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Abstract. We derive the recurrence dispersion equations for natural modes of a many-layer
planar system. As an illustration a five-layer planar system is considered, and solutions for
guided-wave polaritons of such a system are found. The behavior and peculiarities of these

solutions are analyzed.
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1. Introduction

It is well known that localized modes of two types may
exist in planar systems without spatial dispersion. These
modes are often referred to as surface and guided-wave
polaritons [1, 2]. Both of them are non-radiative excita-
tions, natural modes of a system; they represent particu-
lar solutions to the wave equation. However, they essen-
tially differ in their behavior. Within the linear optics ap-
proximation the surface modes can be p-polarized only;
they are localized at the boundary between media. Con-
trary to this, the guided-wave modes may be either p- or s-
polarized; they are localized within one or several layers.

Many authors have comprehensively studied disper-
sion of natural modes in planar systems. In [3-10] the
corresponding dispersion equations were considered and
behavior of their solutions for three- and four-layer sys-
tems was analyzed. In general one may believe that these
cases have been investigated rather thoroughly. But when
the number of layers is over four, then numerical meth-
ods are used to calculate the dispersion curves for natu-
ral modes. These methods are commonly reduced to a
direct solution of the wave equation with defined bound-
ary conditions [11]. There exists also an analytical ap-
proach. Itleads to a matrix equation [12]. The latter, how-
ever, seems to be too cumbersome.

One should particularly mention spatially-nonuni-
form insulating media [13, 14] and multilayer periodic
systems (superlattices) [15-17]. The first of them may be
treated as a generalization of a planar multilayer sys-
tem, while the latter may be considered as an important
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special case. It should be noted that the dispersion equa-
tion for natural modes of an arbitrary planar heterosystem
is similar (within the phenomenological treatment) to the
Schrddinger equation for wave functions that determine
a spectrum of energy states in systems with size quanti-
zation [18].

Here we get the dispersion relations for natural TE
and TM modes of an arbitrary n-layer system. These re-
lations are obtained by analytically solving the wave
equation. The solutions are rather simple and convenient
for practical applications. As an illustration we calcu-
late the dispersion curves for TE and TM guided-wave
modes of a five-layer system that is realized in the planar
polarization interferometer. We also demonstrate how
the spatial distribution of the field E behaves in such a
system when frequency changes.

2. Formalism

Natural modes are obtained by solving a characteristic
equation to which the Maxwell equations are reduced.
The Maxwell equations satisfy the boundary conditions
that are determined by the problem geometry. By trans-
forming the Maxwell equations (and using also the so-
called material equations D = €E and B = uH) one can
obtain the differential equations for the fields £ and H .
Generally the wave equations are written as

2
0°E —usa—f+ Oinu)x(@xE)+O(EDINE)=0 (1)
ot
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and

2

— +(0Ing)x (O x H)+O(HOINu)=0.(2)
t

For uniform and isotropic media both In€ and Inyu
vanish and the wave equations (1) and (2) take the follow-
ing form:

2 2
0%E - usa—E=0, 0%H - usa—H 0. Q)
o1 01>

These are the traditional wave equations for electro-
magnetic field. They are satisfied by the well-known so-
lutions in the form of plane waves ¢/ = exp|i (ax —kr)] .
Here is considered to mean any of Cartesian compo-
nents of the vectors £ and H, and the relationship be-
tween the circular frequency w and wave vector k is
k| = wyue .

Plane waves are not the only solutions to the wave
equations. Another solution is given by the so-called
“Gaussian sheaves” that represent the solutions of cylin-
drical symmetry. For spherically-symmetric problems
one obtains solutions in the form of spherical waves.

