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Abstract. Recently we have studied how the drift of two-dimensional electrons amplifies the
acoustic waves confined in quantum wells. The electron-phonon interaction was considered
to be due to deformation potential. Here we generalize the theory for the case of piezoelectric
electron-phonon interaction. For transverse piezoelectrically active waves in sphalerite-type
crystals we obtained solution in the form of localized waves and determined the amplifica-
tion factor o under the drift of two-dimensional electrons. At frequencies of the order of tens
GHz and drift fields of several V/cm « is about tens of cm!.

Keywords: acoustic waves, two-dimensional electrons, quantum well, piezoelectric electron-

phonon interaction.

Paper received 30.07.99; revised manuscript received 13.11.00; accepted for publication 12.12.00.

1. Introduction

In a previous paper [1] we considered mixed acousto-
charge waves localized in a quantum well. The electron-
phonon interaction was assumed to realize via deforma-
tion potential. It was shown that the localized acoustic
waves could be efficiently amplified at high frequencies
by the drift of two-dimensional (2D) electrons.

Here we deal with a similar problem for the case of
piezoelectric electron-phonon interaction in crystals.
This case is of particular interest, since the most advanced
technology exists for the quantum heterostructures based
on ITI-V compounds that demonstrate considerable pi-
ezoelectric effect [2, 3].

2. Model and basic equations

Let us consider a cubic crystal of sphalerite type (crystal
symmetry class 7" or T,). In such a crystal its piezoelec-

tricmodulus f=—- — | =—|—

oE ), 4m\ du )
dependent component 14 = 5 = B3¢ = B (here o, u, E, D
are the stress tensor, strain tensor, electric field and elec-

tric displacement, respectively). In a bulk material there

J0 ! (8D has the only in-
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exist two piezoelectrically active acoustic modes, namely,
longitudinal and transverse (polarized in the [001] azi-
muth), oriented along the [111] and [110] directions, re-
spectively. In what follows we shall consider the trans-
verse mode only.

Let us define the coordinate system in the following
way: the coordinate axes X, Y, Z are oriented along the
[110], [001] and [110] directions, respectively. There is a
layer 2d thick in the X'Y-plane. The matter density, p, in
this layer differs from the density p in the rest of the
bulk. (In what follows all the quantities beyond the layer
will be marked with an overscribed bar.) Let the ratio
p/p beequal to g; the elasticmodulusis Cyy =C=C,
the piezoelectric modulus is f = and the permittivity
ISE= €.

Our model closely resembles the following hetero-
structure: GaAs layer in AlAs bulk, with elastic moduli
and densities differing by 1% and 40%, respectively.
There are charge carriers in the layer whose concentra-
tion is a sum of the equilibrium concentration, N, and a
nonequilibrium term n(x, z, £) = n (z) e/9®_p(z) is an
even function of z (it will be specified later); at the layer
boundaries n(+d) = 0. The dependence of n on x, ¢ is as-
sumed to be the same as that of all the variable quantities.
In the coordinate system used the elastic displacement
vector, U, has the only nonzero component, U y = U.
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The problem studied is homogeneous along the Y-axis.
The electric field £ =-V¢ is assumed to lie in the XZ-
plane.

In the defined coordinate system the equations of state
for the medium are of the following form:

oU U
o,,=C—-BE ; o, . =C—+pBE,;
* ox PE dz P
oU
D, =¢E, +47rﬁa— D, = 471:[3— (1)
oz

o’U

Let us present the equation of movement, pP—=
ar’

d0,, 00,

+—— and equation for the electric displace-
x dz

ment, div D =4zwen (here e is the carrier charge), within
the layer (|z| < d) in the following form:

U”—ka—g(qqu +¢”):0 ©)

Ame

B (07420 )+ 07 - 20 =~ G
€ €
(here prime denotes derivative with respect to z). Outside
of the layer (|z| > d) the equations are of similar form but
with zero right-hand side (7 = 0).
Let us also introduce the following notation:

2
20 Pt . o 4y 0 o 4np’
proC 1+k2 v} eC
2 2 2 =2 19
Ksp=4"=dsp > Tip= PO “)

After eliminating ¢ ” from equations (2), (3), one ob-
tains the following expression for the potential:

0= —[U (k2 -2¢°K? )U]+ L‘m—e

2Bq (1 K2) 2¢% €
®)

Substitution of (5) to (2) gives the following equation in
U(z2):

U”- (q2 +ky—4g°K> )U”+ g7 kU =

=—%g(1—1(2)(n”+q2n) ©)

