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Generation of coherent confined acoustic phonons
by drifting electrons in quantum wire
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Abstract. We developed a quantum theory of generation of coherent confined acoustic phonons
by one-dimensional electrons drifting in a quantum wire. A general formula for the factor of
amplification of the phonon flux, ¢, is derived. When the electron drift velocity, V,, is greater
than the sound phase velocity, S, then at low temperatures the above generation occurs only in
a narrow range of phonon wave vectors, ¢ ~ 2kg[1 = (V;— S)/ V], where kg (V) is the wave vector
(Fermi velocity) of one-dimensional electrons. Estimation gives for o the value of about 103%cm™

in the subTHz frequency range.
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1. In[1] we have constructed solutions to equations of
the theory of elasticity in the form of acoustic waves lo-
calized in a quantum well. We considered their interac-
tion via deformation potential with electrons drifting in a
quantum well. This interaction results in amplification
of the above acoustic waves. Similar problem has been
solved in [2] for the case of piezoelectric interaction. In
both [1] and [2] it was assumed that the acoustic wave-
length is big as compared to the Fermi electron wave-
length, and so the acoustic wave was treated using the
quasi-classical approach.

In [3] we considered interaction via deformation po-
tential between the flux of quantized localized phonons
and two-dimensional (2D) electrons drifting in a quan-
tum well. We have derived an analytical expression for
the factor of amplification (generation) of coherent
phonons. Here we give solution to a similar problem for
the case of 1D electrons in a quantum wire.

2. Let us consider the following composite medium. A
cylinder (whose axis is oriented along z) of radius R is
made of material A with the following parameters: den-
sity p, Lamé constants A and u . This cylinder is placed
in a medium made of material 4 whose corresponding
parameters are p, A and U .

We shall seek for solutions to equations of the theory
of elasticity for the above composite medium. These so-
lutions are of the form of acoustic waves that are local-
ized near the cylinder and die off as p > R grows. The
volume equations of motion are as follows [4, 5]:
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pU =AU +(+pWV(V -0) (1)

here U is the vector of medium elastic displacement. Fol-
lowing [6, 7], let us express U through potentials:

U =V + rot,é. + rotrotp,e. ; )
here €. is the ort along z.

To satisfy the Eq. (1), the potentials ¢; (=0, 1, 2) are
to obey the following equations:

pdo = +21)Ay; pdry = uAdy,

or, assuming their temporal dependence to be o< ¢,

Ao =—q100;  Ady =701 3)
Here
2 o’ sz . 2 o Pw2
91 =—= ; a1 =—=——" 4
Vi A+2u Vi oM

Let in cylindrical coordinates r, ¢, z

¢ (r0.z,0)= f;(r)e =0T (=0, 1,2). 5)

Substituting expression (5) in (3), one obtains the fol-
lowing equation in f;:
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3 19 , n’
[8774—’—‘5—](]—"—2}/](7):0 (6)

where
ko =ki =q* —q1; kiy =ki =q*—q7 (D)

In cylindrical coordinates the components of displace-
ment vector U are, according to (2):

2
o r o odroz
190, 09y 10>
ﬁ:_ﬂ_ﬂ+_ ¢2; 8)
r oY% or r 0¥z
y 9% 9% 100, 1 9%
o0z 92 roar 42 g2

Following are the stress tensor components that will be
required later [5]:

6, = (A+2u)divl — 2;{10, 419U | ai).
r

r 0U oz |’
10U, Uy Uy
Ors #[r 115s or r J
U, U
.= L —=. 9
S .

Similar equations should be written down for the outer
medium too (let us remind that all the quantities related
to this medium are designated by an overscribed bar).

3. Further solution procedure is as follows. One should
solve equations (6) both inside and outside of the medium.
The solutions obtained involve twelve constants. Six of
them are to be determined from the conditions at r—0
and r—eo. The rest of the constants are to be determined
from the conditions that the displacements (8) and stress
tensor components (9) are equal inside and outside of the
cylinder at » = R. In this case the signs of ka- Lk ]2 (7) are
of essence. At various combinations, depending on the
wave vector ¢ and media parameter values, one can ob-
tain localized waves, surface waves (interface modes) that
die off on both sides of the cylinder lateral surface, etc.
Many such cases have been considered in [6, 7].