Let us consider a two-dimensional medium involving
nlayers (Fig. 1). Every i-th layer (whose thickness is d;) is
characterized by its complex permittivity &;. The first and
last layers are semiinfinite. All the layers are assumed to
be magnetically non-active (14; = 1), uniform and isotropic.
To obtain the solution to equations (3) in such a media,
one has to sew the solutions for individual layers together
at the corresponding boundaries. When solving the above
problem, it is convenient to consider solutions to wave
equations for vector components E), u H,. Let us consider
a solution for the field with vector £ component along the
y-axis. We shall seek this solution in the form of plane

Z A e E1+T
.4 £t | &
tx
y €17 G- E:1T lEr:-1
& l Eq

Fig. 1. A diagram of the n-layer planar system considered.
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waves, so E = (O,E(z)exp[i(wt —kxx) ,0). One gets for
every layer:

02 i )
IS'§+(/(8113 —k%)@}?(z)=0, j=Ln. 4)

The guided-wave (localized) solutions in the first and
last layers involve the outgoing waves only. Let us write
down the mode function and obtain a dispersion relation
for the existing types of waves:

0 ] H 2 % 2
EE1+ eXpa(hE? Zd, Zd,- <z
O O n=2 % n=2
t
0 J ]
E> expang - Z di %J’
g EZ n-2
Fieolng 3
E= E 0 g 3 % 3 2
TEiexp%quEz Zd Z z ;
CE g g ) g 20575,
g
O
EEI-; lexp[lqn—lz] +E2 exp[ lCIn—IZ] dn—l <z<0,
E}E_ exp[— I9n (Z tdy )] zS=dy .
©)
For the (n-1)-th layer one can present the electric field as
~, U 1-R, 0
E, Os(qn_lz)ﬂ L Sin(qn_lz)D (6)
1+R? O
0 n-1,n-2 0

where E;_ = E;lr_l/(l +R_| n_z) and R;_,_, is the
amplitude coefficient of TE-wave reflection at the bound-
ary between the (n-1)-th and (n-2)-th layers. It should be
noted that both R;_;,, and R/ -1 (the reflection
coefficient for TH-wave) may be easily calculated using
the standard recurrence relations for reflection from a
multilayer medium (see, e.g., [19]).
The field in the n-th layer is:

o1l
—1 0S\d -1 —1 —SN\g14,1
T Rb_ln_2 3.0

xexp[— igy (e +d, )

Imposing the continuity condition on the field deriva-
tives at the boundary between the n-th and (n-1)-th lay-
ers, one gets the dispersion relation for a multilayer pla-
nar system:

SQO0, 3(3), 2000



A.V. Goncharenko et al.: Dispersion of natural modes in a many-layer planar system

1- Ri—l n—2 qdn

Qn—l‘
n (1 “ Ry )

dn-1 @ + Rn—l n—2)

After generalization to an arbitrary (j-th) layer one
obtains:

1+R°_, _
(g -1 ) = ~i ——

@®

1+

1-R; 1-Rj}

JJ Jojl
1+ RS i 1+R- 4
tan(g ;d;) ==i—f— 2 ©)
- RS . — RS .
1+@ ]v]‘l)@ ]]"‘1)
+R;, -1 @+RJ J+
. 1_R/ j-1 . .
The expression determines the amplitude-
1+Rj i

phase characteristics at the boundary between the j-th

and (j-1)-th
l—Rj-"j_l

layers. |R 1, then

Hpj /1 E for the case of a boundary be-

- i tan— ;
1+ Rj 1 @ 2 @

tween two media in the total internal reflection region

tang);—'l@: =i a . For a three-layer planar waveguide
q2

one gets the following well-known expression:

JJI|

qr\q1 t¢q
tan(grd) = M : (10)
97 *q193
It is often written down as
d= il 3
q»d = arctan arctan miT, (11)
2 2

where m is the mode number and (as was noted before)

h h E?
A = a2 Eand 3 = tand S E
9 E 2 9 2

When calculating the excited modes for a composite
planar system with a (j-th) guided-wave layer at whose
boundaries |R| =1, itis practically convenient to use the
following expression:

9; i—1 9; j+1
q.d.:L+L+mn”

12
4= 5 (12)

where m is an integer.
The above consideration dealt with the TE-mode
propagation in planar systems. For TM-modes an ap-
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proach is the same. After sewing the tangential field com-
ponents, /) and E,, together at the media boundaries one
obtains the following dispersion relation for the TM-mode:

- ijj-l - RJJ+1
+RP 1+ R?
anlyd )z —i—p22L o S (13)
o - (}‘Rf./—l)(?"R.i,j+l)

(3 *RY . ) (1 + R_f),_,'+1)

Expressions (9) and (13) may be obtained from each
other through changing from R” to R® and vice versa.
For two types of mode expression (13) is written down
similarly. In one case by ¢ ; ;- is meant the phase shift
for TE-waves, while in another case the phase shifts for
the incident and reflected TH-waves are meant. The ana-
logs to expressions (10) and (11) are, respectively, the
following expressions:

& &
q1 £—+Q3 .
. 1 3
an(g,d)=iq; (14)
8 82
6]2 tq193 ——
& &3
and
h € £
qrd =arctan%—2%arctan%—zﬁ+mn. (15)
2 & 2 €3

3. Some features of mode structure for a five-
layer system

Toillustrate, let us consider a five-layer planar structure
forming the main element of a planar polarization inter-
ferometer that is in contact with water [20, 21]. The layer
parameters in the region of He-Ne laser generation are:
n; =1.33, k; =0 (water); i, = 1.51,kp=0,d, = 1.2 ym
(protective layer made from phosphosilicate glass); 73 =2,
k3 =0, d3 = 190 nm (guided-wave layer made from sili-
con nitride); ny = 1.49, k4 = 0, dy = 1.2 pm (silicon oxide
interlayer); ns = 3.83, k5 = 0.02 (silicon plate).

Modes of different types may be excited between the
media 1 and 5 in such a system. One can see that the
medium 5 has the highest refractive index. Solutions to
the wave equation in this medium will be always har-
monic functions. One may, however, expect light locali-
zation, i.e., the guided-wave propagation of light here.
Those modes whose energy is localized in the silicon ni-
tride layer will tunnel to the substrate only slightly. The
modes that are localized in the silicon nitride and protec-
tive layers are also weakly radiative. But if energy is
localized within the three inner layers, then these modes
will demonstrate some radiation losses due to absence of
total internal reflection at the boundary between silicon
oxide and silicon. Such modes may be named leak modes.
When k, >> k_,, then these modes may slightly radiate.
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Shown in Fig. 2 is the solution to dispersion equation
for the above system. The dashed curves correspond to
the so-called light straights in media that form the system
considered (v; = k,/2pn;, where v = w/2pc). The disper-
sion relations were calculated from expressions (11) and
(15). The full (dashed) curves determine TH- (TE-) mode
dispersion. One can see that at high frequencies the dis-
persion curves are close to the light straight 3 that corre-
sponds to light propagation in silicon nitride. When the
frequency goes down, then the dispersion curves begin to
meet the light straights that correspond to light propaga-
tion in media with lower refractive index (dashed curves
2, 4, 1). Between the curves 3 and 2 the mode field is
localized in the guided-wave layer, while in the
neighboring layers the fields die out exponentially. When
frequency decreases, then the wave cannot go into this
layer and becomes delocalized. Between the light
straights 2 and 4 the solutions are given by harmonic
functions in the silicon nitride and phosphosilicate glass
layers, while in water and silicon oxide the fields die out
exponentially. At the intersection of dispersion curves
and the light straight 4 in silicon oxide, the fields become
harmonic too. Since no total internal reflection occurs at
the silicon oxide-silicon interface, these oscillations dem-
onstrate high radiation losses.

