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Absract. Any small external perturbation on an ideal round optical fiber induces cross —
section deformation and transforms eigen guided vortices into generic vortex fields, which
can change their structure and angular momentum. It is the properties of these vortical fields
in an elliptic weakly guiding optical fiber that we consider in this paper. The eigenfunctions
and the spectrum of polarization corrections to the scalar propagation constant in the case of
relatively large and small values of a fiber ellipticity are obtained by means of the spin-orbit
interaction operator method. Discussed is the conversion process of a spin and orbit angular
momenta on a vortex propagation along a deformed fiber.
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1. Introduction

Optical vortices represent the unique form of electromag-
netic field existence. The distinguishing feature of this
form is the presence of spatial lines where both real and
imaginary parts of wave function simultaneously equal
to zero. The concept of an optical vortex as a scalar wave
field with a pure screw wave front dislocation was first
introduced by J. Nye and M. Berry in [1]. Since such a
field in the vicinity of the dislocation has a phase singu-
larity, the smoothness of its wave function requires the
vanishing of its modulus. Helicoidal structure of the wave
front is also an important attribute of the optical vortex
[2,3]. For beams with such helicoidal wave front struc-
ture the phase circulation around the beam axis does not
equal to zero. Strictly speaking, it was the property that
have determined the term «an optical vortex». The
number of helicoid’s branches determines its topological
charge 1, while the direction of its rotation — the sign of
the charge. More intricate vortical structures — para-
xial spiral laser beams — have been studied in [4]. To
generate optical vortices suitable for practical applica-
tion there have been developed several original methods.
In particular, the most widespread among them are the
method of intro-cavity generation of paraxial beams [5]
and the method of computer-generated holograms [2,6].
As it was demonstrated by further researches, a nonzero
value of the phase circulation is closely connected with
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the orbital angular momentum M along the optical axis,
while circular polarization of the beam induces its spin
M s (where s = *1 characterises the direction of electric
field vector rotation) [2,7-10]. In the paraxial approxi-
mation the total angular momentum per a circularly po-
larized photon is equal to h(l + 0') [7].

In the paraxial approximation the polarization of the
beam does not influence its propagation. Nevertheless,
the properties of the paraxial optical vortex depend both
on its topological charge / and polarization o. In general,
the polarization of electromagnetic wave is a function of
coordinates possessing points, lines and surfaces of sin-
gularity. The properties of polarization singularities -
disclinations — have been studied in details in [11-13].

The presence of optical vortices in the output radia-
tion of a multimode fiber was first revealed by B.Ya.
Zel’dovich and N.B. Baranova in 1980 [4]. In the funda-
mental work of A. Snyder and J. Love [15], there was
mentioned the possibility of an alternative representa-
tion of mode fields in the basis of circular polarization,
but the systematic study of optical fiber's fields concern-
ing their dislocation structure had begun fifteen years
later [16]. In a number of works by A. Volyarand T. Fa-
deyeva [17-19] there have been studied the dislocations
and disclinations of lower mode fields in ideal round
fibers. There have been demonstrated that unlike optical
vortices in vacuum, guiding vortices, propagating in the
inhomogeneous medium of an optical fiber, possess strict-
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ly correlating values of topological charge / and polari-
zation s, so that for / = +1, lo#—1. Guided vortices meet-
ing the requirement of this «selection rule» are conven-
tionally called circular vortices (CV). Other vortices with
ol = —1 are called instability vortices (IV). While propa-
gating the I'V-fields, being not the eigenmodes of an ideal
fiber, decompose on the TE and TM modes possessing
different propagation constants Brg and By, respectively
[20]. It is somewhat convenient to designate the states of

guiding vortices as | o, l> , so those homogeneous vortices
will bear the designation |+ 1,+I> and |— 1,—1) while inho-
mogeneous ones: | +1,-/ ) and | —1+/ ) . Respectively, two

types of IV vortices acquire the designation |+1,~1) and
‘—1,+1> . As well as optical vortices in vacuum, guiding
vortices in fibers carry the orbital and spin angular mo-
mentum [20-22]. In particular, it was demonstrated that
in weakly guiding fibers with arbitrary refractive index
profile the value of the angular momentum per photon
coincides with that of Laguerre-Gaussian beams in a void
if the propagation of light is effectively a paraxial one.

It is easily ascertained that CV with the same topo-
logical charge / and opposite polarization have different
propagation constants. First this fact was singled out as
a manifestation of the spin-orbit interaction by B.Ya.
Zel’dovich and V.S. Liberman in [23]. Further progress
in the study of the spin-orbit interaction was achieved in
the works [24,25]. There was pointed out that the spin-
orbit interaction plays the decisive role in the evolution
of optical vortices in fibers. If we «switch abruptly offt»
this interaction, vortices with the same / acquire the same
spin-independent propagation constant [ . Thus, in the
absence of this interaction, all the vortices in fibers, and
in particular IV, are stable. Vice versa, if we «switch
abrupt-ly on» the interaction, the vortices become po-
larization-sensitive and their propagation constant ﬁ
acqui-res certain polarization corrections 8f. It is possi-
ble to represent the value of §f as an average value 8f =
<y |6H| y>, where 0H is the Hamiltonian of the spin-
orbit interaction, first introduced in [23]. The reason for
such splitting of «energy levels» lies in the fact that in the
absence of interaction each eigenvalue S is four-times
degenerated (except for / = 0 that is two — time degener-
ated). In other words, for each 1 there exist four types of
fields with different oddity and polarization which propa-
gate with the same constant f§ . Interaction eliminates
the degeneration and splits the «levels» of .