In particular, at k% <0 k L2 >0 localized waves arise,
and the situation resembles the case of a free cylinder
when vacuum serves as an outer medium. One can get the
dispersion equations by equating the six-order determi-
nant of the set of equations for boundary conditions to
zero. For every integer n > 0 in expression (6) the disper-
sion equations define a class of normal waves. The value
n =1 corresponds to a usual flexural wave similar to that
in a plate. The case n>2 defines a class of flexural waves
of circular order n. No such waves exist in a plate.
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When n =0, then dependence on 6 disappears and the
set of equations may be separated. Those in Ugand o,
(see (8), (9)) determine a class of torsional waves (the
elementary discs rotate as a whole). The rest of equations
determine a class of longitudinal (dilatometric) normal
waves. Even in this special case the dispersion equation
(being similar to Pochhammer equation [5] for a free cyl-
inder) is very complicated and admits numerical solution
only [6, 7].

For n = 0 the boundary conditions for the longitudi-
nal waves at the lateral surface of a cylinder (r = R),

HU,=U,;2)U,=U,; 3) 0, =6,: 4 0,. =0,.,

are of the following form (with allowance made for de-
pendence on z (5)):

or or or or

2)iqf, _kT2f2 :i@;o _Erzfz;
.= U, .
3) (/1+2y)d1vU—2y(—’+quZ )= :
r

- (Z+2ﬁ)div5—2ﬁ(ﬁ+iq(72)
r

4) u iqU,+% =u iq(7,+aUZ . (10)
or or

4. The main objective of this work is to investigate the

interaction via deformation potential between a local-

ized acoustic wave and electrons drifting inside a cylin-

der. Taking into account expressions (2) and (3), one may
write down the interaction Hamiltonian as

Hin = bdivU =~bq7 ¢y (11
here b is the deformation potential constant. One can im-
mediately see from (2) that divU is determined by the
potential £ only. The amplitude of £, however, is to be
determined from the set of equations (10) and is related to
the amplitudes ¢, ¢, and ¢, . As a result, the problem
becomes very complicated, as was stated above. To cir-
cumvent this, we shall use the model that we have applied
previously to calculations for a plate[1, 3]. Let us assume
that the only difference (in a mechanical sense) between
the two media, 4 and 4,isthat A # A, while g = u and
p = p . Such a model retains all the main features of the
problem studied, but allows, at the same time, to perform
mathematical manipulation to the very end and obtain
results in the analytical form.
Let us designate

I+2,u_h

12
A+2u (12
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According to expressions (4) and (7), in the context of our
model

1 2

kr* =kp 7.0 =dL (13)

-2 2.
dar =4t >

It is easy to verify that the set of equations for boundary
conditions (10) now reduces to the following two inde-
pendent pairs of equations:

fo="1o

o afo r=R (14a)
o or

fr=/

T r=R (14b)
o o

Equation (6) in f; at n = 0 is the Bessel equation of
zero order. We seek for localized solutions that go down
with r outside of the cylinder; so it should be & f <0 (7),
i.e., ¢ <qy . In order that solutions exist, it is necessary
(as will be shown later) that k% >0,1.e., ¢>q; . From
this it follows, according to (13), that ¢; >g; ,1.e., h > 1.
Therefore, according to (12), in order that localized so-
lutions exist, the inner medium is to be «more soft», as in
the case of a plate [1].

Let us denote

v?=—ki. (15)
The solutions of Eq. (6) that are finite at zero are of the
form
fo(r)=49Jo(r) r<R (16)
where Jj is the zero-order Bessel function of the first kind.

Outside of the cylinder (» > R) the solution that dies
out when r—eo is

fO (I’)=20K0(/;Lr) r>R

(17)

where K is the modified zero-order Bessel function of the
second kind [8].

