aforemen-
tioned conditions and can be rewritten as:

R -QC - -~
1+iQU +[G+ gu) (35a)
( )J Eﬁ 1+iQB aq
Here:
B— 1 _ 1+NA5 TN\
, ml/Fl +/\2 //\1)
(35b)

a3

In order to lock the problem, it is necessary to estab-
lish the dependences of coefficients in (35b) on the pump
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beam intensity /y. In accordance with general specula-
tions, we propose the following dependences:

1
Blo) = SoF i)
B ®
= B(IO)q:—l/F(lo)'
F(Io):1+||—f, T ~tiTp, (35¢)
0

A=No(®-1/F(lp)) I+ >0.

After supplementing (35) by the wave equation for
pump field taking into consideration the EO-effect, we
obtain the complete system of the nonlinear equations for
the description of PILS in PRC. As before, we restrict
ourselves by solving (35) in the case of constant coeffi-
cients, i.e. at Iy = const.

Under the conditions of the absence of the tangential
(transverse) components of the inner field

e¢n(d.1)=0.

when substituting (35d) in (32), the following relations
can be obtained:

(35d)

q. __i+QC/_i
9T 1+igp W
i-QC

36
1+iQB 36)

q||2 ——N\q +1+iQ =0.

Hereinafter we consider the system with a non-zero
transverse photovoltaic current, i.e. A% 0. The absolute
instability threshold of the system, infinite in transverse
and limited in longitudinal directions, is determined by
the equalities:

Im(Q) =Im(qpm) =0.
Substituting (37) into (36) one obtains:

(37

As it follows from (36, 38b), two values of longitudi-
nal wave vector, which determines the spatial gain fac-
tor, correspond to the each frequency value (38a), i.e.:

Ai_ —/\2—14—r !
B 2 4B J-BC'

A_‘/H P
2 J-BC

(38¢)

mm
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The signs in (38) must be chosen simultaneously up-
per or lower.

In accordance with (38), such transverse instability
as the Hopf bifurcation can be realized in the systems
with a non-local response (/;# 0) where:

BC<0 u Ag#0. (39a)

In the terms of model system (35b) the condition (39a) means
that C < 0. The latter is possible 1< Ay /Ay <-1+my /Fy.
When using (35¢), one can determine that C <0 if

o=
C T Yo-1

O<d<l. (39b)

lo>Ic,
Actually, this means that the process possesses the
threshold over pump intensity. All aforementioned
nonlinear phenomena are absent or uncorrelated due to
the vanishing gain below the intensity threshold (39b),
they become noticeable only above this threshold. This
means that the dynamic properties of specific system (1)
possess the aforementioned threshold, i.e. they can be
registered in the samples with rather developed photo-
voltaic response at the pump intensities above the critical
value.
When using (31, 35), the renormalized inner field can
be rewritten as:

£1(,1) =&, ((Crexp(iand ;) + Co expliazd ;) x
exp(iQr+iqDZD )+ cc), (40)

where coefficients C ; can be determined from the appro-
priate boundary conditions for the longitudinal inner
field.

Let us discuss the dependences of oscillations fre-
quency Q= Q/1,,,, of the transverse wave vector Q = gr/ly
and of the spatial gain factor g = g/l on the pump inten-
sity I, for the dynamic holographic grating recorded in
the medium by inner field (40). Allowing for (35¢) we can
obtain from (38) that:

(41)

here for g; and g, the signs “—* and “+* before “big*
root must be correspondingly chosen, and other signs are
simultaneously upper or lower in all values. Q, Qy, g¢
are real constants, independent over j and ®, which with-

S00, 5(3), 2002

out any restriction can be chosen positive. It is easy to
verify that the asymptotes of dependences (41) coincide
with (21), but (41) can be analyzed much simpler than
(16-17). For this goal, let us rewrite (41) in the dimen-
sionless variables:

j

0, =200(j+) 51,
S

= +Qp® -1,
=05+

glz :igoq) q)(]J_’_l)—].-l-

(42)

The dependences of Q/Q, Q/Qp and g1 »/g, over jare
depicted in Fig.5. Notice, that

Re(g;) = —Re(g2), Im(gp) =-1m(gy).

Thus, under validity of (39) and in accordance with
the Wiener-Hopf theorem, the boundary cycle with spec-
trum maximum (38-41) exists in the generalized nonlinear
system. Its linearized master equation can be presented
in the form (35a). Therefore, the modulated inner field
(40) develops in the medium. The latter is due to EO-
effect recording the phase dynamic holographic grating.
In its turn, the laser pump wave will diffract on this oscil-
lating grating.

Finally, in the case of essentially nonlinear restricted
in transverse directions real systems, the following ques-
tions are desirable to answer: under which conditions the
aforementioned boundary cycle can be stable and what
kind of dynamic processes exists in these systems? Restrict-
ing itself by studying of transverse instabilities correspond-
ing to the boundary conditions (35d), one can answer the
questions having analyzed the dependence of transverse
eigen vector imaginary part ¢" ;in (36) on frequency Q (see
Fig 6). Notice that the absolute dynamic instability thresh-
old corresponds to Im(Q) = 0 in accordance with the subor-
dination principle [19]. Thus, it is clear from (36) that
do(Q - t0) =-ApC/B, qp(Q =0)=-Aq.Therefore,
taking into account (36), the following conclusions can be
done.

1) C/B<0. The aforementioned boundary cycle ex-
ists and can be stable if the frequency (35a) is less than
the medium inertia one and the stationary point of the
initial system is stable. Returning to the concrete system
(1) and results (15-21) we can confirm that the periodic
process found there is stable, because the stationary point
is stable at I < I~. This fact means that in the latter case
the transverse periodical recharging waves must be ob-
servable in the aforementioned PR-materials.

(43)
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Fig.5. The dependences of Q7/Qq, O/Qy (a) and complex coefficients g /gy (b) on j at Qp =1, go = 1 and different ®: ® = 0.33 (solid
curves); 0.25 (dashed curves); 0.1 (dotted curves); 0.01 (dash-dotted curves).

2) If 0 < C/B <1, the dynamic transverse structures
can appear under special initial conditions but with time
the stationary field distribution will take place in the
nonlinear system, i.e. the recharging waves are unstable.

3) If C/B=1, the dynamic transverse instabilities with
an infinite frequency are most energetically preferable
for the nonlinear system. But the real frequency value is
undoubtedly finite and restricted by the sluggishness of
the PR-medium. That is the case when the stochastic
behavior is most energetically preferable for the nonlinear
system.

4. Conclusion

In this paper we have studied consecutively the influence
of the recharging trap waves on the dynamics of the inner
photoinduced fields in the uniaxial ferroelectric PRC
under stationary laser irradiation. The characteristic fea-
tures of the direct and inverse PILS have been predicted.
The obtained results can be briefly formulated as follow-
ing statements.

For the first time it has been shown that, due to influ-
ence of transverse photovoltaic current and the typical
boundary conditions for all components of inner field,
among all possible scenarios of transverse instabilities
the boundary circle will be realized in the perfect crys-
tal. Due to this phenomenon the periodical or quasi-peri-
odical PILS appears in the real system, depending on the
structure of growth non-homogeneities and the character
of photoinduced fluctuations caused by them. The great
attention has been paid to generalization of the results in
the form of master equation and to description of the op-
tical autowaves generation in ilmenites.

All the main theoretical results are in a good agree-
ment with the available experimental data and describe
the phenomena found in [6].
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