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A Kadanoff-Baym-type generating functional approach, earlier developed
by the authors to strongly correlated systems, is applied to the sd-model
with strong sd-coupling. Formalism of the Hubbard X -operators was used,
and equation for electron Green’s function was derived with functional de-
rivatives over external fluctuating fields. Iterations in this equation generate
a perturbation theory near the atomic limit. Hartree-Fock type approxima-
tion is developed within the framework of this theory, and the problem of a
metal–insulator phase transition in sd-model is discussed.
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1. Introduction

In a series of papers [1–3] we suggested the generating functional approach (GFA)
for the basic models of strongly correlated systems: the Hubbard model, tJ-model,
periodic Anderson model. The GFA is actually a generalization of a well-known
Kadanoff and Baym [4] approach, suggested for the conventional fermi-systems, to
more complicated models with Hamiltonians written in terms of the spin- or the
Hubbard X-operators. The above mentioned models are just the models for which
GFA is to be effectively applied.

The idea of the method is based on introducing the generalization of the partition
function Z to the systems in external fields fluctuating in time and space. Z is
a functional of these fields. Different Green’s functions (GF) of a system can be
presented as functional derivatives over such fields. It is possible for each model to
derive equations for basic GFs in terms of the functional derivatives. It turns out
that for different models of strongly correlated systems these equations have a similar
structure, which indicates the tight relations between them. It is remarkable that
iterations in these equations generate a perturbation theory near the atomic limit.

The GFA and its applications to different models were discussed in detail in a

c© Yu.A.Izyumov, N.I.Chaschin, D.S.Alexeev 801



Yu.A.Izyumov, N.I.Chaschin, D.S.Alexeev

review [5] and a monograph [6], and here we briefly reproduce the main steps of the
method. The generating functional is determined by relation

Z[V ] = Tr
(
e−βHT e−V

)
≡ eΦ[V ], (1.1)

where H is Hamiltonian of the system, V is an operator of interaction with external
fields, T is a symbol of the ordering on the thermodynamic times −β < τ < β =
1/kT ; trace is taken over all variables of the system. V -operator is a linear com-
bination of the spin- or the X-operators and the coefficients in these combinations
are just the fluctuating fields. It is clear that functional derivatives over these fields
generate statistical averages of T -product of spin- or X-operators, which are just
different GFs of the system.

In this paper we develop GFA for sd-exchange model described by Hamiltonian

H =
∑

ijσ

tijc
+
iσciσ − J

2

∑

i

(Siσi) . (1.2)

Here the first term presents electron hopping on the lattice and the second one
describes interaction of a localized spin Si with electron spin σi/2, where σ is vector
with Pauli matrices. Under strong sd-coupling J & W , W is a width of the band, the
sd-exchange can be treated as Hamiltonian of zero approximation, and hopping as
a perturbation. Practical realization of the perturbation theory over the parameter
W/J is based on the fact that sd-exchange Hamiltonian is the one-site one.

Eigen functions of sd-exchange Hamiltonian −(Siσi) · J/2 are known; there are
four of them [7]:

|M 0〉 = |M〉|0〉 , (1.3)

|M 2〉 = |M〉|2〉 , (1.4)

|M+ +〉 = uM |M − 1
2
〉| ↑〉 + υM |M + 1

2
〉| ↓〉 , (1.5)

|M−−〉 = υM |M − 1
2
〉| ↑〉 − uM |M + 1

2
〉| ↓〉 . (1.6)

Here |0〉|, ↑〉, | ↓〉|, 2〉 describe the states without an electron, having a one electron
with spin σ =↑, ↓, and with two electrons on a site, respectively; |M〉 is a wave
function of an ion with spin projection M = −S,−S + 1, . . . , S; uM and υM are
Klebsh-Gordan coefficients:

u2
M =

S + M + 1
2

2S + 1
, υ2

M =
S − M + 1

2

2S + 1
, u2

M + υ2
M = 1 . (1.7)

