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Abstract. The simple Jones matrix technique was applied for finding intensity of obliquely
incident light that passes through a plate of a uniaxial uniform medium that later was ex-
tended to general twisted nematic liquid crystal medium. Results of calculations were com-
pared with the Berreman 4x4 matrix technique. Shown is the way of finding contrast viewing
characteristics of nematic liquid-crystal displays. The obtained results are compared with

experimental data.
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1. Introduction

To understand and optimize a general twisted nematic
liquid crystal display (TN-LCD), it is important to be
able to mathematically simulate them. Different research-
ers in various ways [1-8] have calculated the transmis-
sion of polarized light through twisted nematic liquid cell
(TN-LC). So far, the origin of the light guiding in the TN
structures are completed, the optical properties are
optimized by using empirical methods [2-4] or by com-
plex numerical modeling, such as the Jones matrix [5-8]
or the Berreman propagation matrix methods [1,9].
One of the important parameters of TN-LCD are its
viewing characteristics. To obtain them, it is necessary
to be able to find the transmission of obliquely incident
light through TN-LCD and through retardation films (if
they are). Traditionally, researchers use the Berreman
method for solving such kind of problems. It suits well
here, but it has an intrinsic drawback. It is enough slow.
Although modern computers have a high power of calcu-
lation and the fast Berreman method was proposed [9],
time of the computation is still too high for some prob-
lems. For example, there are optimization simulations
that need a lot of calculations, because parameters of a
system are varied. Therefore, more primitive problems,
when light is incident normally, are often computed us-
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ing the Jones matrix method, because of the 2x2 Jones
matrix technique is much more easy than the 4x4 one
and, as a result, is much more fast.

In this paper we present the Jones matrix formalism
for finding the electromagnetic fields propagating ob-
liquely in layered inhomogeneous LC planar structure.
The general TN-LC cell with a total thickness L can be
divided into N thin layers. Each layer is considered as a

. . . . L _.
uniaxial optical medium and has a thickness N Direc-

tion of optical axis defined by molecular orientation (di-
rector) and it slightly varies from one layer to another
remaining the same inside layer. The result becomes ex-
act when N is alarge number. It is reasonable to assume
that such system is nonmagnetic so that the magnetic per-
meability can be set to unity throughout all space.

In the Jones matrix method, the input polarization
state and the output one are related by the following
matrix equation:

E'=JE )

where E = g’v Eis the input Jones vector, E'= ﬁ,x Eis
y ¥

the output Jones vector in a fixed coordinate system, and
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J is a 2x2 Jones matrix. Since each of the layers of the
liquid crystal can be treated as a uniform uniaxial crys-

tal plate, the matrix J is obtained by multiplying all the
Jones matrices for the plates in the sequence. First of all,
we should obtain the Jones matrix of the uniform aniso-
tropic plate. In fact, this result can be interpreted as the
matrix of a retardation film. In opposite to the partial
case of normal incidence, the Jones matrix for oblique
incidence has more complicated expression, because the
extraordinary refraction index depends on orientations
of the optical axis and the direction of the light propaga-
tion. Besides, the traditional Jones matrix technique does
not consider Fresnel’s reflections that cannot be ignored
for oblique incidence. We take into account them and
find the Jones matrix of the general TN-LC cell. In order
to exam the obtained results, they are compared with the
Berreman method and with experimental data.

The proposed in this paper method of calculation is
extremely useful for the finding of viewing characteristics
of the conventional TN-LCDs, various STN, OMI, and
LTN-LCDs, better understanding their electro-optical
behavior and optimize the performance. In addition, it is
also useful for the experimental measurement of the cell
gap and both twist and tilt angles of the general TN-LCD.