The spin-orbit interaction is not the only existing
mechanism eliminating the degeneration in fibers: the
changing of a fiber cross-section can also produce such
an effect. Real fibers usually have their own or exter-
nally induced defects of a cross-section. If such defects
are not accompanied by the photoelastic effect, they cause
basically geometric splitting of ﬁ known as «birefrin-
gence of the form» [29]. In the cross-section of ellipti-
cally deformed fibers there exist two singled out direc-
tions aligned with ellipse’s axes, so the modes polarized
along these directions propagate with different phase
velocities. Since birefringent systems are known to trans-
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form the angular momentum and generate optical vorti-
ces [7-8,26] there exists possibility to use elliptically de-
formed fibers as mode converters.

The question of electromagnetic fields in deformed
fibers has been under consideration for a long time (see,
for instance, the list of references, quoted in the paper
[27]). In this paper there have been carried out the analy-
sis of birefringence in single-mode fibers under various
deformations, including purely geometrical ones, with
the purpose of finding out the ways to obtain single-mode
optical fibers not distorting linearly polarized light. The
results obtained in this work enable us to calculate the
polarization correction to the propagation constant of
the fundamental HE | mode for various types of deforma-
tions. However, there was suggested no regular proce-
dure to obtain the polarization corrections to propaga-
tion constants of higher order modes. In the fundamental
works by A. Snyder et al. [15,28] on the basis of a pertur-
bation theory there have been obtained the expressions
for fields and polarization corrections to propagation
constants in elliptically deformed fibers (see for instance
Tab. 13.1in[15]). However, in the structure of perturba-
tion there was included only the spin-orbit interaction,
while the perturbation of the form was accounted in the
zero approximation. Thus, the degeneration degree of
the ground state was found to be two, what might have
led to wrong conclusions at relatively small deformations
of a cross-section. Moreover, the influence of the defor-
mation on the spin-orbit interaction was also neglected.

The main objective of the present paper is to give a
consistent theoretical description of optical vortices in
weakly guiding elliptically deformed fibers, based on the
analysis of the vector wave equation solutions, obtained
by the perturbation theory method.

In Sec.2 we consider eigenfunctions and eigenvalues
of the spin — orbit interaction Hamiltonian as guided
modes and their constant propagations of a weakly guid-
ing elliptic fiber. The optical vortex behaviour in that
fiber is discussed in Sec.3. In Sec. 4 we obtain the rela-
tionships between the spin and orbit angular momenta
and some conclusions are drawn in Sec.5.

2.The spin — orbit interaction,
polarization corrections and eigenmodes

It is possible to represent the vector wave equation for the
transverse electric field e, in a fiber in the form:

(V2 +n? (x,y)kz)e, +Vt(etvt Inn’ (XsJ’))= BZe,. (D

where n? (x,y)=n., (=21 (x,y)), n, is the refractive
index along fiber’s axis, A is the height of the refractive
index profile n’ (x,y),V, =id/ox+jo/dy , k=2r/A
(we use the designations of the work [15]).

Consider the ideal case when the elliptic deformation of
a cross-section does not induce mechanical tensions, and
one can disregard with the photoelastic effect. We shall de-
scribe the ellipticity of a fiber by the parameter 6<<1, which
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we shall introduce as: f(x,y)= f(x(+8)y(1-6))=~

w o y]ﬁ, where the function 7 (r)= 7 (r)

describes the symmetric proﬁle in a non-deformed cross-
section. Note that § = e /4, where ¢ stands for eccen-
tricity of the deformation ellipse. Then the small defor-
mation of a cross-section causes the change in n? and its
gradient vy ,In n? in the following form:

n? =i’ —2ncoA5~r2y/c052(p =

=772 +An2,

2 = (7 . F 7
V,inn? = 24V, 7 288 {i(Forx + o = Ty )t )
+]j nyx_/?yyy_fy)}

Here 1 stands for unperturbed refractive index func-

l E)f Bf
oxdy

shall use the operator approach suggested in [21,23-25]
and treat the appearance of the perturbation terms k% An?

and V,le;V, In n? ) in (1) as a manifestation of the spin-
orbit coupling. Then the term 2AV/ in (2) describes the
«ordinary» spin — orbit interaction, the term An* — the
perturbation due to profile’s ellipticity. The other terms,
proportional to 6, describe the variation of the spin-orbit
interaction caused by elliptic deformation.

To simplify the analysis we shall rewrite (1) in a
matrix form in the basis of circular polarization:

(B +V)¥)=B*|¥). 3)

tion n(x,y),y , for instance. We

fxy

1 [ex— 2, ,2.2
where |W)= \/5(" +1€yJ Hy=(V"+k“n°(x,yni
and the expression for V is easily established from (1).
Formally the equation (3) is an equation on eigenfunctions

|‘P> and eigenvalues 3 2 of the Hamiltonian H = H, +

+V . In the absence of interaction, each eigenvalue B2 is
four-times degenerated: twice in polarization s and twice
in orbital number 1. The interaction eliminates the de-
generation and at the same time changes the structure of
the ground state. The last our case implies the choice of
proper linear combinations of basic eigenfunctions be-
longing to the same 3 2,,, ;- It is convenient to choose the
optical vortices [20,21] as such basic functions:

|W1) =L Wy ) = |L-0)| W3 ) = |- 1-1).| Wy ) = |- 11) .
“
where the first index in the vector | ,) specifies the direc-
tion of vortex circular polarization, o = *1, while the
second — its topological charge /. For example,