The characteristic equation

4 2 2 23212 2,2

P(oc)za —(q +k,—49°K )Oc +q°k, =0 (6a)
determines four roots o;: o2 = toi; o34 = Tor. If one
neglects the terms proportlonal to K*and higher powers
of K, then one obtains the following approximate expres-

sions for these roots:
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+=L k% (7)

The right-hand side of Eq. (6) is an even function of z.
Assuming that all the roots of the characteristic equation
are simple (a possibility of multiple roots will be discussed
later) and selecting from the general solution of the ho-
mogeneous equation the even part only, one gets the even
solution of the inhomogeneous Eq. (6):

U(z)=Acosha,z+ Bcosha_z+Y(z) (8)

2
Y(z): ﬂl_—K [n(O)(cosh o z— cosha_z)—

eC o2 —a?
2 2 2 2
_MJ_(O,+,Z)+HJ_(&_,Z)] ©9)
20, 200_

According to (5), one obtains the following expression
for potential:

o(z)= (Q Acoshor,z+Q, Bcoshar_z)+
284

2 2,2

LA 2K D L no)cosha, -4 1 (a,.2)
2eq” af —az 20,
o’ +q°
—0,|n(0)coshor_z - —= J_(or_,2) (10)
200_

Here the notation
0: =¢*1-K)- a2+ &) (1)

is used. The integrals J.(ou, z) and their properties are
given in [1].

The even solution outside of the layer (|z| > d) that is
damping as z — oo is:

T()=Ae % 4 g ®H, (12)

F)=— [Q ToH L g Be_a‘|2|:| (13)

2Bq*

The four constants (4, B, A , B) may be determined from
the boundary conditions at z = d:
oU U

a¢ 9 82U _

DU=U;29=4; 3) oz’ oz dz

3. Free piezoelectrically active acoustic waves

Since the expressions for boundary conditions are too
cumbersome, we do not present them here. Only the de-
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terminant D of the corresponding set of equations is given
for the case of small half-width d (¢d << 1):

D= @M (G, 5 )2 -02)ag+dr): (14
8o =i, (@, +a ) (1+K2); (14a)
Al=qu(l+K2){q2(1—3K2)+(l+K2)E§}+

(14b)

+q2(1+K2)2(k§+l€§)

Expressions for the case of arbitrary d are not given be-
cause (i) they are too cumbersome, (ii) the piezoelectric
interaction is essential at lower frequencies (i.e., at smaller
¢) than the interaction via deformation potential. For a
piezoelectric the free waves in our layered medium are
qualitatively similar to those in the case of deformation
potential [1].

Of special interest is the case of resonance when, at a
preset frequency o, the wave vector is close to those val-
ues that turn the determinant D (14) into zero. This con-
dition determines a dispersion law for the free localized
waves that can propagate in our composite medium. If
one of the factors in parentheses in the expression (14) for
D turned into zero, this would mean that there exist mul-
tiple roots of the characteristic polynomial (6a), either in
the layer (ot = or) or outside of it (o, ==Zor_ ). We have
constructed the general solution in the case of multiple
roots and found that a new determinant of the set of equa-
tions for boundary conditions does not turn into zero.
This means that no such free waves exist in our medium
at small d.

Thus, when D turns into zero, this means that A, +
dA; =0 (14a, 14b). Since we are searching for localized
solutions, then k, (or o_) hasto bereal,ie.,g> g, .
Therefore Ay > 0 and it should be that A; <0. The term in
braketes in (14b) is positive. So the case A; < 0 might be
reahzed when k <0(i.e., ¢ < qp). Hence it follows that

q »> q - This means that the localized wave may exist

P

only at g==>1, i.e., the inner medium has to be

«heavier».

In this work we use a model in which elastic proper-
ties are the same in the layer and outside of it, but the
densities differ. When elastic constants are different for
the media in the layer and outside of it, then the localized
wave is realized (even at the same densities) if the inner
medium is more «soft». At different elastic constants a
passage to the limit (vacuum) is possible inside the layer.
In this case the wave turns into two Gulyaev-Bleustein
waves [4, 5] in the upper and lower half-spaces. These
two waves that are coupled through the vacuum with elec-
tric field make the so-called slot wave. It has been consid-
ered by a number of authors (see [6, 7]).

From the equation Ay + dA; =0t follows that k po<d.
Therefore, being within the framework of linear (in d)
approximation, we have to omit a_ =k, (but leave
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=~ ¢ )in Agand omit in D; all the terms that are /;p o<d .
As a result, we obtain that near the resonance:

042K )= ¢*Fig).

