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Experimental observation of triple correlations

in fluids
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We present arguments for the hypothesis that under some conditions, triple correlations of density fluctuations
in fluids can be detected experimentally by the method of molecular spectroscopy. These correlations manifest
themselves in the form of the so-called 1.5- (i.e., sesquialteral) scattering. The latter is of most significance
in the pre-asymptotic vicinity of the critical point and can be registered along certain thermodynamic paths.
Its presence in the overall scattering pattern is demonstrated by our processing experimental data for the
depolarization factor. Some consequences of these results are discussed.
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1. Introduction

The intensity I of light scattered by a one-component fluid drastically increases as the critical point

is approached [1, 2]. The physical nature of this critical opalescence phenomenon is well-known, i.e.,

an increase in the magnitude of permittivity (in fact — density) fluctuations and the development of

long-range correlations between them. The result is that I is contributed to by not only single scattering

effects, but also by those of higher multiplicities. One could expect that I provides certain information

about higher-order correlation functions for the density fluctuations.

However, a common view is that it is only double scattering [3–8] together, probably, with Andreev’s

scattering (due to fluctuations in the distribution function of thermal fluctuations) [9–11] and triple scat-

tering [12] that contribute significantly near the critical point. The pertinent theories are based upon

quasi-Gaussian statistics for the fluctuations. As a consequence, any information on the irreducible parts

of higher-order correlation functions is lost and multiple scattering is viewed as parasitic.

By contrast, we pursue the idea that the so-called 1.5- (sesquialteral) scattering, caused by triple cor-

relations of density fluctuations, contributes significantly to I . In this report, we support this statement

by our results of processing extensive experimental data [13] on the depolarization factor near the criti-

cal point. In our view, these results strongly indicate that the 1.5-scattering is noticeably present, under

certain conditions, in the overall scattering pattern. Moreover, the idea of 1.5-scattering allows us to give

simple explanations for the anomalies in the behavior of I−1 in the gravity field [14, 15] and those of the

Landau-Plazcek ratio near the λ-line [16–18], which were observed long ago, but have been interpreted

controversially.

It is also important to note that, according to our own theory and in view of earlier estimates [4],

from among different three-point configurations of density fluctuations δρ (located at points r, r1, and

r′), the major contribution to the integrated 1.5-scattering intensity I1.5 is made by those in which two

successively scattering fluctuations merge on the macroscopic scale (|r − r1| → 0; technically, this is a

consequence of the replacement of the internal electromagnetic field propagators in the iterative series

for the scattered field with their leading short-range singularities). As a result, I1.5 is determined by the
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Fourier transform of the pair correlation function 〈
[
δρ(r)

]2
δρ(r′)〉. Provided Polyakov’s hypothesis [19]

(see also [20, 21]) of conformal symmetry of critical fluctuations is valid, the latter is expected to vanish

at the critical point (see appendix A). It follows that the recovery of the 1.5-scattering contribution from

I and a scrutinized study of its behavior along appropriate thermodynamic paths ending up at the crit-

ical point provide a unique opportunity for experimental verification of Polyakov’s hypothesis [19] for

systems with scalar order parameters.

2. Theory of 1.5-scattering

2.1. General expression

The theory of 1.5-scattering was proposed in [22] and developed further in [23, 24]; some additional

numerical estimates were made in [25, 26]. We assume that molecular light scattering from condensed

matter is a result of re-emission of light not only by single fluctuations, but also by compact groups of

fluctuations. By compact we understand any group of fluctuations all the distances between which are

much shorter than the wavelength λ of the probing light in the medium. Physically, scattering by such a

group is single. The overall polarized single-scattering spectrum is, therefore, given by the series [23]

I (q,ω) =
∑

n,mÊ1

Inm (q,Ω), (2.1)

where

Inm (q,Ω) ∝
(
−

1

3ε0

)n+m−2

×
1

π
Re

+∞∫

0

dt

∫

V

dr
〈

[δε(r, t)]n [δε(0,0)]m
〉

eiΩt−iq·r (2.2)

is the contribution from a pair of compact groups of n andm permittivity fluctuations [attributed further

to density fluctuations, δε≈
(
∂ε/∂ρ

)
T δρ], ε0 is the equilibrium value of the permittivity,Ω and q are the

changes in the light frequency and wavevector due to scattering, and the scattering volume V is included

into the proportionality coefficient.

It is only the term I11(q,Ω) in equation (2.1) that has been associated so far with the single scattering.