<0',l|0',l'>=6”v5m

R=r/ry, where F;(R) is the ra-
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dial function of a state, 7, is a core radius. One also

assumes to be <0',l|o",1'>=5 6+ ,where
Il oo

(@ %)= _gdxdy (@j,@i)(j{ ]

Note that this assumption implies the following normali-

zation of Fj(R): 2anF12 (R)dR =1.1tis worth noting

that the expressions (2) are written in the basis of circular
polarization. The polarization corrections to the propa-
gation constant 3 2,1,; are found as the solutions of the
characteristic equation:

det|V;; -8, B2 |=0. 0

To solve this equation one has to know the matrix
elements V7; in the chosen basis. It is possible to prove

that though V* £V, in the basis (4) we have (i |V| j) =

=(i[V*|j) . This notion enables us to use in calculations

for the sake of simplicity the Hermitian Hamiltonian
instead of V . Then the effective Hamiltonian of the spin-
orbit interaction in elliptic fibers takes the form:

e—2iq) -
0

o
—Ay—(A12)r2y —AS 2nwzr2|,/k2+£r—’§2 cos2¢-1+
2r

I 1 3 0 e_4i(p ’
+(2f< i }rx+zr %{e4i(p 0

(©)

0
= Ayl —(A/Z)rzx[ezl(p

where y = _8_1// )

roor

. d .
= —t£ is the operator of the z-

component of the angular momentum, 1,6 .z are Pauli

matrices. In (6) we have omitted two terms which give
zero contribution to matrix elements. The first four terms
form the Hamiltonian of the spin-orbit interaction in
round fibers [21,23-25].

For various / the matrix 6H; has the following struc-
ture, determined by the symmetry of interaction:

4 D, C E,

E, Ci+G

SH = SRR 0
C E, 4 D,

El C1+Gl Dl Bl

)
S
=
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We shall obtain the explicit expressions for eigen-
vectors of this matrix and the spectrum of corrections to

the eigenvalues of the operator A, for fibers with step

and parabolic refractive index profiles. The function f
of the step refractive index profile is given by

0,R<1 . .
f (R) = , while for the truncated parabolic pro-
LR>1
fileitis f(R)= R? R<1
LR>1

1. The fundamental mode, / = 0. From (6) we obtain:
Ay =By,Dy=0,Gy=0,E;=C,. Then for eigenvec-
tors we have:|e;)= |10)—|-10), |eg)=]10)+|-10),
wh11e for polarization corrections: Af;” = Ay +2Cy,
A,B4 =4y - 2C0 The explicit expression of the matrix
elements is given in the Table 2. The result obtained dem-
onstrates the absence of degeneration. Note that we have
not normalized the eigenvectors.

2. The lowest order mode, / = 1. In this case C;=0 and
the degeneration is also completely eliminated. The
eigenvectors given in the Table 1 by their structure present
certain combinations of modes in round weakly guiding
fibers. In the designations of [15] one can represent the
modes of elliptical weakly guiding fibers also as:

|Wl)=z(K1|HE0";+1m> |EH”d1

-)
llm>)
).

EH”z_l,m> :

|‘P2> I(K2| HEOdl+l,m>

|¥3)= —Kz‘ HE" z+1,m> EH|- ®

|w,)= —K4‘ HE® 1im > -

where K;are defined in the Table 1, HE and EH-symbols
stand for the standard designations of modes in ideal
fibers, the upper indices ev and od specify mode’s oddity,
m is the radial index. It is easily demonstrated that the
obtained expressions (8) for mode fields can be also writ-
ten as:

IBE {x sin(l<p)+9[A1 + flea2 )cos(kp)}m )
¥s4)= {ﬁcos(lfp)+ 9(A2 71442 )sin(lfp)}F, (®).
©)

where X,y are the unit vectors, F;(R) is the radial func-
D, T E

————  The comparison with the re-
A - B; +G,

tiOl’l, A1,2 =

Table 1. Eigenvectors and polarization corrections to a propagation constant in an elliptic fiber

i |¥y) (1=1.2) AB2 (1=12)
1 Ky (L) = =11+ (1-1) | -1.2)) %@u +%Eu
> Koy (L1) =] ~Lot))+ (1) | ~1.) S Ou -5y
3 Ky (L0)+ |~ (1t) 4] ~L1) N
: KLY+ L)) (1) 4] 1) 3055

Kl _ El —’}’Dl
A - AB;?
{ > 1.d I
_——
drR? R dR R2
i J .;-;l(l(;])) - Ij:,r]((N ))— for step profile fiber;

+Li=12 5 >
r= —lLi=34 O =4+ B -Gy El:\/(_Al+Bl_7Gl) +4(D; —¥E )

-V f( )} 1(R)=0; U = J2V @m+1-1)- for parabolic profile fiber;

v2=0%+Ww?; V =krgng,N2A; k=2m/A.

500, 3(4), 2000

503



C.N. Alexeyeyv et al.: Spin-orbit interaction in a generic vortex field transmitted ...