The wave functions |M+〉 and |M−〉 describe a state of an ion with total spin
S + 1/2 and S − 1/2 and its projection may be equal to

−
(
S + 1

2

)
< · · · < M+ < · · · <

(
S + 1

2

)
j = S + 1

2

−
(
S − 1

2

)
< · · · < M− < · · · <

(
S − 1

2

)
j = S − 1

2

}
. (1.8)
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In the basis of functions (1.3)–(1.6) sd-exchange Hamiltonian is diagonalized, and
two eigen-energies are equal to

E+ = −1

2
JS , j = S + 1

2

E− =
1

2
J(S + 1) , j = S − 1

2





. (1.9)

We will denote relations (1.5), (1.6) as

|Mα α〉 =
∑

σ

Θσα(Mα)|Mα − σ
2
〉 c+

σ |0〉 , (1.10)

where

Θσ+(M) =

√
S + σM + 1

2

2S + 1
, Θσ−(M) = σ

√
S − σM + 1

2

2S + 1
. (1.11)

2. Introducing X-operators

Arbitrary one-site operator Âi can be decomposed over the system of X-operators,
determined based on the wave functions |p〉. By definitions

Xpq = |p〉〈q|. (2.1)

This decomposition is

Âi =
∑

pq

〈p|Â|q〉Xpq
i . (2.2)

In the basis of functions (1.3)–(1.6) we have the following representation for electron
operator [8]

ciσ =
∑

Mα

[
Θσα(M + σ

2
) XM0 ; (M+σ

2
)α + σΘσ̄α(M − σ

2
) X(M−

σ

2
)α ; M2

]
. (2.3)

We have a similar representation for operator of total spin Stot = S + 1
2
σ on a

site [8]:

Sη
tot(i) =

∑

M

νη
S(M)

[
X

(M+η)0 ; M0
i + X

(M+η)2 ; M2
i

]
+

∑

αMα

νη

S+α

2

(Mα)X
(Mα+η)α ; Mαα

i ,

(2.4)

Sz
tot(i) =

∑

M

M
[
XM0 ; M0

i + XM2 ; M2
i

]
+

∑

αMα

MαXMαα ; Mαα
i . (2.5)

Here instead of two operators S+ and S− we introduce one operator Sη = 1/
√

2 ·
(Sx + iηSy), η = ±1. We also use a notation

νη
S(M) =

1√
2

√
(S − ηM)(S + ηM + 1) . (2.6)
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One can see that the electron operator ciσ is presented by X-operators changing
the number of electrons on a site by 1. They are Fermi-like X-operators, obeying
anticommutation permutative relations. The both spin operators Sη

i and Sz
i are

presented by X-operators, changing electron number by 0 or 2. They are considered
to be Bose-like X-operators. The completeness condition should be fulfilled

∑

M

(XM0 ; M0
i + XM2 ; M2

i ) +
∑

αMα

XMαα ; Mαα
i = 1 . (2.7)

One-site part H1 of the Hamiltonian (with magnetic field) can be written as

H1 =
∑

i

[∑

M

(
E0

MXM0 ; M0
i + E2

MXM2 ; M2
i

)
+

∑

αMα

Eα
MαXMαα ; Mαα

i

]
, (2.8)

where eigen-energies of site states are equal [7]

E0
M = −hM , E2

M = −hM − 2µ , (2.9)

Eα
Mα = −hMα − µ + Eα , (2.10)

(Eα is determined in (1.9), h – magnetic field). In the expression for H1 we added
a term −µN with chemical potential.