The 1.5-scattering intensity is defined as I1.5(q,Ω) = I12(q,Ω)+ I21(q,Ω).

2.2. Hydrodynamic region, qrc ≪ 1

Far enough from the critical point, where the correlation radius rc ≪ λ and nonlocal correlations

between fluctuations can be ignored, the integrated 1.5-scattering intensity can be expressed in terms of

the third moment of thermodynamic density fluctuations ∆ρ [22]:

I1.5 ∝−
2

3ε0

(
∂ε

∂ρ

)3

Ṽ 〈(∆ρ)3〉 =−
2

3ε0

(
ρ
∂ε

∂ρ

)3 k2
B

T 2

Ṽ

[
2β2

T +
(
∂βT

∂P

)

T,V

]
, (2.3)

where βT is the isothermal compressibility of the fluid and Ṽ is a macroscopic volume over which the

fluctuations δρ are averaged to single out their thermodynamic parts ∆ρ. We suggest that Ṽ is slightly

dependent on temperature far away from the critical point, but Ṽ ∝ r 3
c ∝β3/2

T
in the critical region.

Calculations with the van der Waals and Dieterici equations of states give the estimates

I1.5 ∝−
1

ε0

(
ρ
∂ε

∂ρ

)3 k2
B

T 2

Ṽ
·6Pcωβ

3
T

and

I1.5 ∝−
2

3ε0

(
ρ
∂ε

∂ρ

)3 k2
B

T 2

Ṽ
·
(
β2

T +4Pcωβ
3
T

)
,

respectively, where ω ≡ ρc/ρ− 1, |ω| ≪ 1 is the deviation of ρ from the critical value ρc and Pc is the

critical pressure. It follows that the 1.5-scattering can become of significance in those domains in the
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(τ,ω)-plane where ω , 0, but βT is sufficiently large. Then, I1.5 ∝ ωβ3/2
T
for a non-critical isochore, but

I1.5 ∝β1/2
T
or even I1.5 → 0 for the critical one.

A distinctive feature of the 1.5-scattering contribution is that it is not positive definite: for instance,

I1.5 < 0 in the region where ω> 0 and τ> 0, at least.

2.3. Fluctuation region, qrc ≫ 1

Understanding, in this section, ρ as a scalar order parameter,we see that formulas (2.1) and (2.2) agree

with the hypothesis of algebra of fluctuating quantities [20]. Then, within the first order of ǫ-expansion

and in the long-wave limit q → 0, the critical index of I1.5, defined by I1.5 ∝ |τ|−µ21 , is estimated to be

µ21 ≈ 0.67 for ω = 0 [22]. This value is close to an earlier estimate of 0.7 given in [20]. Correspondingly,

I1.5 ∝β1/2
T
on the critical isochore and in the immediate vicinity of the critical point.

This result can be refined using the algebra of fluctuating quantities (see appendix A). However, it

is more important to emphasize that it disregards the conformal invariance hypothesis [19]. If the latter

is indeed valid, then the orthogonality relation holds for fluctuating quantities with different scaling

dimensions (see [20, 21]), that is, I1.5 → 0 as the critical point is approached.

2.4. Intermediate region, qrc. 1

This region is of special interest to us because it is typical of actual experiment. Taking into account

that correlations between fluctuations δρ remain relatively weak, we argue [23] that the convolution-type

approximation
〈
ρk1

ρk2
ρk3

〉
≈−

2c ′

kB T
p

V
G(k1)G(k2)G(k3)δk3,−k1−k2

can be used for the three-point correlation function of density fluctuations. Here, ρk is the Fourier compo-

nent of δρ(r), G(k) ≡ 〈|ρk|2〉, and c ′ is a k-independent function of temperature and density. Calculations

with the Ornstein-Zernike expression for G(k) then give:

I1.5(q) ∝
c ′

3πε0

(
ρ
∂ε

∂ρ

)3 ρ3k2
BT 2β3

T

qr 4
c

(
1+q2r 2

c

) arctan
( qrc

2

)
. (2.4)

Requiring that in the limit qrc ≪ 1, equation (2.4) transforms into equation (2.3), we recover c ′ through
the third thermodynamic moment of density fluctuations, with an accuracy to a positive proportionality

constant:

c ′ ∝−
[

2β2
T +

(
∂βT

∂P

)

T,V

](
ρβT

)−3
. (2.5)

Extrapolation of formulas (2.4) and (2.5) on the fluctuation region shows that (see appendix B) c ′ → 0

and, therefore, I1.5 → 0 as both τ→ 0 and ω→ 0, which is in accordance with the conformal invariance

hypothesis.