Table 2. Matrix elements of the spin-orbit interaction operator H in an elliptic fiber

Step index profile Parabolic index profile
/=0 [=0
A A 1
' . 2 2
AO =——2F0F0|R:] 5 A0:_2 FO |R:1_2IRF0 dR;
7o To 0
A 2 A 1
' 2 : 2
COZ——[F()FO +F —F()FO )R:l CO :_2{(2F0 _FOF() )R:l'_4jRFO dR}
2]’0 7'0 0
/=12 [=1.2
A (> v ) 4A 2 2
Al:__2(Fl _FIFI )RZI’ Al=——2 jRFl dR__Fl R=l (>
7'0 7'0 0
A ' A 2
B,:—Z(F12+F,F1 )R:l; ¢ =0 B =——F|ga: € =0
0 )

1 il
D[ =5k2n00252A(a1Flz +b1FlFl )Rzl;

1
b
D, =-282Ak’n,,* e, IR4_IF12dR+TlF12| R=l

il

0

1
A .
Ey=S{QFE - F F)pa —4JRF,2dR |5

5A " o) ' .
EIZ— 2(F[Fl +Fl _FlFl )R=l’
2r 1 0
A, . " . 45A
Gl:_z{plFl +d1FlF[ —2b[(Fl +F[F[ )}R:1 G[Z——(K'[F[ +b[F1Fl)
To ro
2 1
_g’l_l 0/=1 _ _ l)];l S lj];l _ g’l‘l LJ:
ar=3 5 POIT N2t T 0 2 PI=\ 6 &= s K1=146
5,122 -14,1=2 -8,1=2 —5,l=2 2,1=2

sults of [15] reveals an agreement with the form of notation
at £; =0 . Though this definition of A differs from the
one given in [15], essentially A is the ratio of ellip-ticity-
induced splitting to the splitting caused by pure spin-orbit
interaction, what is also in agreement with [15].

Consider some limiting cases, namely: 1) the case of
small ellipticity with & << (A/r, )2 and 2) the case of large
ellipticity with (A/r, )2 << 6 <<1. The margin g, =
=(A/ry)? is found as the Sat which the contrlbutlon of
purely spin-orbit terms which are of order A/ rO to po-
larization corrections is comparable with that of purely
ellipticity-induced terms which we find proportional to
SAI 2%

A) Small ellipticity: & << §( . From the Tables 1 and

2 we readily obtain:
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K, =-D, /{0 5(d; —|41|)- D2 /|4 }

~-D /{o S(4, +| 4]+ Dy /|A1|}
tost

~-Dy 110.5(4 —2B, -| 4, —2B)|)- D12/|A1—ZBI|},

K4~—D1/{05A1 2Bl+|A1 2Bl|)+D1 /|Al 2Bl|}

(10)

For very small ellipticity at certain assumptions on

the signs of 4, and 4,-2B; from (8) we obtain: | ‘I’1> =

—z| HE0d21> |¥3) =

|HE€V21> |¥,) ~z|TE0m>

>
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| \Wy)= | ™, > ,so that in the limit 5~0 we come to the

modes of an ideal fiber. Note that the other choice of
signs would lead to a mere renumbering of the states.
Though for small ellipticity we can disregard with its
influence on mode amplitudes, in the polarization cor-
rections we cannot neglect it. So from the Tables 1 and 2
for the polarization corrections we obtain:

Aﬂlz = OS(AI +|A1|)+ D12 /|A1| ,

ABy? =0.5(4; —|4y|)- D% /|4y,
Aﬂ32 = OS(AI +2Bl +|A1 _2Bl|)+ D12 /|A1 _2Bl|7
AB4* = 0.5(d; +2B, —|4, —2By|)- D* /|4, 2B,

(11)
In the limit 6—0 the corrections (11) coincide with the
polarization corrections to the propagation constant
given in Tables 14.1 and 14.2 of [15]. It should be stressed
that the splitting of «energy levels» f3,; is of order & 2,
Since § o< 2 , where e is the eccentricity, then Af o< e?
what contradicts to the result that could have been obtai-
ned on the basis of expressions derived in [15] (Af o< e’ ).
The reason of such discordance lies in the difference in
the choice of the zeroth-approximation Hamiltonian and
therefore the structure of perturbation in the eq. (1).

B) Large ellipticity: 6, << 6 <<1. In this case from

the Tables 1 and 2 for K; we obtain: K;|=1- In the basis
of linear polarization the expressions (8) for the fields
can be recast as:

EAE (Si2¢) ¥y ) o (Coiq,) [¥3) (sir(l)(p}
wo=()

So that this case is reduced to the well studied case of
LP-modes [15]. The polarization corrections to ﬁ are
given by:

(12)

=Dy +0.54;, ABy” =|Dy|-0.54; ,

Aﬂ32 zO_SAI +Bl +|Dl| ,Aﬁ42 zO.SA] +B] _|D1| :
(13)

Note that the splitting of «levels» is of order 8, or €2,
what is in agreement with the corresponding result of [15].

Before proceeding to the optical vortices behaviour,
it is worth to discuss briefly the limits of the perturbation
theory applicability.

In general, the perturbation theory is valid if the cor-
rections to 8 are much less then the difference between
the neighboring levels B,; : AB<< |/3n - ﬁm| [32
relatively large values of the deformation parameter §
(I=1) we have:
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AB> ABr’
BB
On the other hand, in weakly guiding fibers [15] | B -

- ﬁm n. )e< knA | so that one can express the
condition of the perturbation theory applicability as:

AB? e Do 2002 5 Ap o
212

AB <<|B

Bm|

<<”kA:> §<<1-

In calculations we usually use the correction §f; to

the propagation constant ﬁ rather than the correction

AB 2 to the eigenvalue ,E 2 of the operator H. Deter-
mine the connection between these two corrections. As
follows from the definition, the eigenvalues of the per-
turbed Hamiltonian H = H, +6H are B? =% +AB?.
where 7 is the number of a level in the quadruplet. Then

‘/[3 +A[3, ﬁ+5ﬁ,,where oB; = ﬁé .

