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The method of calculating the n-particle electron correlation functions for
the electron-plasmon model is demonstrated. We have proposed this mod-
el earlier for the description of the strongly non-ideal electron liquid. The
three-particle dynamic correlation function is calculated and presented in
the elementary functions. The differences from the similar correlation func-
tion of the ordinary reference system approach in the electron liquid theory
are investigated.
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1. Introduction

The practical calculations of the characteristics of degenerate electron systems
are based on the perturbation theory over the power of the Coulomb potential which
is connected with the local field conception. Since there is no rigorous microscopical
theory of the local field correlation function, the development of alternative methods
for description of the strongly non-ideal electrons systems remains one of the urgent
tasks in statistical physics. It is well known that a very promissing direction in this
field is a collective description of the interelectron interactions which presents the
real situation, namely the existence of the collective motions. One of the earlier
variants of such methods is described in the papers by Bohm and Pines [1-6]. This
method uses a series of canonical transformations for the transition to the expanded
space of the variables of electrons and plasmons. Consequently this approach bears
an approximate character. Furthermore, at that time the problem of describing the
strongly non-ideal systems was not considered to be urgent. Another variant of
collective description was developed in the papers by Yukhnovskii et al. This is the
method of displacements and collective variables (see [7—10]). In this variant of the
collective description, as opposed to the approach by Bohm and Pines, the transition
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to the expanded space is made rigorously by means of a transition function. The
absence of the divergent diagrams is characteristic of both approaches as opposed
to the standard methods of perturbation theory.

The collective description has a deep physical basis as well as possesses some ad-
vantages over the other methods, especially in the strong non-ideality region. Based
on the example of the electron liquid model in paper [11] a new variant of collective
description is proposed, which differs from the variants by Bohm-Pines and from the
method of the displacement and collective variables. We start with the secondary
quantization representation. Transition to the expanded space is made using the
transition operator which was introduced in paper [12]. These collective variables
are an intermediate element in our approach. They serve for the introduction of
the operators of the creation and destruction of plasmons. Partition function of the
model in the electron and plasmon terms does not have any approximations. Per-
turbation theory relatively to the electron-plasmon interaction is built in terms of
the n-particle dynamic correlation functions. Short-range interelectron interactions
are taken into account in the local-field approximation [11].

2. Correlation functions of the electron-plasmon model

Due to the absence of the divergent diagrams the calculation of thermodynamic
functions within the framework of the electron-plasmon model in the intermediate
and strong non-ideality region is reduced to the calculation of only low order dia-
grams of the perturbation theory over the power of the operator of electron-plasmon
interaction [11]. In these diagrams, the dynamic electron correlation functions, the
so-called connected averages, are found, as in the following formulae:

2

Oy (T fofoy - fu )

(1)

(21,0, 2y)

where ep = h’kp/2m is Fermi energy,

fo=) 0 Y (ka)af,q (V" + v)ai, (1), (2)

v*

vi= (2n+ O)rB7Y v, = 2mnB~! are Matsubara frequencies, 3 = (kgT)™!, z =
(q,v), s is spin variable. Here, ay s(v*) is superposition of the secondary quantization
operators on the plane wave base in the interaction representation [11,13]

B
axs(V*) = ﬁ_% /akvs(ﬁ/)exp(iy*ﬁ,)dﬁ/. (3)
0

Similar functions also appear in other approaches with renormalization of interac-
tions (see [14]). The calculations of the functions of this type are not known in
the literature. We shall show that functions 7, (z1,...,z,) can eventually lead to
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correlation functions which are constructed on the operator density of the particles
P = Z Z g qs(V" + V)ax,s(V7), namely

ks v*

[Lg(gj'l,...,l’n) :ﬁ_l <T{ﬁx1ﬁx2ﬁxn}>ga (4)

which at n > 3 was originally calculated in papers [14,15].
As it is shown in papers [13,14]

- <T {ak1,51 (VT)7 ai("_g,sg (V;)}>0 = lil,sl (Vf)5k17k2581,8251/fw§ ) (5)
where Gy, (vf) = {iv* —ex + u}fl is spectral representation of the one-particle
Green’s function of the reference system. Relationship (5) makes it possible to
present functions 7, (x1,...,z,) in the form of such convolutions:

1 IRy
(1, 72) = B 5x1+x2,0<2m€F> Rez Z G (V)G s (V" +11)
k,s v*
x (K, qu)(k +qu, q1); (6)
_ h? e (o
N3(T1,2,23) = —20 15961+w2+963,0( )3ReZZGk,s(V )

2m€F k,s v*

X Gi+q1,s(y* + Vl)Gi—qg,s(V* - VQ)

X (kyqi)(k+ai, a1 +q2)(k —qq2,q2); ...,

where symbol Re is applied to Bose-Matsubara frequencies (v, 5, ...). Functions

Nn(x1,...,x,) are real functions of their arguments (qi,...,qu; v1,..., V). Let us
do the sums over the frequency v* using the rule [13]
B3 Greav) = iy = {1+ exp [Blew — )]} (7)
represented by 7,(x1,...,2,) in the form of the sum over the wave vector
hQ
(e, —r) = 25 —)Re Z sy () (k, @) (k + q,q);
N3(T1, T2, %3) = =200 4atas.0( PRe ) i

2mer

S

X {y(z1)y(—2)(k, q1)(k — g2, q2)(k + g1, q1 + q2)
+ y(x2)y(—x3)(k,q2)(k — a3, q3) (k + g2, 92 + q3)

+y(rs)y(—z)(k as)(k —qua)(k+as,qs +ai) 5 .., (8)

where y(z) = {iv + ex — exiq} - It should be noticed, that the expression in the
brackets (8) is symmetrical. The second and the third terms are obtained from the
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first one by means of cyclic transposition. Function ny(z, —x) is easily calculated.
Transiting from the sum over the vector k to the integral and using spherical coor-
dinate system (axis 0z is parallel to vector q), at the absolute zero temperature we
can obtain

N 1
(e, 1) = —5-g+ (u2 + Zq2) Ho(w, =)
N 1
= o7 {1 7 l“ * Z‘f] ol } | Y

where ¢ = |qlkz'; v = v(2erq) Y, Lo(q,u) is the dimensionless function of these
variables

1 1 s ¢ q\? 2
IQ,O(q?U') = 5 1+2_q 14+u —Z Zaln <1+O’§> +u

o=%1

(10)

Figure 1. Two-particle correlation functions m2(q,u) = 2ep(3N) " tna(x, —z) and
pa(q,u) = 2ep(3N)~ud(x, —z) at different values of the dimensionless frequency
(u=0;0.5;1).

Functions 0, (1, . . . , z,) differ from u(z1, . .., x,) due to the presence of the product
of scalar factors (k, q;). But this “trifle” strongly complicates the calculation of the
functions n,(x1,...,2,) (at the n > 3) and forms the fundamental difference in the
dependence of the function (1) and (4) from wave vectors qy, . .., q,, namely their
asymptotes

_1 . .
|M2(l‘1,...,$n)| — { NgF(EQI "'8qn) at g; >>kF7

Nef;” at ¢; < kp;v; = 0;
Neg™ at g; > kr;
Nep "qiqa - .. g™ at ¢; < kpjv; = 0.

(@1, @) — { (11)

This asymptote is confirmed in figure 1 where dimensionless factors of the functions
ne(x, —x) and ps(x, —z) as functions of wave vector q at the given frequencies are
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shown. Function ny(z, —z) is also an oscillating function in the region of the low and
medium vectors, as opposed to u3(z, —x).

The calculation method of the correlation functions at the n > 3 is illustrated
based on the example of three-particle function. At first, in each of the three terms
of the formula (8) transformation is made to decrease the number of the scalar
products by applying the identity type

h? 1
%(k7 Q1) = ) {gk +Eq — €k+q1} )
h? 1
%(k_q%qQ) = —§{€k,q2 _8k+€Q2}' (12)

Due to the transformations from each of the terms in formula (8) there arise compo-
nents without energy denominators and components with one energy denominator

type:

po(zr) = —2 Z Mes[iV + ek — fkrg)
k,s
h2
C2($1|Q2) = —4 Z nk,s%<k7 Q2)[iV1 + ek — 5k+q1r1 (13)
k,s

and components with two energy denominators but without the scalar products in
the numerator of the fraction type

Fg(l‘l; —:L‘Q) = Z nk7s[iV1 + ek — €k+q1]_1[—il/2 + ek — Ek_qQ]_l. (14)
k,s

Calculation of the components of the type (13) is easily done by integrating over
the vector k in the spherical coordinate system. In the dimensionless variables