The structure of the 1.5-scattering spectrum in the intermediate region is discussed in [24].

3. Depolarization factor

3.1. Theoretical considerations

Now, we are in a position to scrutinize the effect of 1.5-scattering on the depolarization factor ∆ as

a function of temperature (in fact, βT ) and the geometrical size L ∼ V 1/3 (volume V ) of the scattering

system. Suppose that the following contributions to I are present in the intermediate region qr . 1:

(1) the “standard” intensity I11 ∝ V βT of polarized single scattering due to density fluctuations [1, 2];

(2) the intensity I1.5 of polarized 1.5-scattering [22–24]; (3) the intensity Ia ∝ V of depolarized single

scattering due to anisotropyfluctuations [1] (it is virtually insensitive to the critical point); (4) the intensity

I2p ∝ V 4/3β2
T of polarized double scattering due to density fluctuations [3–8]; (5) the intensity I2d ∝

V 4/3β2
T of depolarized double scattering due to density fluctuations [3–8]; (6) the intensity IA ∝ V β1/2

T
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of depolarized single scattering due to fluctuations in the distribution function of thermal fluctuations

(Andreev’s scattering) [9]. Then, ∆ is given by

∆=
Ia + I2d + IA

I1 + I1.5 + I2p
. (3.1)

In view of the individual temperature dependences of the above contributions and under the condi-

tion I1.5 = 0, ∆ as a function of βT is expected to decrease first, then reach a minimum, and then increase

again. Such a behavior, indeed observed in the experiment, is considered as a manifestation of double

scattering effects. However, as we show later, the presence of the 1.5-scattering contribution does not

alter this qualitative behavior of ∆ as a function of βT .

Thus, expression (3.1) should be transformed in order to obtain an experimentally-measurable func-

tion whose behavior significantly depends on whether the 1.5-scattering contributes to ∆ or not [22].

Rewriting (3.1) as

I2d

I1∆
=

1+ I1.5 I−1
1 + I2pI−1

1

1+ Ia I−1
2d

+ IAI−1
2d

(3.2)

and taking into account the specific features of the intensity contributions, we immediately arrive at the

relation

LβT

∆
∝

1+aβ1/2
T

+bLβT

1+cL−1β−2
T

+dL−1β−3/2
T

(3.3)

valid for the intermediate region qr . 1. Here, the coefficients b, c, and d are practically temperature-

independent and positive constants. The coefficient a ∝ c ′ arctan
( qrc

2

)
/rc is due to the 1.5-scattering

contribution and is not positive definite. If the 1.5-scattering is negligible, then a = 0 and the right-hand

side in formula (3.3) is a monotonous increasing function of βT . With the 1.5-scattering present, this

monotonous behavior is expected to be violated. The effect should be most pronounced in the following

two cases.

(1) The critical point is approached along a noncritical isochore ω > 0. Then, I1.5 ∝ −β3/2
T

and a is

close to a negative constant.

(2) The critical point is approached along the path where τ → 0, ω → 0, and I1.5 > 0. The relative

magnitude I1.5/I1 of the 1.5-scattering should start decreasing somewhere due to the temperature law

I1.5 ∝β1/2
T

coming into play [20, 22] (see section 2.3) or as a consequence of the conformal invariance [19,

20]. As such a path, the liquid branch of the coexistence curve can be quoted.

Thus, by varying the temperature (βT ) and density (ω) of the scattering system, we hope to “stick out”

the 1.5-scattering contribution from among the others. It should manifest itself as a non-monotonous

behavior of the experimentally-measurable quantity LβT /∆−1 with βT . The fact that the scattering con-

tributions involved depend differently on L, provides an additional powerful option for analysis. Some

results obtained by processing the extensive depolarization factor data [13] are presented in figures 1–12.

They generalize our earlier results [25].