Thus the dispersion law for the zero branch is determined
by the following equation:

Ag +dA =612[/;p -4°(g

Flg)=k, -q*(g-1)dl+2k2)=0. (15)
This equation is completely similar to the Eq. (16) [1] for
deformation potential.

At afixed frequency the solution of the Eq. (15) is:

qo—qp|:1+;q2d2 1)2(1+21<2)z} (16)

4. Amplification of localized acoustic waves

When an interaction with charge carriers exists, then in
Eq. (15) a nonzero right-hand side, R(g), appears. (Its
explicit form will be given later.) As a result, we obtain

a3 (g -l +2K2 J+ Ry (g)

instead of (15). Solution of equation (17) at a fixed fre-
quency determines wave vector g(®):
Ry(90 )}
2q¢

Substituting in (10), (12) and (13) the constants found
from the set of equations for boundary conditions, one
obtains the expressions for ¢ (z) in the layer and ¢ (z),
U (z) outsideit. It is easy to verify that to calculate inter-
action with charge carriers in the case of a thin layer one
needs only to know the potential (or longitudinal effec-
tive field E* = -ig¢) value at z = 0.

Near the resonance one gets after straightforward but
cumbersome operations:

Jdme ) q
—i——|1-K* " |,
’zs( mq)}s

Here the 2D concentration of charge carriers is intro-
duced:

k,= (17)

q—qo=R1(qo)[qo(g—1)(1+21<2)d+ (18)

E*(0)= (19)

(20)

The solutions outside of the layer (|z| > d) are as fol-
lows:
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E(Z)— 47[€£ ng

= X
e C2R(q)
X 2];_1][‘1(1—2’(2)04—‘1)_e_Ep(l+2K2)(|Z|‘d) ; @n
q
- dme  ng
aPTIng
| Ko o2 ) _ o2 -a) (22)

q

One can see that they involve two terms. The first term,
of small amplitude (near the resonance k&, o< d ) is damp-

ing rather quickly at distances about ¢ !. The second one
is of bigger amplitude; it is damping (slower than the first
term) at distances ~ k L

To this point it was assumed that both the force with
which electrons are acting on the crystal lattice and elec-
tron concentration are preset. To obtain explicit forms of
these functions, one has to solve a problem: how to con-
struct the electron states and electron transport in the
layer. This problem has been solved in [1] for the case
when the electron-phonon interaction was realized via
deformation potential, with the following suppositions.
The longitudinal motion of electrons in the layer was
considered using the quasi-classical approach. The trans-
verse motion was considered for the two limiting cases,
namely, (i) quantum well — the potential well is so narrow
that there is the only (lowest) filled subband, and one can
neglect the transitions to higher subbands; (ii) classical
well — the number of filled subbands is so great that the
transverse motion may be also considered using the quasi-
classical approach.

In [1] the longitudinal acoustic wave has been consid-
ered, while here we deal with the transverse one. Never-
theless, the calculation of electron kinetics under drift in
the field of a sonic wave is quite similar to thatin [1], and
so will not be presented here. Several replacements, how-
ever, are to be made in the expressions of [1]. They are as
follows.

1. First of all, one has to replace in all the expressions
of [1] the velocity of longitudinal wave, V;, with that of
transverse piezoelectrically active wave, Vp: V;—Vp.

2. Second, from comparison between the dispersion
equation (16) for free waves given in [1] and that pre-
sented in this work (15) one may conclude that the fol-
lowing replacement has to be made in the expressions of
[1]: (h = 1)=(g — 1)(1 + 2K3).

3. And, at last, comparing the expression (51) for the
effective field given in [1] to that given in this work (19),
one may find the following replacement for the coupling
constants: Ga*—K2.

In this work we restricted ourselves by consideration
of the most urgent case of a quantum well and high fre-
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quencies when ¢/ > 1 (here / is the electron mean free
path). After performing the above replacements in ex-
pression (55) of the work [1], one obtains that the func-
tion R;(¢) (that enters expression (17)) is of the following
form:

2
1+ J’L" +in

q
_ (23)
(+Lg)f +n?

Vel Ve
Here we introduced the shielding length in 2D electron

nle

Ri(q)=gK*Lq

24)

L=

. . h
gas, ; 2D Fermi velocity, Vi =— 27N ;
m

equilibriun(i) s?rface concentration of electrons, N,; elec-
tron effective mass, m; drift velocity, V,; = mE; constant
electric field, Ej; mobility, u.