The dispersion equation and ratio between constants
are determined from the set of equations for boundary
conditions (14a):

Bt 2= 4 20 a
Km) . J5,©)

Kol " 70E) (9

434

Here the dimensionless variables

E=yR=R\ql —q° ;
U=ELR:R\IQZ —Cﬁ

are introduced.

According to the properties of Bessel functions, J(i§)=
=il1(), Jo(i&) = I)(&) (here I and I; are the modified Bessel
functions of the first kind [8]). One can see from the dis-

persion equation that if it were k% >0,i.e. ¥ <0(15) (this
corresponds to replacement {—i&in (19)), then the right-
hand side of equation (19) becomes negative. This means
that the dispersion equation has no solutions in this case,
since all the functions entering it are positive.

The dispersion equation (19) determines an infinite
class of dispersion branches. At x<<1 the zero branch is
of the following form [8]:

n :exp(—l/éz).

One can see that /2 (20) is exponentially small; therefore

(20)

2D

g1 =q or @ =V} q .Letusdenote the consecutive zeros
of the functions Jy(&) and J;(&) by &, and &, , respec-
tiVCly: 50’1 = 24, 5052 = 552, 50’3 = 865, 51’1 = 383, §1,2:
= 7.01; x;3 = 10.7. The &, value determines a point
where the n-th branch appears. Since J; =—J, zeros of
numerator in the right-hand side of equation (19) corre-
spond to extrema of denominator. Immediately after the
appearance point J; and J are of the same sign, i.e., the
right-hand side of equation (19) is positive as it must,
since the left-hand side is always positive. Thus allowed
values liein the interval &; , < & <& ,,+1. When & passes
through these intervals, then the frequency and wave vec-
tor change from their values at the appearance points

w=0,0 =&,V [Rh-1;
(1=‘18 =§1,V/R“h_1

to infinity. All the branches lie on the plot between the
rays w=V;q and w=V;q . In a qualitative sense the
situation is similar to that with a plate [1].

Atsound frequencies approaching the THz band (that
will be of predominant interest for us) the sound wave-
length is of the order of Fermi wavelength of electron.
Therefore, when dealing with electron-phonon interac-
tion, one should not treat sound as a classical wave; it
should be considered as a flux of quantized phonons. To
perform quantization, let us introduce a length L along z
(the direction of wave propagation) and impose the cy-
clic boundary conditions. Then

q=2—”n (n=12,.) (22)

L

The constant A is to be determined from the normaliza-
tion conditions. This is equivalent to setting the total wave
energy equal to 1o .
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Generally the expressions for the strain tensor com-
ponents in cylindrical coordinates are as follows [9]:

U U oU.
S. :aUI‘ ;Sﬁﬁzliﬁ_i_i’; o = ol ;
T o r dY r 0z
U U U U U
28, =— L 4—=; 28,5= o Uy 10U, .
0z or or rr oY
10U, 09Uy
Sy =——+—— 23
00 oz )
0

For the wave under consideration U, = 0, 35 =0.The

potential energy is determined as

U= _[ {1(1+2u)(s,,,+sw+szz)+
y 2 (24)

2
+2:u (SrrSﬂlS‘ +SI”I‘SZZ +Sz919Szz _Srz )}dV

Here the integration is performed over the whole volume.
Itis not our intention to dwell in detail on U calculation:
being rather cumbersome, it does not involve any funda-
mental difficulties. (For all the necessary integrals involv-
ing Bessel functions one should refer, e.g., to [10].) The
following two items, however, are to be noted. The term in
the second parentheses in expression (24) that is multi-
plied by m may be omitted because contributions from the
cylinder and the rest of the volume cancel out. This stems
from our model for which = u, p = p . The kinetic en-
ergy turns out to be equal to the potential one as it must
due to Clausius virial theorem. Therefore the total energy
is twice the potential energy, and the constant 4, may be
determined from the following expression:

2 4
2U:£LR2L(}Z_I)X

2 A+2u o5
xA(%[Jg(é)J%z)Jf@)}m

5. To this point we have not restricted the transverse
size of the cylinder in any way. Going to construction of
electronic states inside the cylinder, we shall assume that
its radius R is of the order of, or less than, the Fermi
wavelength of electron. This means that we shall con-
sider a quantum wire. In this case the transverse motion is
quantized, while the longitudinal one may be treated us-
ing the quasiclassical approach. The electron potential
energy will be considered to be zero inside a wire with
infinite walls at its lateral surface. Let us seek for solu-
tion to Schridinger equation

Ay + 2" By =0 (26)
hz

in the following form:
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r)eikzﬂ'm?

L
V==X

After substitution of (27) to equation (26) one obtains the
following equation in y(r):

27

1 2 n2

X +=x+| A== =0 (28)
r r

Here A4 is the eigenvalue parameter:

Py (29)
hz

The solution of (28) that remains finite at = 0 is:

x2(r)=cJt,(Ar)s (30)

here J,, is the n-th order Bessel function of the first kind.
The boundary conditions (that determine the quantiza-
tion conditions) for the wave function at r = R are of the
following form:
J(IR)=0. (31

Let x,; be the j-th root of equation J,,(x) = 0. Then the
energy that depends on three quantum numbers, namely,
k (continuous) and n, j (discrete) is:

2.2
hzkz _ h xnj
AR A Tl e

(32)

The lowest level (bottom of the lowest subband) corre-
sponds to the root xy; = 2.4 (n = 1, j = 1); next level
corresponds to the root x1; = 3.83 (n =0, j = 1). The
normalized wave function of the lowest subband is:

1 e
o1k =——= 201" (33)
Jr
Here the radial function is:
1 r
Xo1(r)=———=1 o1 (34)
Jl (X()l ﬂ'Rz

When calculating interaction between electrons and
phonons, we shall consider the lowest subband to be filled
and the next one empty. This means that the difference
€11 — €1 1s to be over the Fermi energy. Later we shall esti-
mate what are the restrictions imposed on R by this re-
quirement. In addition, we shall assume the above differ-
ence to be big as compared to the phonon energy %o . In
this case interaction induces not intersubband transitions
but only electron scattering within the lowest subband.
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Taking interaction as weak, we shall consider it in
the first order of perturbation theory. A probability for
an electron to pass per unit time from a state with wave
vector k to that with wave vector k" and emit (+) or ab-
sorb (-) a localized phonon with wave vector ¢ and en-
ergy ha)(q)= 7nSq (here S is the phonon phase velocity
that generally depends on ¢) is given by the well-known
expression (for volume waves see[11, 12], for a quantum
well see [3]):

2

, 2
P (K ) = ==k Hiu ) %

X(Nq +%i %J&[E(k)—E(k’)i nSq|

k)

(35)

Here N, are the occupation numbers for the phonon mode.

A matrix element of the interaction energy (11) taken
on the wave functions (33), (34) is:
<k|Him|k'> =My10k f'xq » (36)
the 6-function in (36) (arising at integration over z) en-
sures conservation of wave vector.

Calculation of the matrix element (37) using (11) and
(34) gives:

Mo =bAgg () (37)
Here a dimensionless function
) 1
()=— j«’o ©0)6 (xorrer (38)
i (xo1)5

is introduced. At small x this function is close to unity up
tox ~2.

The total probability of one-phonon emission (absorp-
tion) is obtained by summing expression (35) over all the
initial and final electronic states:

(39)

PH@)= X P ek (- F ),

here F(k) is the 1D electron distribution function [13]. It
is not our intention to dwell in detail on the standard
procedure of calculating the sum (39). For the volume
case and a quantum well it has been done in[11, 12] and
[3], respectively.