3.2. Data processing

3.2.1. Noncritical isochores ρ <ρc, τ> 0

Figure 1 represents the log-linear plots of the quantity L(D∆)−1 ∝ LβT ∆
−1 as a function of the pa-

rameter (k0 is the wavevector in vacuum of the incident light)

D−1 =
k4

0

144π2
(ε0 −1)2 (ε0 +2)2 kBTβT ∝βT

for xenon along the ω = 6.8 × 10−3 isochore and five values of L (in cm). The parameter D (in m) is

a convenient measure of the distance to the critical point [27]. It is evaluated in [13] as a function of

temperature and density by using the Clausius-Mossotti relation for ε0 and the restricted linear model

equation of state [28] for βT . These calculations are claimed to be most reliable for the region not very

close to and not far away from the critical point, i.e., the one of special interest to us.
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Figure 1. L(D∆)−1 versus D−1 along the ω= 6.8×10−3 isochore of xenon for five values of L, based on

experimental data [13]. From left to right, τ decreases from 7.8×10−2 to 1.2×10−5 . Three segments can

be distinguished on each of these log-linear plots.

As τ reduces from 7.8× 10−2 to 1.2× 10−5, three typical temperature intervals are clearly seen in

figure 1. We shall refer to them as segments A (leftmost), B (central) and C (rightmost). It is easy to note

that simple division of L(D∆)−1 by L and changing to (D∆)−1 as a function of D−1 for different values of

L transforms the original plots dissimilarly on these segments: the plots tend to merge on A and C, but

invert the vertical ordering and disperse on B (figure 2). This fact implies that (D∆)−1 is contributed to

by terms with differing functional dependences on L. Our further analysis of them is guided by relation

(3.3).

Suppose that on segments A, i.e., the most distant from the critical point, I1 prevails much over I1.5

and I2p. Then, relation (3.3) takes the form

LβT

∆
∝

1

1+cL−1β−2
T

+dL−1β−3/2
T

.

It follows that the dependence of (D∆) upon D2 should be close to a linear one, with the slope independent

of L and, if the Andreev contribution is noticeable, a slight concavity: (D∆) ∝ const+ cD2 +d(D2)3/4.

Figure 2. (D∆)−1 versus D−1 for the data shown in

figure 1.

Figure 3. (D∆) versus D2 for segments A. From right

to left, τ decreases from 7.8×10−2 to 3.3×10−3 .
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Figure 4. L(D∆)−1 versus D−1/2 for segments A and

B. From left to right, τ decreases from 7.8×10−2 to

1.4×10−4 .

Figure 5. L(D∆)−1 versus D−1/2 for the portions of

segments B where τ decreases from 9.8 × 10−4 to

1.4×10−4 .

Figure 3 does exhibit, at least approximately, such kind of dependence. The study of the latter could, in

principle, provide experimental estimates for the magnitude of IA. However, the discussion of this issue

is beyond the scope of the present report.

On segments B, where we expect I2d to dominate over Ia and IA, but I2p to remain relatively weak as

compared to I1 and I1.5, relation (3.3) takes the form

LβT

∆
∝ 1+aβ1/2

T .

At ω > 0, L(D∆)−1 should decrease with D−1/2 by the linear law L(D∆)−1 ∝−D−1/2, with negative and

equal slopes for different values of L (figures 4 and 5). Correspondingly, the dependences of (D∆)−1 upon

−D−1/2 should be linear on B, with slopes inversely proportional to L, but, as was already mentioned,

merge on A (figure 6).

Finally, segments C are formed mainly by single and true double scatterings. Relation (3.3) takes the

form
LβT

∆
∝ 1+bLβT

Figure 6. (D∆)−1 versus D−1/2 for the data shown in figure 4.
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Figure 7. L(D∆)−1 versus D−1 for the entire ω =
6.8×10−3 data plotted with a linear D−1 scale. Seg-

ments C stand out as τ decreases rightwards from

8.6×10−5 to 1.2×10−5 .

Figure 8. (D∆)−1 versus D−1 for the entire ω= 6.8×
10−3 data plotted with a linear D−1 scale.

and we expect L(D∆)−1 to increase with D−1 by a linear law, with slope proportional to L (figure 7).

The (D∆)−1 versus D−1 plots for different values of L should approach a single straight segment as D−1

increases (figure 8).

3.2.2. Liquid branch of the coexistence curve

The dependence of L(D∆)−1 upon D−1 along the liquid branch of the coexistence curve of xenon is

shown in figure 9. It agrees well with our expectations.

Thus, the above processing of experimental data [13] clearly reveals the presence in the overall scat-

tering pattern of a contributionwhich we associate with the 1.5- (sesquialteral) molecular light scattering.

Figure 9. L(D∆)−1 versus D−1 along the liquid branch of the coexistence curve of xenon; L = 0.547cm.