3N
po(z) = ERZ,O(%U)a
N
Go(z]qr) = ?;—Q(Q,OH)C(%U% (15)

where dimensionless complex functions Rs (g, u) and C(g,u) are shown in the Ap-
pendix. Introducing the notation &(q,u) = ¢ + 2iug we present 13(xy, T, x3) in the
dimensionless variables as follows:

3N 1
N3 (%1, T2, x3) = 725Q1+Q2+Q3705V1+V2+V3,0 {__ (Q% + q% + qg)
(281:) 3

1
+ 512,0 (q1,u1) Rele” (g1, w1) (€ (g2, u2) + €" (g3, us))]

1
+ 512,0 (g2, u2) Re [€" (g2, uz) (€7 (g3, u3) + €" (qu, u1))]

+ 50 (a5,3) Re [£° (g5, us) (=" 1 1) + <° (02,)]
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Re

0 [Rao (q1,u1) (g (q1,ur) € (g3, u3) + €" (g1, u1) € (go, u2))]

2 R (02, ) (= 2 2) & (1, 10) + <° (02, 12) = (g5, )]
= 5 Rao (a5, 05) < (a5, u5) < (02,1) + €° (a5, 05) < (01,0))]
- WRG [5* (q1,u1) C (qu, ur) QIZ +&" (g2, uz) C* (qa, uz) q52]

d2,9 . . * : 3
_MRG [5 (g2, u2) ¢ (g2, u2) @7+ et (g3, us) ¢ (g3, u3) g3 2]

(90 98) e (e (g0, 5) © (g, ) 62 + & (g1, u1) € (g, 0) qﬂ}

1 * * *
_15011+q2+q3,05u1+u2+u3,0Re{5 (g1, 1) €% (g2, uz) " (g3, us)

X [Fg (I’l, —I'Q) —+ Fg (IQ, —Ig) —+ Fg (Ig, —Il)]} (16)
The last term in formula (16) is connected with the function pd(x, z,x3), since

1a(T1, 2, 73) = —20q, +qutas,00m +vatvsoRe {3(T1; —2)

+T3(w2; —3) + T'3(w3; —21) } - (17)

The difficulty in calculating I's(x;; —x;) as well as the functions of higher order
(together with a greater number of energy denominators) is caused by the necessity
to integrate over the vector k at the given configuration of the vectors qi,...,q,.
However, the integration over the angled variables of the vector k is easily done if
one uses Feynman identity [16],

n

HAjl(n1)!/1~~~/1da1...dan{iajz4j}n5<iaj1). (18)

J=1

Let us consider the calculation function I's(z;x2) for the case of frequencies

vy and 15 of the same sign, since real part E a;A; can be equal to zero at some

j
values «. Then, there appears a condition of positive distinctness of the imaginary
part ZajAj' The formulae which permit to obtain the function I's(x;xs) for

J
frequencies of different sign are given in the Appendix. In formula (14) we transit

to dimensionless variables ¢; = |q;|kg ", u; = 3(2erg;) ! and use the identity (18) at
n = 2. Thus, we obtain the following representation

1

3N
3($1,{L'2) 4’/TQ1(]2(25F)2/d nk,s/da a ( 9)
0

F, = a[(ke)) +&]+ (1 —a)[(k,er) + &,
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1
where e; = q;|q;|™", vector k measured pin the units of kg, §; = 54~ u;; j=1,2.

Let us introduce vector

P, = e+ (1 —aey, (20)
and mark
Qo = a(&—&) =& =0, —i0;
% = Slalo - e tel 9 =alu - w)+u, (21)
so that Q¢, €22 > 0. In these notations

Fo = (k,p,) + Qa, (22)

therefore integration over the angled variables of the vector k is done in the spherical
coordinate system (axis 0z parallel to vector p,). After integrating over the module
of the vector k we obtain I's(z1; 2) in the form of single integral over the parameter «

1
N Q Q,
q192(2¢¥) ) P 200 1 pa—Qa
Pa = 1Pal = {1 20(1— 1) +22%(1 - 1)}7, (23)

t = t1o = (e1,eq) is cosine of the angle between vectors q; and qs.