At a fixed frequency the wave vector is determined by
expression (18). Let us omit the second term in the right-
hand side of (18) (this term is of essence for a medium that
is uniform from the very beginning). According to (16),
one obtains gg = ¢, . The left-hand side of expression
(18) may be presented as

- AVP_ oA
4—4p=——=—9qp ti~
Vp 2

(25)

Let us define the sound velocity renormalization:

N7
Vp Vp

b

Here I7P (I7P/ ) is the initial (renormalized) velocity of an
acoustic wave outside of the layer. Then one can get from
(23):

AV, 1+ Lg+n?
A% _ k2(qd)(g - 1)1+ 2K> ARl

Vp (1+Lg) +n
9=4p(0) (26)
For the absorption coefficient (amplification factor) one
obtains

n

olw)= 2K *q(qd)Lq(g ~1)(1+2K) >
(1+Lg) +n

2,

7=7p) 27)
When V,;> Vp, then, according to expression (24), 1 <0
and o <0, i.e., we get amplification of the acoustic wave
localized in a quantum well. The amplification factor a
grows monotonically with frequency. The power of this
dependence is less by two than in the case of deformation
potential [1].
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It should be noted that piezoelectric interaction be-
tween the acoustic wave and drifting 2D electrons has
been considered in [3]. Our results differ from those ob-
tained by the author of [3], since he dealt with bulk (non-
localized) waves.

5. Discussion of results

To perform numerical estimations, let us consider the
AlAs/GaAs/AlAs quantum heterostructure with the
following parameters [2, 3, 8]: p = 5.317 g/em?; p =

=3.76 glem’; g=L =1.4; C = 0.594x1012 dyne/cm?;
p

£=12.85;m=0.067my; K 2 =3.6x1073. Using the above
values, one gets L = 0.5x10°° cm. Let the equilibrium
electron concentration N, be equal to 2x10'2cm and the
layer half-width d be equal to 10 cm. Then Fermi veloc-

. h .
ity Vp =—2nN, = 5.6x107 cm/s and Fermi wave-
m

’ 2
length Ap = N—n =1.8x10"° cm. At these values the quan-
s

tum limit is realized for electrons. Let us take 25 GHz
for frequency, i.e., ® = 1.57x10!! 5”1, Then qp = 0.47x
x10%cm™, q,= 0.39x10%cm™, Lgq,=0.195. At this fre-

. 2 .
quency the sonic wavelength _—ﬂ: = 16x10° cm s over A,

q

so one may use the classical apf)roach when considering
the acoustic wave and its interaction with electrons. If
one takes the mobility u = 10° V-cm?/s, then the electron
mean free path / = 1.6x10 cm, i.e., the case ¢/ >>1 is
realized. Absorption gives way to amplification at a field
Ey = 3.35 V/em. If one takes the value of 100 V/cm for
field at the above parameter values, then the amplifica-
tion factoris 10 cm™.

According to expression (25), the sound velocity
renormalization is negative and equals about 0.05%. The
power in the expression for transverse damping of the
localized piezoelectrically active acoustic wave outside
of the layer is determined by (21), (22). At the chosen
parameter values the wave intensity is decreased by e
times over a distance about six wavelengths.

For comparison with the interaction via deformation
potential (considered in [1]), let us estimate also the amp-
lification factor at the same frequency of 100 GHz that
was chosen in [1]. Although the coupling constants are
practically the same at this frequency (in [1] Go? = 3.9x
x1073, while K2 = 3.6x1073), the amplification factor turns
out to be 300 cm™!, (i.e., five times as much). This is re-
lated primarily to the fact that in this paper we took into
account a big (g = 1.4) difference between the densities of
the layer with a quantum well and its surroundings, and
also to the fact that the velocity of transverse wave is
below that of longitudinal wave (considered in [1]).

Thus we have shown that at piezoelectric interaction
the drifting 2D electrons may efficiently amplify the high-
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frequency acoustic vibrations localized near the layer
with a quantum well. If the values of piezoelectric inter-
action parameters are those characteristic of the AlGaAs/
GaAs heterostructures, then the sound amplification fac-
tor exceeds tens of cm™! at frequencies over 25 GHz.

Itis pertinent to note that quantum wells based on the
AlGaN/GaN heterostructures are to demonstrate even
higher amplification factors for high-frequency phonons,
since for the wide-gap I1I-V compounds of GaN/AlGaN-
type piezoelectric interaction is at least an order of mag-
nitude bigger than that for AlGaAs/GaAs [9, 10].

Conclusions

We have shown that in piezoelectrically active crystals
the drift of 2D electrons may serve as an efficient method
for amplification (generation) of high-frequency acous-
tic phonons. Our method, along with those proposed in
[11], demonstrates a novel approach to electrogeneration
of coherent phonons (e.g., phonon generation with fast
optical pulses).
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