From left to right, τ changes from −9.2×10−2 to −2.9×10−5 .
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3.3. Numerical estimates

Now, we present quantitative estimates of the magnitude of 1.5-scattering intensity. They were ob-

tained by fitting the L(D∆)−1 versus D−1 data for the entire ω = 6.8× 10−3 isochore and then used to

reproduce the original ∆ versus D data [13].

In view of formulas (3.2) and (3.3), the fitting function was taken in the form

f (x) =
x2

C + x2

(
K + Ax1/2 +B x

)
, x ≡ D−1,

and the following two sets of coefficients were chosen: K1 = 581.066, A1 =−63.6968, B1 = 3.66569, C1 =
0.012 and K2 = 607.508, A2 = −89.0932, B2 = 5.79532, C2 = 0.012. The relative magnitudes r1.5 ≡ I1.5/I1

and r2p ≡ I2p/I1 of the 1.5-scattering and polarized double scattering, as compared to the single scattering,

were estimated as

r1.5 =
Ax1/2

K
, r2p =

B x

K
.

To calculate ∆ with fi , our theoretical estimate [11] I2d ≈ 1
8 I2p was additionally used. Then,

∆=
B x

8K f (x)
.

Figure 10. Fitting the (D∆)−1 versus D−1 data (ω =
6.8×10−3 , L = 0.547cm) with f1 (dashed line) and f2

(solid line).

Figure 11. Fitting the∆ versusD data (ω= 6.8×10−3 ,

L = 0.547cm) with f1 (dashed line) and f2 (solid

line).

The results are demonstrated by figures 10–12. They clearly show that in the intermediate region,

the intensities I1.5 and I2p reach magnitudes comparable with that of I1, but are opposite in sign and

tend to compensate for each other. These facts are surprising. They contradict the common view that

multiple scattering contributions come into play gradually as the critical point is approached. In other

words, they imply an asymptotic nature of the iterative series for the overall scattering intensity near the

critical point. They can also be interpreted in the sense that triple and quadruple correlations in fluids

contribute, at least to light scattering effects, in opposite directions.

The agreement of our fitting results with the ∆-data [13] (figure 11) is also unexpectedly good.

4. Conclusion

The above estimates have prompted us to identify other experiments where the situation is favorable

for 1.5-scattering to come into play. First of all, of interest are the studies on light scattering from critical
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Figure 12. I1.5/I1, I2p/I1, and
(
I1.5 + I2p

)
/I1 along the ω= 6.8×10−3 isochore of xenon, L = 0.547cm, as

estimated with f1 (dashed line) and f2 (solid line).

fluids under the earth’s gravity. Due to the gravity effect, the system is spatially inhomogeneous in the

vertical direction. A negative 1.5-contribution is expected to appear in the light scattered from the fluid

layers located above the level of critical density. For such a layer, the total scattering intensity I should, as

a function of temperature, start decreasing somewhere as the critical point is approached. In other words,

the I−1 versus τ dependence should have a minimum at some τ0. The effect was indeed registered, for

instance, in freon 113 [14, 15]. Our estimations for the minimum location, τ0 ∼ 10−3 for heights up to

20mm (τ> 0), agree well with experiment.

We suggest that a specially-designed processing of the gravity-induced height- and temperature de-

pendences of I , obtained for systems with a scalar order parameter, is a feasible opportunity for singling

out the 1.5-scattering contribution and verifying Polyakov’s conformal invariance hypothesis.

To finish, we mention that the studies of the spectral distribution in critical opalescence spectra are

of great interest as well. In particular, we have proved that in the presence of 1.5- and double scattering

effects, the ratio of the integrated intensities of the Rayleigh and Brillouin components takes the form

Rexp = R
1+a1.5r1.5 +a2pr2p

1+b1.5r1.5 +b2pr2p
, (4.1)

where R = γ−1 is the well-known Landau-Placzek ratio [30] for single scattering (γ≡ cP /cV , cP and cV

being the specific heats at constant pressure and volumes). The coefficients a1.5 and b1.5 are given in [24],

whereas a2p and b2p can be recovered from the results [31]:

a2p = 1−
3

2γ
+

1

2(γ−1)
, b2p = 2−

3

2γ
. (4.2)

Suggesting that r1.5 = 0, it is not difficult to verify, based on experimental data [32] for He4, that the double

scattering alone should cause Rexp to exceed R as the λ-line is approached along a high-pressure isobar.