2. Uniform uniaxial crystal plate

As a first step of our following calculations, we find the
Jones matrix of a homogeneous and uniaxial crystal plate
for obliquely incident light. Let a be the angle at which a
monochromatic plane wave falls on a planar surface of a
uniaxial crystal (Fig. 1). Two linearly polarized waves
travel inside the crystal with different phase velocities
and, in general case, in different directions. One of them
is ordinary (‘0’) and has the refracted angle 3. The other
one is extraordinary (‘¢’) and has the refracted angle 3, .
We chose two coordinates systems. One of them (xyz) is
fixed. The z-axis is defined as the inward normal to the
reflecting surface, which lies in the x-y plane. The x axis
lies in the plane of incidence, the y axis is normal to it.
This coordinate system is needed for describe crystal ori-
entation. The other one (x'y'z") is not fixed, and its z°
axis is parallel to the wave vector, the y " axis is the same
as the y. This coordinate system is needed for describe of
the Jones vector and matrix. Let d be the thickness of a
crystal with the principal refractive indexes n, and n, .
A unit vector C defines the orientation of its optical axis,
and the wavelength of incident light is A. After passing
through anisotropic plate and analyzer two waves inter-
fere. As far as the difference between their phase

retardations is [10] ?(HO cosf, - ne* cos 3,) , we may

write a relative retardation for the «o» wave as

Zm’ne* cos 3,
p .

21wn, cos
"fﬁo and for the «e» wave as
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Fig. 1. Uniaxial crystal plate.

* . . . .
Here, n, is the refractive index for the «e» wave in the

given direction. Using the results obtained by Fedorov
[11] or by Lekner [12] we may express:

ne* =yn’sin’a +qe2

g, =q —nC,C,sinale/e,, 2
where C; are projections of vector C,
NAe=¢,-¢ Eng —n%, . =n02 +C22A£, n is the re-
fractive index of isotropic medium,
7% =n,’[nS e, -n’sin’a(n,” - C,*Ae)]/e, -

In this way, according to [4, 5] the Jones matrix can
be derived:

%(p&?ﬂdnz cosf, H 0 EA

J=R@)D 5 i - 5
O j }’lo [0 0 s
o ey

(©)

where R((J)) is the coordinate rotation matrix, { is the
angle between plane x z‘ and optical plane (it is a plane

that is formed by both the wave vector and C ). The po-
larization of the «o» wave is perpendicular to this plane).

The angles 3, , 8, are expressed through o by Snell’s law
sinf3, = sm:r n, sinf, = sna

N, 1o

n. &)
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Finally, as far as the plane of incidence is the x‘-z°

plane then siny is equal to the value of C projection on
y-axis:

siny = C, ®)

After substitution of Eq.(5) into Eq.(3) and few steps
of matrix multiplication, we have:

. HB(l c,))+1 BC ,/1 c, H
HBC ,/1 ¢ BC/ H’

zm,/ng -n*sin’a )

A =exp(i
p( 3
2 [+
B=exp(iTm( n e —n’sin’a
(©)
-yn,2 —n?sina)) -1

Now, we can find the expression for the output Jones
vector E,,;:

Eout :JAJEin ’ (7)

Where J ; is the Jones matrix of the analyzer, E in 18
electrical input vector (that passed through polarize). And
intensity 1, :

1,,=E, E* . ®)

out out out
where EJ,, isa complex conjugate vector to E out -
Here we should note that we have not taken into ac-
count the reflection of the wave at the interfaces of an
isotropic medium and a uniaxial crystal. This simplifica-
tion makes all above expressions unpractical, because, as
the angle of light incidence increase, the intensity of re-
flected wave is also increase and almost all light is re-
flected at large angles. So, in opposite to the case of nor-
mal incidence [4, 5], we cannot neglected Fresnel’s re-
flections. For this reason, we shall use the transmission
coefficients. Let t, and t'; be the coefficients for the or-
dinary wave of first and second boundaries between iso-
tropic and anisotropic media, t, and t', be the coefficients
for the extraordinary wave, respectively. They are func-
tions of the incidence angle, crystal orientation and re-
fractive indexes. For the sake of brevity, we do not give
their full expressions. Reader can easy find them in the [8, 9].
Substituting these coefficients into Eq.(3) we obtain:

Hamin, cosp,
I exp men, cosp,

R @ee H 0
j=keyy 8 A 0

O

[l

O

0 Lf, exp Fzm’n » COSf,
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and then

. HB(l C,})+1 BC ‘/1 C, H
BBC ‘/1 ¢’  BC/ H’

21uiyn,? -n*sin?a .

A=ttt exp(i 5
ol €xXp( g )

=< E B\/ 2-p?sin’a -
‘/noz -n’sn’a %1

In order to examine, our calculations are compared
with the much more exact Berreman method. Fig. 2 shows
the intensity of transmitted light through a plate of
uniaxial medium (n, = 1,5, n, = 1,65, d = 30 um,
C, =1,C, =C. =0) versus the incident angle. The solid
curve is the result of described above calculations, the
dash curve is obtained by the Berreman method. On the
whole, results obtained by both methods are in a good
agreement. The unimportant difference between them is
the outcome of multi-reflections that the interfaces give.