3. Generic optical vortices, their propagation
and conversion

As evident, the optical vortex being not the eigenmode of
an elliptic fiber cannot propagate in it without any
changes. If the vortex is launched into a slightly elliptic
fiber, it generally decomposes into all the four types of
vortices | o,l ) and they become the generic vortices:

1) = ¢lw;)e

J

(14)

where | ¥ ]»> is the j-th eigenmode of an ideal fiber, C;is a

weight coefficient. If the fiber is excited with the vortex

‘0',1> then on its input (z = 0) we have the boundary

condition:
L= C;|¥;). (15)
J

which provides the system of equations for coefficients

C;.

3.1 Homogeneous generic vortices |+1+l)

1. Small ellipticity (8 << & ),/=1. Neglecting in field
amplitudes the members small in (§ << &), from the
Table 2 through (15) we obtain:

L0 ={ |L1) cos6 gz -+i|~1~1)x

xsind Boyz Yexpli (B+Bo) ) (10
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where 8B4 = (88, —6B4)/2 . Bos = (682 +3B4)/2 . As
evident, the ellipticity causes oscillations between |1,.l )
and |— 1,-/ ) vortices with the beating length A=27/88,4 .
On intermediate lengths the field does not possess the
definite topological charge and polarization. To ana-
lyse the polarization of the field consider Stokes param-
eters [29]:

Sy =e, e +eye*. =1,

¥
S;=e ey —eye; =sin2¢sin28f,4z, (17)
SH =exe; +e;ey =—cos2¢sin2fz ,

S =eiey —exe; =c0820fBy4z .

As follows from (17) in each point the field is com-
pletely polarized: 53 = S12 +S22 + S32 . Besides, on any
radial line ¢ = const polarization’s ellipticity is constant
while an azimuth y of polarization ellipse changes as

T o N
Y= ) + ¢ . The distribution of polarization in a trans-

versal cross-section is given in Fig. 1.

Determine the z-component of the total angular mo-
mentum. In a weakly guiding fiber cross-section, the to-
tal angular momentum is given by [21,23]:

2
M. =my ¥ (1, +0;)c,| . (18)
J
V2A
where m L e g—onw 1‘03. From (18) and (16)
202V Vo

one can obtain the linear density of the angular momen-
tum in an elliptic fiber in the form:

M_" < 2my cos By . (19)

As evident, the angular momentum oscillates and the
beating length equals 2A, so that an elliptic fiber trans-
forms the angular momentum as well as mode converters
[7,26]. But unlike in mode converters, in almost round
elliptic fibers the transformation of the angular momen-
tum is not accompanied by the changes in the intensity
distribution in a cross-section. As follows from (11) the
beating length is:

~ —1

A=2rm p ! !

L 1 (20)
D (|4 -2B] |4

sothat Aocce™.
2. Large ellipticity, /=1(8 >> &, ).

For definiteness we shall take D; >0. In this case
from (14) through (15) we obtain:
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1’l>ell :%{‘l’w(eiﬂlz +eiﬁzz+ei/33z+eiﬁ4z)+

+|—l,—l>(—eiﬁlz ML +e’ﬂ42)+
+|l,—l>(elﬁ1: ML —eiﬂ42)+ (21)
+ |—1,l>(—eiﬁIZ 1Pz 4 B3 —eiﬁ“z)},

or for the Cartesian components of the field:

e, = %{cosl(p '3 4 isin lp- P27 }eiﬁZF](R) ,

z=0 0<26[324z<n/2 20,,2=al2
72 <20 Pyyr <m 20 fyyr=m

7
N a

<

2

n

%

Fig. 1. The sketch representation of the polarization state distri-
bution S3 in several elliptical fiber cross — sections along half
beating length in a small elipticity case. As a generic vortex is
transmitted through a fiber, there is appeared the polarization
state conversion from the right (o = +1) to the left (o = 1) circu-
larity at the half beating length, but the cross — section intensity
distribution is not altered. At an arbitrary fiber cross —section,
there takes place a nonuniform polarization distribution. Never-
theless , at the each cross — section there are a set of radial senses
along which the polarization state S; is constant. The going around
of a fiber axis induces the full turn of the polarization azimuth ¢ =
arctanS,/S|. At the fiber axis ReW = Im¥ = 0. The optical fiber
parameters are V' = 3.5, e = 0.01, n,, = 1.48, p = 4.5mp.
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ey = —l{cosl(p~e’5ﬁlz +isinlg- P4 }e’f”ZFl(R). 22)
V2
As obvious, in this case the process of field transfor-
mation is characterised by the two beating lengths: A
and A,,A; >> A, . It also follows from the expression
for the total angular momentum:

D B
M =2my cos> (ﬁ z)cos(2—1~ z), (23)

(the dependence curves is given by Fig.2).
3.2. Inhomogeneous generic vortices |+£17l)

1. Small ellipticity, (/ =1). With the same assumptions
on the signs of A; and 4 — 2B from (14), (15) we obtain:

|1-0)" ={ |L1) cosd Bz +i|-1,1)x
xsind By3¢ Jexp{i(B+Byaz)}

24)
a) 1
A \%\‘goik )
) '
Il %\MMU{\VQ - [ I

The expressions for Stokes’s parameters of this field are
easily obtained from (20) by the substitution: ;3 — =S 3.
The beating lengthis A =2 /f;5 . This field carries zero
total angular momentum since the orbital and spin angular
momentum have different signs and equal moduli at any z.