The integral over the variable « is divided into two ones. The integral in which we
have logarithm is integrated by parts. Then we unite it with the integral in which the
subintegral function is equal to p_ 2. Thus, the integral (23) is considerably simplified

3N

Ls(wy;20) = (2er)? [2q142(1 _t2)}_1
1-— 51 1-— 52
X {[52 —t&]In L +£1} + [§1 — t&2] In L +§J }
- (23;:)2 20100 (1= )] 6(&,1) / ,o?d—iam (24

where
0(Et) = 1—12 =& — & 4 26:6;
Poa— = {201 -t) = (&4 - &)} +20{&(& - &) — (1-t)} +1-&. (25)

Let oy = af + 105, as = a§ + iag are roots of the equation p2 — Q2 = 0:

af = {p2+p2} {pelbe — ) + psbs + O} ;
of = (P20} {e(ba+ Q) — palbe — )}
a5 = {02+ 92} {pelbe + ) +psbs — O}
ay = {2+ P2} {pelbs — Q) — ps(be + 1)} . (26)

717



M.V.Vavrukh, S.B.Slobodyan, N.L.Tyshko

Here the following notations are used

1
pe = 2(1—1t) = 2(q1 — @)* + (w1 — u2)*;

4
ps = (@1 — q)(u1 — ug);
b. = 1—t—U2(U1_U2)+%(ql_q2);
u 1 .

b = Do - @) B —w) O =CHin

_ 2, 2137 _ 0 2, 27377,
¢ = ﬂ{56+[5c+53] b n_ﬂ{50+[5c+58] b

1

ds = ui(q —tq) + ua(qe — tqr). (27)

Let us divide the subintegral function into simple factors and present the integral
over the variable « in the following form:

1
36.t) [ g =5+ ind,
0
75:%(141_142>+2(£1_z2>; 7§=%(A1—A2)—§<1~;1—l~;2>;
i 1—of of s (1= a8’ + (a))*,

A; = arctan + arctan —: L;=1In .
’ o7 of Z ()" + (o)

(i=1,2). (28)

Thus, the real and the imaginary components of the function I's(z1;x2) are deter-
mined in the following expressions:

o) = o o (1= )] {0~ ) Lo ) = (12 = tu)
xA(qr,u) — i(ﬂh —tq2) L(qa, uz) — (u1 — tuz) A(qa, uz) — ”Yg} ;
[i(xy;20) = —% [2‘11(12 (1 - t2)]71 % {(@2 —tq1) Alqu,ur) — (up — tuy)

x L(qr,u1) + (@1 — tqz) A(ga, u2) — (u1 — tug) L(gz, u2) + 73}, (29)

where functions A(q,u) and L(q,u) are shown in the Appendix.
Expressions (15), (16), (26)—(29) together with the formulae from the Appendix
determine the function n3(xq, 2, z3).

3. Conclusions

The proposed method for calculating the three-particle dynamic correlation func-
tion permits to calculate the degenerate function of the fourth order ny(z1,—1, x2,—x9)
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in the analytical form. Function ny(xq1,29, 23, —21 — 22 — x3) and function
ns(x, —x, 1,9, —x1 — X2) can be presented in the form of single integral over the
parameter « from elementary functions. Due to a good fit of the series of the per-
turbation theory there is no need in calculating the functions n,(z1,...,z,) of the
higher order.
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Figure 2. Functions n3(z1, 72, z3) (figure 2a) and pd(x1, z2,x3) (figure 2b) at the
=19 =0,1;t1o = —1 (D = V(2€F)_1).

Figure 3. Functions n3(z1, 2, x3) (figure 3a) and u3 (w1, z2,x3) (figure 3b) at the

1 =v9=0,1; t10 = 0.

Figure 1 and figures 2-6 clearly show that the function ns(z1, 9, x3) differs from
the correlation function of the ordinary reference system approach pd(z1, g, z3). In
the region of the small wave numbers the n3(z1, x2, z3) have much smaller values
(in absolute value) than (1, xe,x3). As a rule, n3(z1, s, x3) is the oscillating
function (even in those cases when ud(z;, s, z3) have constant signs (see figures 3—
5)). Similarly to p3(zy1,xs,z3), the functions n3(zy, 2, z3) have a strong frequency
dependence. At the frequencies vy = vy, the functions u(z1, z9, v3) are the surfaces
that are symmetrical relatively to the trussed ¢; = g2 at any values of cos(q, q2)
(figures 2b, 3b, 4b). At vy # vy the functions p(zy, Tq, x3) are asymmetrical.
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The functions n3(x1, 22, x3) have a strong dependence on cos(qi, q2) and are asym-
metrical even at the v = 5. This is illustrated in figures 2a, 3a, 4a. From figures 2-7,
it arises that the asymptotes of the functions p3 (w1, 2, z3) and n3(z1, z9, r3) corre-
spond to the formula (11).