In order to obtain the exact result we should to con-
sider them. The explicit theory of multi-interference was
developed for isotropic plate [7]. Following the same pro-
cedures as these in [7], we shall find the transmission
coefticients for the ordinary ( 7, ) and the extraordinary
(T,)waves:

(10)

t,t'
T, = e =ig, >
1= =10, Je %0
t,t'
T, = e (11)

1-(=t,¢',)e 0 -
where ¢,,¢, are the phase differences between two adja-
cent interfered beams for «o» and «e» waves respectively.
Denoting the refraction index for the extraordmary wave
that propagate toward positive values of z*axis by n e
and the refraction index for inverse direction by n ¢ (it
is found the same way as n e using Eq.2), we may write:

47ﬂ\/n02 -n?sin’a
¢, = p ;

27‘d(\/n*g2 -n’sin’a + \/n**ez -n? sinza) (12)
A

¢ =

Oy
R W)

i
% ©)
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Next, substitution Eq.11 into Eq.3 yields:

%_e epozn'dne cosB, H 0

J=R@W)O i A i
B 0 T, exp FZm’n , Cosf,
a

and then

. BB(l C,})+1 BC ,/1 c, H
EBc‘th BC,? H

T 2 * .
B :—eexp(i—rd(\/n 2 —nsin’a -
T, 2

—\n,2 —=n*sin’a)) -1
iyn,’ i
n,” —n~sin”a

A

2
A=T,exp(i (14)

We have considered the oblique incident wave propa-
gation in the uniaxial plate and obtained the Jones ma-
trix for this case. Substituting Eq.(14) into Eqgs (7) and
(8), we obtain the same result that the Berreman method
yields (Fig. 2, the dash curve).

3. Polarize

Since a construction of TN-LC displays includes a po-
larize, we should find its Jones matrix. Let & be the nor-
mal vector of incident light, ¢ corresponds to the direc-
tion in the fixed coordinate system along which the po-
larized electrical field is not transmitted by polarize. As
far as the vectors k and C are not perpendicular in a
general case, we must find the vector p that corresponds
to the direction absorption in the x y z‘ coordinate sys-
tem and perpendicular to k . We have:

] B
‘ o]

Assume that all vectors are unit. The vector k in this
coordmatg system has coordinates: (0,0,1), the vector
c=(c x,c y,c 4) After vector cross multiplication we
obtain the coordinates of

L 1 %"E
IR R

SQO0, 3(2), 2000

(15)

(16)

]
i
|

W) 13)

The polarize orientation is described in the fixed coordi-
nate system. Let a be the incident angle and, as result,
the angle between axeszandz (F1*g 1), ¢ is (¢y,¢y,0) in
the xyz. Coordinates (c x,C y,C z) and (cy, y,O) are
connected ones with others by transform matrix. After
few steps of matrix manipulation we have:

| Elx cosaH
> ¢y, O (17)

Cy cosza+cy2% 0 E

ST
1

The Jones matrix is described in the unfixed coordinate
system, and we use it below. If electrical vector of inci-
dent light has coordinates (E.E,0)» then the passed
through polarize output one is parallel to p and may be
expressed:

{ Ex cosaH
out = O cy 0 18
‘lcicosza+c§ E 0 %( )

Knowing the input and output electrical vectors, we may
now find the Jones matrix that corresponds to Eq.(1):

E

- 1 % *cos’a cc, cosall
Ja=———— > 2
e, costa+e,? Hyepcosa e, H
10f
0.8f
=
o
= 0.6F
z
g 0.4F
=
£
0.2f
0.0f
L L 1 L 1

0 20 40 60 80
Angle of incidence

Fig. 2. Transmitted light versus an angle of incident. (Solid curve
is the result of Jones’ calculation without multi-reflections from
boundaries, the dash curve obtained by the Berreman method).
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3. TN-LC medium