To present a two-site part of the Hamiltonian H2 =
∑
ijσ

tijc
+
iσcjσ it is worth intro-

ducing two-component spinors composed of Fermi-like X-operators:

Ψ+
i (σ α M) =

(
X

(M+σ

2
)α ; M0

i , σX
M2 ; (M−

σ

2
)α

i

)
(2.11)

and column Ψi composed of conjugated X-operators. Then H2 is written as

H2 =
∑

ij

tij
∑

I1I2

Ψ+
i (I1)T(I1I2)Ψj(I2) , (2.12)

where

T(I1I2) = δσ1σ2




Θσ1α1(M1 + σ1

2
)Θσ2α2(M2 + σ2

2
) Θσ1α1(M1 + σ1

2
)Θσ̄2α2(M2− σ2

2
)

Θσ̄1α1(M1 − σ1

2
)Θσ2α2(M2 + σ2

2
) Θσ̄1α1(M1 − σ1

2
)Θσ̄2α2(M2− σ2

2
)


.

(2.13)
Here we introduced a combined index I = (σMαν), where ν = 1, 2 numerates the
components of the spinor. Relations (2.8) and (2.12) present Hamiltonian of the sd-
model in terms of X-operators. The motion between two different sites is described
by one-particle electron GF.

3. Equation of motion for electron Green’s function

Let us introduce one-particle electron GF

L12(I1 , I2) = −




〈
TΨ1(I1)Ψ

+
2 (I2)

〉
V

〈
TΨ1(I1)Ψ2(I2)

〉
V

〈
TΨ+

1 (I1)Ψ
+
2 (I2)

〉
V

〈
TΨ+

1 (I1)Ψ2(I2)
〉

V


 , (3.1)
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where 〈T . . . 〉V means a statistical average of the system in the fluctuating fields V ,
that is

〈T . . . 〉V =
1

Z[V ]
Tr

(
e−βHT . . . e−V

)
. (3.2)

Integer index is a combined one including a site number i and time τ , for example
1 = (i1, τ1).

We have to write the equation of motion for each matrix element in (3.1). For
matrix element “11” one can use the identity

∂

∂τ1

((
TΨ1(I1)Ψ

+
2 (I2)

))
= δ(τ1 − τ2)

((
T

[
Ψ1(I1), Ψ

+
2 (I2)

]
+

))

+
((

T Ψ̇1(I1)Ψ
+
2 (I2)

))
−

((
T

[
Ψ1(I1), V

]
−
Ψ+

2 (I2)
))

.(3.3)

Here we use a short notation:

((T . . . )) = Tr(e−βHT . . . e−V ) . (3.4)

Now we must determine the operator V , describing the interaction with fluctu-
ating fields. According to general conception of GFA, now we take V in the form:

V = v
M ′

1
0 ; M ′

1
0

1′ X
M ′

1
0 ; M ′

1
0

1′ + v
M ′

1
2 ; M ′

1
2

1′ X
M ′

1
2 ; M ′

1
2

1′

+ v
M ′

1
0 ; M ′

1
2

1′ X
M ′

1
2 ; M ′

1
0

1′ + v
M ′

1
2 ; M ′

1
0

1′ X
M ′

1
0 ; M ′

1
2

1′

+ v
(M ′

1
+

σ
′

2

2
)α′

2
; (M ′

1
+

σ
′

1

2
)α′

1

1′ X
(M ′

1
+

σ
′

1

2
)α′

1
; (M ′

1
+

σ
′

2

2
)α′

2

1′ . (3.5)

Here summation over all repeated primed indexes is implied.
As it is seen, we have to calculate first anticommutators of Ψ -operators. We have

δ(τ1 − τ2)
[
Ψ1(I1), Ψ

+
2 (I2)

]
+

= δ12F(I1 , I2)

δ(τ1 − τ2)
[
Ψ+

1 (I1), Ψ2(I2)
]
+

= δ12F+(I1 , I2)

δ(τ1 − τ2)
[
Ψ1(I1), Ψ2(I2)

]
+

= δ12Q(I1 , I2)

δ(τ1 − τ2)
[
Ψ+

1 (I1), Ψ
+
2 (I2)

]
+

= δ12Q+(I1 , I2)





. (3.6)

Here F and Q are 2 × 2 matrices:

F1(I1 , I2) =




δα1α2
δM1+

σ1

2
, M2+

σ2

2

XM10 ; M20
1

+δM1 , M2
X

(M2+
σ2

2
)α2 ; (M1+

σ1

2
)α1

1

0

0

σ1σ2δα1α2
δM2−

σ2

2
, M1−

σ1

2

XM22 ; M12
1

+σ1σ2δM1 , M2
X

(M1−
σ1

2
)α1 ; (M2−

σ2

2
)α2

1




,

(3.7)

Q1(I1 , I2) =




0 σ2δM1+
σ1

2
, M2−

σ2

2

XM10 ; M22
1

σ1δM2+
σ2

2
, M1−

σ1

2

XM20 ; M12
1 0


 . (3.8)
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Matricies F+ and Q+ are Hermitian conjugated to matrices F and Q.
We also need equations of motion for operators Ψ and Ψ+.

Ψ̇1(I) = −E(I , I′)Ψ1(I′) −F1(I , I′)T 12′(I′ , I′′)Ψ2′(I′′) + Q1(I , I′)T 12′(I′ , I′′)Ψ+
2′ (I′′) , (3.9)

Ψ̇+
1 (I) = E(I , I′)Ψ+

1 (I′)−Q+
1 (I , I′)T 12′(I′ , I′′)Ψ2′(I′′) + F+

1 (I , I′)T 12′(I′ , I′′)Ψ+
2′ (I′′) . (3.10)

In this equations we use the notation

T 12(I1 , I2) = T(I1 , I2)ti1i2δ(τ1 − τ2) , (3.11)

E(I1 , I2) =




Eα − µ 0

0 −Eα − µ


 . (3.12)

Now we substitute the results (3.9), (3.11), (3.6) in equation (3.3) and in the similar
equation for three other matrix elements of (3.1). As a result we come to the following
equation for the matrix GF L:

[(
L−1

0V

)
11′

(I , I′) − (ÂΦY )11′(I , I′) − (ÂY )11′(I , I′)
]
L1′2(I′ , I′′) = (Â12Φ)(I , I′′). (3.13)

Here Â is a matrix

Â12(I , I′) = δ12




F̂1(I , I′) Q̂1(I , I′)

Q̂+
1 (I , I′) F̂+

1 (I , I′)


 , (3.14)

where quantities F̂1 and Q̂1 (and their conjugated ones) are given by matrixes (3.7)
and (3.8), in which X-operators should be replaced by the corresponding functional
derivatives according to a receipt

Xpq
1 → − δ

δvqp
1

. (3.15)

Thus matrix Â is composed of the expressions, including functional derivatives. This
is marked by cups over the letters.

Quantity Y is the following 2 × 2 matrix

Y12(I , I′) =




T 12(I , I′) 0

0 −T 12(I , I′)


 . (3.16)

Finally, the quantity L−1
0V is also 2 × 2 matrix

(
L−1

0V

)
11′

(I , I′) =




(
G−1

0V

)
11′

(I , I′) δ11′W
02
1 (I , I′)

−δ11′W
20
1 (I , I′)

(
G̃−1

0V

)
11′

(I , I′)


 . (3.17)
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Here

(
L−1

0V

)
11′

(I , I′) = −
(

∂

∂τ1

δII′ + E1δII′

)
δ11′ − δ11′W1(I , I′) , (3.18)

where

W1(I1 , I′) = δM1,M2




−δσ1σ2
δα1α2

vM10 ; M10
1 +

+v(M1+
σ2

2
)α2 ; (M1+

σ1

2
)α1

0

0

δσ1σ2
δα1α2

vM12 ; M12
1 −

−v
(M1−

σ1

2
)α1 ; (M1−

σ2

2
)α2

1




, (3.19)

W 02
1 (I1 , I′) = δM1,M2

δσ̄1σ2
δα1α2

vM10 ; M12
1

(
0 1
−1 0

)
. (3.20)

So, all quantities in equation (3.13) have been determined. Remind that in this
equation the summation over all repeated primed indexes is implied. Separate terms
in the equation have the following physical meaning. The first term is a reversed GF
of zero approximation (respectively hopping), but including the fluctuating fields.
The second term determines Hartree-Fock correction due to hopping, and the third
term includes the functional derivatives acting on the GF L. In the right hand side
there is ÂΦ quantity, which includes some averages of X-operators.