2. Largeellipticity (/=1).

The transverse electric field can be written as:

1-1 ell. _ 1 1,1 elﬁlz _elﬁzl +elﬁ32 _elﬁ4z +
) = 2k )
+| —1,—1)(—eiﬁlz +0P27 4 o137 _ 1Pz )+
+|1,—l>(e'ﬂ12 +'P27 4 oP3 +eiﬁ42)+ (25)
+ |—1,l>(—eiﬁ1z — P2 4 (i3 +€i/341).

As well as in the case of homogeneous vortices, the
propagation of the inhomogeneous vortices |il,$l> ex-
hibits the existence of two beating lengths: A and A,,
A >> A, . The pattern of field transformation and po-

larization states of the field described by (25) is schema-
tically given in Fig.3. Since the ratio A/A, generally exhib-

b)

0.5

0 0.02 0.04 0.06[[0.08[p.1 [0.12]0.14

-0.5

d)

0.5

0 0.2 0.41[0.6[10.8 V 1.211.

Fig. 2. The dependencies of the angular momentum M. and the polarization state S3 (at the point vicinity x = y = 0.2 um) at the fiber
length z (in meters) of a homogeneous vortex in the wave state |[+1, +1) for (a-b) e = 0.2, V= 3.5 and (c-d) e = 0.01, V"' = 3.5 in a large

ellipticity case.
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its the property of irrational numbers to refine chaotically
its value with the increase of accuracy, the field distribution
never restores its initial pattern in the propagation process.
Thus the optical vortices in highly elliptic fibers display the
elements of a random behavior what is intrinsic to all physi-
cal systems with two or more characteristic oscillation pa-
rameters.

While the presence of the length A, corresponds to
small-scale oscillations, the length A governs large-scale
variations of fields and exhibit itself only in fibers sev-
eral meters long. So if near the input end of a fiber purely
screw dislocation is transformed into a mixed disloca-
tion, at the length A;/4 one can observe degenerated
edge dislocation with the axis inclined at an angle 7 /4 .
At the length A;/2 the degenerated edge dislocation is
once more reproduced. The angular momentum changes
with z as:

D B
M, =2my sinz(—lz)cos(—l~ z), (26)
2 2

Fig. 3a. The sketch of the mode conversion of an elliptic step —
index optical fiber: V' = 3.5, e = 0.1, n,, = 1.48, p = 4.5mp at small
lengths in a large elliptic case. Observed are the slight swingings
of the cross — section intensity distributions Sy(x, y, zo) (from the
left) due to a variation of the ellipticity degree S3(x, y, zp) in a
fiber cross — section zj (on the right) on the generic vortex spread.
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this z — dependence curve is given by Fig. 4. The most
distinguishing feature of this result (as well as for homo-
geneous vortices in highly elliptic fibers ) is the conver-
sion of the angular momentum characterized by two
lengths: Ay and A,. To understand the cause of that, we
have to analyze the evolution of the spin and the orbital
angular momentum with z.

4. The spin and orbital angular momenta

The problem of the angular momentum transformations
is one of the best illustrations of the guided vortices trans-
mitting along a perturbed fiber. It is the problem that are
the base one on this process propagation, and it is the
intrinsic process of the orbital and spin momenta conver-
sion that turns vortex fields into the generic wave fields of
guiding inhomogeneous media. It notes that there are no
the eigen vortices in a real fiber since even a slight pertur-
bation of a fiber decomposes those into a sum of the eigen
modes that is it transforms the fields into the generic vor-

= 100. 15

Fig. 3b. The similar situation that is the Fig. 3a but only for the
lardge fiber lengths. It is observed a strong swimings both the
intensity distribution Sy(x, y, zg) (from the left) and the ellipticity
degree Ss(x, y, zp) (on the right). There arises the state converstion
from a degenarated edge dislocation to a pure screw disloca-
tion and from the right polarizable ellips to the left one. It notes
that in the pure states, the dislocation axis and the polarizable
azimuth senses are always turn out with respect to the the intial
states. And there are not fiber cross — section at which the initial
states could be recovered whatever the fiber length is.
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C.N. Alexeyev et al.: Spin-orbit interaction in a generic vortex field transmitted ...

0.5

o[ \o.' 0'2 'Y/.s 0.8 1\,\ ‘o
05
1
)
!
0.5
ol N_AAAV
0 VVZV 4 811k 2 bm‘l" 16
v u ‘
05
1

b) 1\

0.5

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

] VL

d)

|

0 VJ.Z 0.4J 0.6 [0.8 1 1.2 1.4 u1.6

-0.5

Fig. 4. The dependencies of the angular momentum M. (in relative units) and the polarization state S5 (at the point vicinity x = y =
0.2 um) at the fiber length z (in meters) of an inhomogeneous vortex in the wave state |+1, —1) for (a-b) e = 0.2, V' = 3.5 and (c-d) e =

0.01, V= 3.5 for a large ellipticity case.

tices (in according to J. Nye [34]). Thus we consider above
all the general properties of the angular momentum of
the vortex light fields.