Such a fact was indeed registered [18], but in most other experiments in this series the tendency was

direct opposite [16–18]. We attribute the reduction in Rexp to the effect of 1.5-scattering.

Our detailed calculations of the above effects will be presented elsewhere.
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Appendix A

Let Ak (r) be a complete set (algebra) of fluctuating scalar quantities with scaling dimensions ∆k : un-

der the scaling transformations r → λr, Ak (λr) → λ−∆k Ak (r). According to the local algebra hypothesis

(see, for instance, [20]), the scalar function δρ(r) and, therefore, the scalar function
[
δρ(r)

]2
can be de-

veloped into the series

δρ(r) =
∞∑

k=1

ak Ak (r),
[
δρ(r)

]2 =
∞∑

m,n=1

bmnBmn (r),

where the coefficients bmn are simply related to the coefficients ak , and Bmn (r) = Am(r)An(r) are scalar

quantities with definite scaling dimensions ∆mn = ∆m +∆n : Bmn (λr) → λ−∆mn Bmn (r). Correspondingly,

the pair correlation function 〈δρ(r′)
[
δρ(r)

]2〉 is given by a linear combination of pair correlators

Kk ,mn(|r′−r|) ≡ 〈Ak (r′)Bmn (r)〉.
For a d -dimensional system with scalar order parameter, only the Fourier transforms of those Kk ,mn

can reveal a singular behavior near the critical pointwhich satisfy the condition∆k+∆mn < d . In the first-

order ǫ-expansion ∆k = 1
2

k(2−ǫ)+ 1
6

k(k −1)ǫ, where ǫ= 4−d [20]. If d = 3, then the relevant correlators

are K1,11, K1,12 = K1,12, and K2,11, each involving two scalar quantities with different scaling dimensions.

Once Polyakov’s conformal symmetry hypothesis holds true and the system is spatially homogeneous

and isotropic, they all vanish at the critical point due to the orthogonality relation (see [20, 21] and the

literature cited therein).

Appendix B

As one of the ways for evaluating c ′ in the fluctuation region, we can use the asymptotic equation of

state [29]

π(τ,ω) = Mτ+
1

2Γ0

1

(1+ω)2
τ |τ|γ−1 −D0ω|ω|δ−1,

which immediately follows from the requirements that it leads to (a) the correct asymptotic behavior

of a limited number of the fluid parameters along the selected thermodynamic paths (the susceptibility

χ = ρ2βT along the critical isochore, the critical isotherm equation, and the derivative of pressure with

respect to temperature at the critical point) and (b) reveal a Van-der-Waals-type loop below the critical

point. In this equation, π= P
/

Pc−1, τ= T
/

Tc−1, ω=V
/

Vc−1, Γ0 and D0 are the critical amplitudes for

χ and the critical isotherm, respectively, and M is a constant. The definition

βT =−
1

V

(
∂V

∂P

)

T,V

=−
1

Pc(1+ω)

(
∂ω

∂π

)

τ

,

relations (
∂βT

∂P

)

T,V

=
(
∂βT

∂P

)

T,N

=
(
∂βT

∂V

)

T,N

(
∂V

∂P

)

T,N

=−(1+ω)βT

(
∂βT

∂ω

)

τ

,

and formula (2.5) then yield

c ′ ∝−PcD0δ(δ−1)ρ−3ω|ω|δ−3.
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M.Ya. Sushko

Експериментальне спостереження потрiйних кореляцiй

у рiдинах

М.Я. Сушко

Одеський нацiональний унiверситет iменi I.I. Мечникова, вул. Дворянська, 2, 65026 Одеса, Україна

Наведено аргументи на користь гiпотези, що при певних умовах методом молекулярної спектроскопiї
можна зареєструвати потрiйнi кореляцiї флуктуацiй густини в рiдинах. Цi кореляцiї проявляють себе у
виглядi так званого 1.5- (тобто пiвторакратного) розсiяння, яке є найбiльш суттєвим в передасимптотич-
нiй областi критичної точки та може бути зареєстроване вздовж певних термодинамiчних шляхiв. Його
присутнiсть у загальнiй картинi розсiяння демонструється результатами обробки вiдомих експеримен-
тальних даних для коефiцiєнта деполяризацiї. Обговорено деякi наслiдки цих результатiв.

Ключовi слова: флуктуацiї густини, критична опалесценцiя, розсiяння кратностi 1.5, коефiцiєнт

деполяризацiї
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