Let us consider a case when a constant electric field
Eyis applied along the wire. We shall assume it to be not
too high, so that one may neglect the electron gas heat-
ing. The Fermi-Dirac distribution function shifted by the
drift velocity V= uEy (m is mobility) will serve as a 1D
electron distribution function. Let us consider the phonon
mode to be sufficiently excited, so that N, is much greater
than unity (i.e., one may neglect spontaneous phonon
emission). In this case the pure probability of coherent
phonons emission (generation) per unit time is:
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It is easy to verify that the term in brackets in expression
(40) may be positive (i.e., induced emission exceeds ab-
sorption) at any temperature for both degenerate and non-
degenerate statistics if the Cerenkov criterion is fulfilled:

(41)

21] o

Vy>S.

For the Fermi-Dirac statistics at absolute zero the above
term in brackets is non-zero when

2kF—2%|Vd —S|<q<2kF+2%|Vd = (42)

It is 1 when inequality (41) is obeyed and —1 if the in-
equality (41) fails. It should be noted that in the case of a
quantum well [3] there was no restriction on ¢ from be-
low. If the left inequality (42) fails, then both emission
and absorption are non-zero and compensate each other.
If the right inequality (42) fails, then both emission and
absorption are absent. The above regularities may be
described using two Heaviside unit functions (see below).

The absorption coefficient per unit length is obtained
through dividing P~— P" by the phonon flux N, ¢Vswhere
V¢ is the phonon group velocity. As in the case of a quan-
tum well [1], all the dispersion branches (q) lie inside
the wedge made by the rays @ = V;qgand o=V, q . At
h—1 << 1 this wedge is narrow, so the group velocity Vyis
not too different from the phase velocity S, and the latter
depends on ¢ but slightly. Replacing in a flux Vg by S,
one obtains for the j-th dispersion branch the following
expression:

N LS AT 1
e e ) b )
J 2 J
n
X[G(ZkF_MMJ_
_(9(2kF —q——zm(VZ "S)H 3)

6. To make numerical estimates, let us use the para-
meters that correspond to GaAs crystal: A + 2u = 1.18-
-10'2 dyne/cm?; p = 5.317 g/lem?; V; = 4.7-103 cm/s; m =
= 0.067 my; b = -8 e¢V. Let the wire radius R and % are
8 nm and 1.1, respectively. Take the equilibrium linear
electron concentration in a wire N; = 2-10° cm™!; this cor-
responds to the bulk concentration N = 10!8 cm™. In this
case [13] kg = nN)/2 =3-10° cm™ and the Fermi energy
Er=57meV. At the chosen R value the first and second
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energy levels for transverse motion are £ = 51 meV and
& = 131 meV, respectively. Thus & — € > Ef, as was as-
sumed above. Let the constant electric field £y =20 V/cm;
then, at mobility u =10° cm?/V-s, we get V,;=2-10% cm/s >
> S = VL'

Before proceeding to numerical estimations, let us
perform a general analysis of the expression (43) for a.

1) At the points where non-zero branches &y arise
J1(&0j)—0, and, according to the dispersion equation (19),
n—0. In this case, however [§],

J12(§0j) Jg(‘?oj) K () 1

= . o —> oo

n? &, K30 (mnn)?

i.e., according to (43), = 0. When moving off the above
points, the ratio, say, og/ 0y, approaches 1 as ¢ grows.

2) Let us consider the limiting case of a spatially uni-
form medium (this corresponds to the limit z—1). If, more
particularly, &2 = (h— 1)(¢qR)?> << 1, then & is exponen-
tially small, in accordance with (21). The index of wave
spatial damping, k =n/R , as well as the ratio between
the inner and external energies, U/U,, approach zero.
This means that the wave becomes the volume one. In this
case the denominator in expression (43) is exponentially
big and o—0, i.e., a volume wave cannot be excited and
amplified by electron drift in a narrow quantum wire. At
the above medium parameters and wire radius R = 8§ nm
let us take ¢ = 6-:10° cm™ = 2k this corresponds to the
frequency of 450 GHz (w = 2.8-10!2 s'1). In this case,
according to expression (43), oy = —3-103 cm™!. This o
value is close to that (—1.3-103 cm™!) for a quantum well
10 nm thick at the same frequency [3].
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