The form of equation (3.13) coincides with the form of equation for GF in the

Hubbard model [9]. The only difference is in the form of matrices Â, Y and L−1
0V as

well as in the structure of the combined index I. The Hubbard model I includes spin
σ and spinor index ν, while the sd-model I = (σMαν) includes two more indexes M
and α.

We present an explicit form of matrix F̂ and Q̂, determining the operator matrix
Â. For simplicity we write them only in a particular but important case, when
σ1 = σ2 ≡ σ.

F̂(I1 , I2) = −δM1,M2




δα1α2

δ
δvM10 ; M10

1

+ δ
δv(M1+

σ

2
)α2 ; (M1+σ

2
)α1

0

0
δα1α2

δ
δvM12 ; M12

1

+ δ
δv(M1−

σ

2
)α1 ; (M1−

σ

2
)α2




, (3.21)

Q̂(I1 , I2) = −σ




0 δM1−M2+σ,0
δ

δv
M10 ; (M1+σ)2
1

δM1−M2−σ,0
δ

δv
(M1−σ)0 ; M12
1

0


 . (3.22)
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4. The Hubbard-I type approximation

Consider a simple approximation, when in the basic equation (3.13) the term with
functional derivatives of GF L is neglected. We rewrite the approximate equation
with short notation

[
L−1

0V (1 1 ′ ) − (ÂΦY )(1 1 ′ )
]
L(1 ′2 ) = (ÂΦ)(1 2 ) , (4.1)

where underlined indexes mean: 1 = (1I1), etc. In a normal phase off-diagonal ele-
ments of matrix (3.1) vanish. Let us denote a diagonal element L11 = G, then from
the matrix equation (4.1) one can write an equation for GF G:

G(1 2 ) = G(1 1′ )Λ(1′ 2 ) , (4.2)

where G(1 2 ) is a propagator part of G, obeying the Dyson equation

G−1(1 2 ) = G−1
0V (1 2 ) − Σ(1 2 ) , (4.3)

and the terminal part
Λ(1 2 ) = (ÂΦ)(1 2 ) . (4.4)

The self-energy part in our approximation is equal to

Σ(1 2 ) = (ÂΦY )11(1 2 ) = t12(F̂1TΦ)(I1 , I2 ) . (4.5)

Quantities F̂ and T are determined by equation(3.21) and (2.13), respectively. The
matrix, standing in equation(4.5) is factorized, which means that it can be written
in the form

(F̂1TΦ)(I1 , I2 ) = Λ0(I1)θ(I1 )Tθ(I2 ) . (4.6)

Here T is a 2 × 2 matrix with all matrix elements equal to 1.

Λ0(I ) =



〈0〉σα(M) 0

0 〈2〉σ̄α(M)


 , (4.7)

θ(I ) =




θσα(M + σ
2
) 0

0 θσ̄α(M − σ
2
)


 . (4.8)

Here we introduce the notation

〈0〉σα(M) = 〈XM0 ; M0〉 + 〈X(M+σ

2
)α ; (M+σ

2
)α〉

〈2〉σα(M) = 〈XM2 ; M2〉 + 〈X(M−
σ

2
)α ; (M−

σ

2
)α〉

}
. (4.9)

The factorization (4.6) allows one to resolve the matrix equation (4.3). After Fourier
transformation over the variable (1 − 2) we obtain an equation for Gk(I1 , I2) and
Gk(I1 , I2) = Gk(I1 , I2)Λ(I2 ).
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We present a solution of the obtained equation in the form:

Gk(I1 , I2) = G0k(I1)δI1 , I2 + G0k(I1)θ(I1 )D(k)Tθ(I2 )G0k(I2). (4.10)

Here

G0k(I) =




〈θ〉σα(M)
iωn − Eα + µ

0

0
〈2〉σ̄α(M)

iωn + Eα + µ


 , (4.11)

D(k) =

[
1 − εk

∑

I

Tθ(I )G0k(I )θ(I )

]−1

. (4.12)

Notice that all quantities involved in equation (4.10) and equation (4.12) are 2 × 2
matrices.

For further analysis it is useful to determine a quantity

Ḡ12 =
∑

I1I2

θ(I1 )G12(I1 , I2)θ(I2 ) , (4.13)

being a GF determined on electronic operators ci =
∑
σ

ciσ, which are devided into

two values: ci = gi+hi, where gi includes only the first term in equation (2.3), but hi

– the second one, is connected with on-site transitions from double occupied states.
It is easy to derive the following expression for it

Ḡk =
∑

I

θ(I )G0k(I)θ(I )D(k) . (4.14)

After multiplying the matrices in the expressions (4.14) and (4.12) we obtain

∑

I

θ(I )G0k(I)θ(I ) =
∑

I




(
θ2〈0〉

)
(I )

iωn − Eα + µ
0

0

(
θ̄2〈2〉

)
(I )

iωn + Eα + µ


 , (4.15)

D(k) =
1

d(k)




1 − εk

∑
I

(
θ̄2〈2〉

)
(I )

iωn + Eα + µ
εk

∑
I

(
θ2〈0〉

)
(I )

iωn − Eα + µ

εk

∑
I

(
θ̄2〈2〉

)
(I )

iωn + Eα + µ
1 − εk

∑
I

(
θ2〈0〉

)
(I )

iωn − Eα + µ




, (4.16)

where

d(k) = 1 − εk

∑

I

[ (
θ2〈0〉

)
(I )

iωn − Eα + µ
+

(
θ̄2〈2〉

)
(I )

iωn + Eα + µ

]
. (4.17)

Expressions (4.14)–(4.17) determine the matrix electron GF in the Hubbard-I ap-
proximation. All expressions include averaged values of diagonal X-operators deter-
mined by relations (4.9). In order to calculate them one has to know the electron
GF, constructed on X-operators for each expression (4.10).
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The poles of electron GF Gk(I1 , I2) and Ḡk are determined by zeroes of quantity
d(k). Since α takes two values, it is clear that dispersion relation d(k) = 0 has
four solutions unlike the Hubbard model, where two solutions exist, corresponding
to lower and upper Hubbard subbands. The doubling of the solution numbers is
connected with the fact that in sd-model, on each site there are two allowed states
characterized by the value of total spin j = S + 1/2, j = S − 1/2.

5. Limit of classical spin

In the limit S → ∞ |E+| = |E−|, and the dispersion relation of the fourth
order reduces to a square equation, determining two subbands E1k and E2k. In
paramagnetic phase the solution of equation d(k) = 0 in the limit S → ∞ gives two
roots:

E1,2 k = εk ∓ Qk , Qk =

√(
SJ

2

)2

+ ε2
k
. (5.1)

Calculation using the equations (4.14)–(4.17) leads to the result for matrix elements
of GF Ḡ(k); (Ω = iωn + µ):

Ḡµν(k) = ±K(Ω) +
Pµν

1k

Ω − E1k

+
Pµν

2k

Ω − E2k

, (5.2)

where

K(Ω) = 〈0〉〈2〉


 1

Ω − SJ
2

+
1

Ω + SJ
2


 . (5.3)

Sign “+” in (5.2) stands for diagonal matrix elements, and “−” stands for off diag-
onal ones, and