The results that were obtained in the previous sections
may easily be extended for the finding of the Jones ma-
trix of TN-LC medium and the light intensity transmit-
ted through it. As we have noticed above, TN-LC can be
considered as a stack of thin uniaxial plates. The Jones
matrix of such system is a product of the Jones matrices
of each plate. Although the obtained Jones matrix of ani-
sotropic plate in Eq.(14) is exact, from the viewpoint of
practice, we shall use the result of Eq.6, find transmitted
light intensity and then take from it the light intensity
reflected at the first interface (isotropic medium — uniaxial
crystal). There are two reasons for this approach. First,
the orientations of the optic axes of two neighboring
plates very slightly differ one from another. That is why,
the reflections at the interfaces between them are almost
absent. Second, calculations of transmissions coefficients
need a lot of time. And, in this case, we may loss all ad-
vantages in comparison with the Berreman method. In
this case the Jones expression for TN-LC cell is:

2
leLle: hHBk(l Cy )+l Bkc}k‘h Cy, H
k= NEBkcyk‘h ¢, Byl

k=N Vi o

(20)

where the index k relates to a correspond plate, 4 and B
are the same as in Eq.6.

For finding the Jones matrix (20), we must correctly
describe the orientation of the optical axis versus dis-
tance from one boundary to an other (C(z)). In the re-
laxed state with no applied field, the orientation of mol-
ecules, as a rule, linearly twists from this distance. When
an electrical field of sufficient strength is applied, the
molecules away from the surfaces tend to realign in a
direction approximately parallel to the applied field and
normaly to the surfaces. This realignment causes changes
in transmission of polarized light, and are successfully
used in electro-optical display devices. According to Eqs
(7), (8) we find the output intensity without reflections
(1 ur )- Next, following the same procedures as in [11,
12] we obtain the transmission coefficients (T) After
that we may find the output Jones vector:

E out — TEout (21)

To obtain brightness characteristics of the general TN-
LC display, the passed electrical field (£',,,) must be

multiplied by the Jones matrix of analyzer J4(Eqs 7, 19)

Asarule, display devices are interesting from the view-
point of their viewing angle characteristics that are de-
scribed by equi-contrast ratio curves. A contrast ratio is
determined as a ratio of the intensity in an open state
(field off) to the intensity in closed state (field on):

1

open

1

C= 22)

close
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Fig. 3. Equi-contrast ratio curves. Solid curves are the result of
calculations, dash curves are experimental data.

Since the orientation of molecules near surfaces de-
pends only on boundary conditions, the Frenel reflection
between isotropic medium and LC is not a function of
applied external field. That is why, when we determine
the contrast ratio, it does not need to define this reflec-
tion, because it cancels out. Thus, our problem becomes
simpler here. Analysis of the experimental data shows,
that the multi-reflections between surfaces of TN-LC are
small. So, we may neglect them in our calculations.

In order to examine our calculations, it is reasonable
to compare both computed and treated experimental data.
We have obtained equi-contrast ratio curves of a 90° TN-
LCD. Here, 5 pm cell filled with the Merck 3145 liquid
crystal mixture placed between crossed polarisers and
driven with a V- close state and a 15 V- open state.

Fig. 3 illustrates the derived results. Theoretical cal-
culations are shown by solid curves, experimental data
are plotted by dash curves. They were obtained using the
Display Measuring System (DMS-408) that has been de-
veloped in ISP NASU. Both results are in a good agree-
ment.

Finally, it is noteworthy the computation time of such
characteristics, using method proposed by us, is approxi-
mately 10 times shorter than that of the fast Berreman
method!

Conclusions

We suggested the way for determining characteristics of
light transmitted through a general TN-LCD in the case
of oblique incidence using the simple Jones matrix method.
The results were successfully tested for uniform aniso-
tropic and TN-LC media. They are in a good agreement
with the Berreman propagation matrix technique and
experimental data. This method is extremely useful for
problems of optimization, when varying parameters in
order to improve the viewing characteristics of the con-
ventional 90° TN-LCDs and various STN, OMI, as well

SQO0, 3(2), 2000
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as LTN-LCDs. In addition, it is also well suitable for the
experimental measurement of the cell gap, tilt and twist
angles of a general TN-LCD. It can be successfully ap-
plied to finding the light propagation through any strati-
fied anisotropic media with small difference between
orientations of optical axes in adjacent layers.

This work was supported by STCU under the Contract
No. 637 and INTAS under the Grant No. 30234.
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