A section of dispersion relations in the He-Ne laser
generation region is shown in Fig. 2 on a larger scale. At
the laser generation frequency (horizontal dashed line
v=15803 cm!) a substantial (kX - kT =3 00*em™)
difference between the propagation constants for waves
of different polarization exists for zero-order modes only.
Even for the first-order mode k;E - k;H ~50cm ! e,
this difference is very small, and the corresponding curves
in Fig. 2 merge together. There are only two pairs of
modes with low damping at this frequency. Other solu-
tions (four pairs) are the outgoing modes. They are char-
acterized by high radiation losses.

n, el 2 m=2 m=1 m=0
4.E+04
2.E+04 +
A 1.5E+044LL4L ,
4 1.2E+0 2.2E+05
0.E+00 T T T
0.E+00 2.E+05 4.E+05 6.E+05 k,cm!

Fig. 2. The guided-wave mode dispersion curves for a five-
layer system. (inset — a fragment of the same curves on an en-
larged scale in the region of He-Ne laser generation).
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In practical applications all the modes but that of zero
order are undesirable. Therefore choice of layer param-
eters is of essence. Thus at thick silicon oxide layer one
may get rather low radiation losses for the leak modes.
And this is unwanted when using planar polarization
interferometer.

To picture the behavior of localized modes in more
detail, we have calculated their intensities, 7 [ |E | 2 , at
different points by numerically solving the wave equa-
tion (4). Shown in Fig. 3 are the lower-order modes that
may be excited in the planar system considered. We have
calculated the field intensity distributions for TE-modes
at a frequency of the He-Ne laser generation (about
15800 cm'!). The layer boundaries are shown with verti-
cal dashed lines. For zero (m = 0) mode the field is local-
ized to a large extent within the guided-wave layer. Some
portion of light that propagates beyond the guided-wave
layer may interact with adsorbed molecules. This leads
to a change in the signal phase. For TH-modes the fields
are localized to a lesser extent (their localization depth
is bigger), so they interact with adsorbates more strongly.

A feature of the mode structure in a composite planar
system is absence of symmetry in the field spatial distribu-
tions similar to those presented in Fig. 3. It seems conven-
ient to classify modes (as in the simplest cases) according
to number of field intensity minima in the inner layers. A
form of field intensity distribution for a mode of some
order may strongly vary when the dispersion curve inter-
sects the light straights in different media. To illustrate,
one can see from Fig. 4 that the first-order mode is spread-
ing (i.e., its energy is flowing) from the guided-wave layer
to the protective layer when frequency goes down. In this
case a limiting (critical) point exists that corresponds to a
frequency of about 22310 cm™!. At this point a transition
occurs from exponentially damping solutions in the re-
gion 2 to harmonic (oscillating) ones. Such critical points
exist for all modes. A transition through this point is ac-

m=0

Fig. 3. Field intensity spatial distribution for the guided-wave
TE-modes of the first four orders.

SQO0, 3(3), 2000
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Fig. 4. Natural mode intensities for a five-layer system in (n, z)
coordinates.

companied by substantial energy redistribution between
the layers 2 and 3, as can be seen from the results pre-
sented.

In conclusion we would like to note that no surface
linear localized waves can propagate in the system con-
sidered, since for their existence it is necessary that Re £ <0
at least for one of the layers [2]. Obviously nonlinear sur-
face waves may exist here, but to describe them one should
use a nonlinear dispersion equation [22].

Conclusion

By solving the wave equation we have got dispersion re-
lations for TE and TH natural (localized) modes in a
multilayer planar system with arbitrary number of lay-
ers. The obtained relations are convenient for practical
applications. They enable one to find rather easily the
V(k) dependencies for all possible types of natural modes
by using standard recurrence relations for reflection co-
efficients of a multilayer system. As an example we con-
sidered a five-layer system whose natural modes are
guided-wave polaritons. We have found all possible so-
lutions to dispersion equations for this system and per-
formed an analysis of their behavior.
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