4.1. The field angular momenta in a weakly
guiding fiber

We specify the average density of the angular momentum
of a light field in a media as:

(M):%Re(rxDxB*),

where D, B are the vectors of electric and magnetic in-
duction. Decomposing these vectors into parallel and per-
pendicular components (with respect to the optical axis),
we obtain for the parallel component of the angular mo-
mentum density:

<M”>=%Re{er(DLxB*" +DyxB° L)) (26a)

500, 3(4), 2000

For electric component of guiding modes we have:

E(x,y.2)=e(x, y)elﬁz and for magnetic component we

have a similar representation. Following [30], express all
the fields in (26a) in terms of the transverse electric field [15]

30 {3
e=é,+A2e£2 h,+..,h=h, +A2hz2 n, +..

, where
oy (]
2 oA 2
ehz :l rO(Vt.eI) b hzz :_l 2A 8_0 2X
V Vo { ko

1
~ € 5
xnwro(Vtxe,)Z, h, =n,, #— h, x& , the symbol
0

1 . L .
(5) specify the order of approximation in A. Then in the

first order in \/Z we have:
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1
Mng :—I’}’IO Im l'J_ X(Et th XE’[* _(Vt’at )E:)

>

where my is defined in (18). For the total angular mo-

mentum in a cross-section after a little algebraic trans-
formation we obtain [21]:

2
Mz,tot

=m0<lP|fz +dz|‘l’>

If the field is a superposition of vortices:

|T>:2Ci|0i,li>,then
i
1

M.LIZOJ =mq Y (l; v el
i

With the same assumptions we obtain for the total energy
through a cross-section:

)=l
J

so that for pure states we easily obtain for the ratio «an-
gular momentum/energy» a well known result (/+0)/®

which describes both paraxial beams in a free space and
in an inhomogeneous medium as well.

4.2. The spin continuity and
the spin momentum flux

All optical processes observed usually in an experiment
are perceived as a flux of certain physical value, inten-
sity, in particular. An angular momentum is not excep-
tion. In our case, it takes place the continuous conversion
of the orbital and spin angular momenta fluxes. Consider
the equation governed by this process.

As it has been pointed out in [30] the matrix ¢, (and

the other two Pauli matrices) in the expression for the
total angular momentum must not be regarded as a com-
ponent of a spin angular momentum vector of the light.
Nevertheless we would like to present a reason to justify
the way of obtaining S, used in later. Consider Maxwell’s
equations for a homogeneous medium:

rotH = a—D, rotE = —a—B,

ot ot

divD =0, divB=0,

D=¢E,B=uH

and their complex conjugation. It is possible to obtain in
vacuum the following equation:

510

ai(soE* xE+ p H" xH):
f (26b)
= (E* x rotH — H* x rotE)— c.c.

With the account of an evident relation: (axrorb); =

%b;

i(a jbi), where a, b have the property:

axi axj

diva = divb =0, one can bring (26b) to the form of a con-
tinuity equation:

0, , Oy _

0, 26
o ax (269)

where S= —é(eoE* xE+ ugH" ><H), i = -5

X(E-H*S,-k +EZH1' —HZE,- +c.c.. We interpret S as a

vector of classical spin density, £;; — as a tensor of
classical spin flux density. Note that S has a dimension
of energy density and X;; — the one of Poynting’s vector.

The expression for S is somewhat similar to the corre-
sponding expressions for the spin angular momentum
density in [30,32]. In vacuum the total spin momentum is
proportional to the total spin angular momentum. For
pure real fields (i.e. without phase shifts) S also equals
zero, so it describes polarization properties of fields as
well. But unlike the corresponding vectors in [30,32], S
haslocal sense and is an integral of motion with a conser-
vation law in the form of (26¢). It should be noted that in
the paraxial approximation the ratio of the total spin

flux (1‘[3>:”(233)dxdy to the total power is:

N
I1 Yo, ¥
<(N3)> = (¥o| ) The last relation provides an addi-

(¥]w)
tional reason to identify ¢, as an operator related to the

spin properties of electromagnetic field.

4.3. Conversion of the spin and orbital angular
momenta in a fiber

As evident the total spin angular momentum S, through
a fiber cross-section can be found as S, = mo(‘{’ |GZ| ‘P)

if we recognize ¢, as the operator of the spin angular

momentum. Then the total orbital angular momentum
L._is found as L.=M_.-S.- With the account of these
simple relations, we easily obtain for almost round fibers:
27)

SZ =mg COS 6ﬁ242 , LZ =myg COS 5ﬁ242
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for |i1,il>ell vortices and

S. =mgcosdfzz , L. =-mygcosdf3z (28)

for |il,$1>eﬂ vortices. As follows from (27).(28) at

0 << & the transformation of the spin and orbital angu-

lar momentum takes place in a unified manner with the
characteristic length A;.

In highly elliptic fibers, angular momenta are trans-
formed as follows:

D B B

L. =my cos(le) COS(—INZ) , S, =my CoS—- 2 (29)
B 2p 2B

for |1,1>e” vortex and

D B B
L. =-my cos(le) cos(—1~z) , S, =my CoS—L 2 (30)
B 2p 2p

for |1,—1>e” vortex. Fig. 5 gives the dependence curves.