P11
1,2 k

= ∓〈0〉E1,2 k

Qk

±
(

SJ

2

)2 〈0〉〈2〉
QkE1,2 k

± 2〈0〉〈2〉 εk

Qk

P22
1,2 k

= ∓〈2〉E1,2 k

Qk

±
(

SJ

2

)2 〈0〉〈2〉
QkE1,2 k

± 2〈0〉〈2〉 εk

Qk

P12
1,2 k

= P21
1,2 k

= ∓
(

SJ

2

)2 〈0〉〈2〉
QkE1,2 k

∓ 2〈0〉〈2〉 εk

Qk





. (5.4)

We have to know the electron GF, constructed on Fermi-operators

G(k) = −〈Tc1c
+
2 〉k =

∑

µν

Ḡµν(k) . (5.5)

Substituting here the relations (5.4) and taking the equality 〈0〉 + 〈2〉 = 1 (due to
the completeness condition (2.7)) we find

G(k) =

(
1 − εk

Qk

)
1

Ω − E1k

+

(
1 +

εk

Qk

)
1

Ω − E2k

. (5.6)
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It is remarkable that in the Hubbard-I type approximation statistical weights
of the quasiparticle states do not depend on the electron concentration n; it enters
only in the chemical potential µ. However, at finite S it should not be so, and it is
necessary to solve the equation d(k) = 0 of fourth order to define the quasiparticle
energies.

An expression of the type (5.6) was obtained in [11] by decoupling the double-
time GFs in the first step. Obviously, the result (5.6) cannot give a metal-insulator
phase transition because two subbands of quasiparticles with energies (5.1) are sep-
arated and should not be overlapped at any values of parameters. In the next step
the authors [11] took into account the static contribution of spin fluctuations to the
self-energy and show that it can lead to such a phase transition at some reasonable
relations JS ∼ W between the parameters. However, there is some violation of sum
rules for GFs, that demands a more precise approximation.

A final aim of our work is to study phase-transitions in the sd-model when
dynamical fluctuations in the system are included. For this purpose the first order
corrections over W/SJ in the terminal part Λ1 and the second order in the self-energy
Σ2 over hopping will be calculated elsewhere. Similarly to what was done by us for
the Hubbard model [9] we extract from Σ2 a static contribution with some adjustive
parameters, which are determined from fundamental conditions for electron GF [10].
Preliminary analysis shows that quasiparticle subbands can be overlapped which
leads to a metal-insulator phase transition. Details of such a transition should be
determined by interaction of quasiparticles with dynamical fluctuations. All these
discussions will be a subject of next publication.

Authors thank Russian Foundation of Support of Science Schools, grant NS–
747.2003.2 and Division of Physical Sciences of the RAS, grant N 10104–71/OFN–
03/032–348/140705–126/01.06.2005.
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Підхід на основі генеруючого функціоналу до

sd-моделі з сильними кореляціями

Ю.A.Ізюмов, Н.I.Чащін, Д.С.Алєксєєв

Інститут фізики металів РАН, Уральське відділення

620219 Єкатеринбург, Росія

Отримано 18 липня, 2005, в остаточному варіанті – 18 жовтня,
2005

Підхід генеруючого функціоналу типу Каданофа-Байма, розробле-
ного раніше авторами для сильно скорельованих систем, застосо-
вується до sd-моделі з сильною sd-взаємодією. Використовувався

формалізм X -операторів Габбарда, і було отримано рівняння для

електронних функцій Гріна з функціональними похідними по зовніш-
ніх флуктуюючих полях. Ітерації в цьому рівнянні генерують теорію

збурень біля атомної границі. В рамках цієї теорії розробляється

наближення типу Хартрі-Фока, і обговорюється проблема фазового

переходу метал-діелектрик в sd-моделі.

Ключові слова: теорії і моделі багатоелектронних систем, моделі

граткового ферміону, сильно скорельовані електронні системи

PACS: 71.10.-w, 71.10.Fd, 71.27.+a
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