Appendix

Here we introduce the explicit expressions for the functions (13) in the dimensi-

onless variables ¢ = |q|kg ', u = v(2epq) L

3N
= —R
NQ(-CE) 25F 2,0((], U),
RQ,O(Q7 U) = ]2,0(Q7 U) + iJ270(Q7 U),
where I5 (g, u) is determined by formula (10),

1

bp@w)==——{u—§e+ﬁ—§)Amw%; @@Mﬁz%ﬁ@%mﬂﬂ%w,

C(q,u) = C(qu)+iC*(q,u),

2 2 2
C(qu) = = 4—(u2—q—)—g (1+3u2 — %)L(q,u)—g(l +u? — ZQZ)A(q,u);

2

1
C*(q,u) = qu—i—E (1+u2—§q2) L(q,u)—zq (1+3u2—q—>A(q,u).

4 4 4
Above we use the following marks:
2
zﬂ+<1+g> 142 1-2
L(qg,u) =1In 2 5 A(q,u) = arctan —2 | arctan 2
9 q U U
e (1-3)

Proceeding from the definition (14) and the explicit expression I's(z1;z) =
I's(qi1, v1; 92, v2) at the vy, > 0 or vy, < 0 by way of elementary transforma-
tions we can obtain such relationships which permit to write I's(qq, v1;qe, o) for
positive and negative wave vectors and frequencies. Let I'3(x1; x2) for the case of the
frequencies of the same sign 1, 5 be written in the dimensionless form:

3N Uy Us
Ly (21529) = V3 (Q17Q2,t —, —>
(2ep)? Q1 G2
where t = t15 = cos(qq, Q2), ¥ = v(2ep) L.
Then
3N Uy U
I's (th/l; —QQ,VQ) = —373 <Q1,Q2, —t —1, —2) ) (V17V2 > 0),
(2er) G Q2
3N v U
s (qu,vi;—qa, —10) = —73 <Q17 — o, t |, —2) ; (11,12 > 0),
(2er) Qg
3N v U
F3 (Q1>V13QZ>_V2) = 72’73 (CIL—C]Qa—t _17 _2)7 (V17V2>0)-
(2¢r) @ Q2
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TpunyacTuHkoBa KopensiuinHa PpyHKLia B
€JIeKTPOH-NMJIa3MOHHIN mopaeni

M.B.BaBpyx, C.6.Cno6ogsiH, H.J1.Tuwko

JbBIBCbKWIA HaLOHaNbHWUI YHIBEPCUTET iMeHi IBaHa P paHka,
kadenpa actpodismkm, 79005 JlbeiB, Byn. Kupuna i Medogais, 8

OTtpumaHo 3 cepnHsa 2005 p.

HaBeneHo cnocib po3paxyHKy 1-4aCTUHKOBUX €IEKTPOHHUX KOPEensLji-
HUX OYHKLA eNeKTPoH-MIa3MOHHOI Moaeni, sika Oyna 3anponoHoBaHa
aBTOpamMu paHille Ass Onucy CUNbHO HeigeanbHOT eNEKTPOHHOT PIANHN.
PospaxoBaHo i NpeacTaBneHo B e1eMEHTAPHUX PYHKLIAX TPUYACTUHKO-
NOriYHOI KopenauinHoi GyHKLIT 3Bu4ainHoro 6asncHoro nigxony y teopii
€/1IEKTPOHHOI pignHW.

Knio4oBi cnoBa: es1ekTpoHHa pianHa, rnia3moBi KOJIMBaHHS,
N-4aCTUHKOBI AMHaMIYHi KOpensuiriHi QyHKUII, orneparop riepexoay,
KOJIEKTUBHI 3MIHHI

PACS: 05.30.Fk
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