As follows from these expressions, two beating lengths A
and A, correspond to the scales on which the spin and
orbital angular momentum change. Basically these two
lengths are related to two existing mechanisms of the

a)

UL,

M o:2[[ W [T\ oo v?)l\v
s |

©)

0.5

N T \

angular momentum transformation. The first one is con-
nected with a birefringence of the form [29] and changes
rather the orbital angular momentum than the spin one.
This mechanism is responsible for the orbital angular
momentum conversion in various mode converters [7,26]
and manifest itself on a relatively small length A,. The
other mechanism is connected with the so-called topologi-
cal birefringence [25] and exhibit itself on larger scales
characterized by A;. This mechanism is also immanently
connected with the spin-orbit interaction [23,24]. The
obtained behavior of the angular momenta is consistent
with our expectations. As it was demonstrated in [30], the
orbital angular momentum changes in locally isotropic
media with violated axial symmetry, while the spin angu-
lar momentum is changed by media’s optical activity.
The refined perturbation theory [31] reveals large-scale
variation of radiation’s ellipticity (and thus its spin an-
gular momentum) even in locally isotropic media. The
obtained curves demonstrate just these predicted features.

Interesting results are obtained when the transforma-
tion of initially polarized light in elliptic fibers is consi-
dered. If we launch into the fiber a linearly polarized
radiation, so that the boundary condition is written as

1
z=0" "=
2

case 0 << J is given by:

| LP) ell (

LI)+|-11)), its distribution in the

b)

0.5

17

Fig. 5. The dependencies of the angular orbital L. (a,c) and spin S. (b,d) momenta of inhomogeneous vortex in the state [+1, —1) at
a fiber length z (in meters) and a waveguiding parameter V (in (a,b,c) V' = 3.5) for ¢ = 0.2 (a,b,d) and e¢ = 0.01(c).
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6”_1 ifrz ifaz
LP)" =——||LI)}e"* +e'™* )+
2y =y ey

+| = L-1)(e P — P27y 4 | 1-1)(e P - Py 4

+ | -Li)eP ey ], 31)
while in the case § >> §) the field distribution is:
| LP>ell _ 1 [| 1,1)(e’ﬂ23 T+
22
+| 1) P =Py 4 1-1) P — P27y 4
+ |- LI 4Py ], (32)
Then for the angular momenta we obtain:
M. =S, =mgycosdfyz, L.=0 (8<<9y),
M, =S, ~mycosdf3z, L. =0 (8<<) (33)

for / =1. If we excite the fiber with a circularly polar-
ized radiation, the boundary condition assumes the form:

| CP>e//

0= 2 (| 1 l) + |1,—Z )) . Then the field distribu-
2

5

tion is given by:
P! =L |[Li)e ™ + Pyt
ey ===l

+]| = 1-1) P =Py 4 |1-1) e P 1Py 4

=L o) ] (34)
in the case of small ellipticity and:
1 B g
CPY" = —||L1)(e™P + P )+
ey =—=lu)
+] =LY Py 4 |1-1) P 4 o) 4
+] L) — P | (35)

in the case of large ellipticity. For the angular momenta
we obtain:

M, =L, =mycoséfyuz, S, =0 (6<<8y),

M, =L, =mycosdfrzz, S,=0 (§<<5)) (36)

From the expressions for polarization corrections
given in the Tables 1,2 we conclude that in the both cases
the spin angular momentum oscillates on large lengths.
The orbital angular momentum possess small beating
length in the case & >> 9, while at § >> §, it also va-

ries at large distances.
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Conclusions

We have studied the propagation of the simplest possible
vortical fields in elliptic fibers. To make it we obtained
the eigenfunctions of the operator of a spin-orbit interac-
tion and the spectrum of polarization corrections to the
scalar propagation constant in the case of relatively large
and small values of a fiber ellipticity. The obtained re-
sult revealed certain discordance with the spectra of po-
larization corrections given in [15], namely in the case of
a small fiber ellipticity. We explain this discordance as
follows. The results of [15] are valid only if we treat the
spin-orbit interaction as a small perturbation on the back-
ground of large deformation-induced effective interac-
tion, included in the structure of the A, unperturbed
Hamiltonian. If these two interactions are comparable
or the latter is much less, we must use the expressions
obtained in the present paper. The basic difference be-
tween the perturbation theory developed in [15] and the
one suggested in the present paper is in the symmetry of
the ground state. While in [15] the ground state is two-
times degenerated, the degeneration degree in our case
equals four. This is also the basic reason of the drastic
difference in vortex evolution in weakly elliptic and
strongly elliptic fibers.

As we have established, both homogeneous and inho-
mogeneous vortices propagating in an elliptic fiber un-
dergo a mode conversion. Unlike lens converters [33], en
elliptic fiber converts both topological charge and po-
larization of vortices observing in a cross-section. But
while in strongly elliptic fibers the mode conversion pat-
terns are somewhat similar to that observed in lens con-
verters, a weakly elliptic fiber exhibits the unique type of
conversion not existing in lens converters. This type of
conversion is characterized with larger conversion length
Aj o< ¢* ,so those fibers with the length L << Ay will trans-
mit the vortex in an almost unchanged form. This predic-
tion could not have been made on the basis of relations
obtained in [15] and constitutes one of the main results of
the present paper. The difference in the behavior of vorti-
ces in strongly and weakly elliptic fibers is so striking
that one can even speak on two different physical phases,
which are realized in deformed fibers and characterized
by different types of symmetry. It should be noticed that
in an ideal circular fiber, the vortex ground state is not
degenerated with respect to a polarization [24] only.
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