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An approximate analytical scheme of the dynamical mean-field theory
(DMFT), that is used for electron systems with Hubbard correlations and is
exact in the limit of the infinite dimensionality of a space, is developed. The
effective single-site problem arising in the framework of this method is for-
mulated in terms of the auxiliary Fermi-field. The irreducible Green’s func-
tion technique with the projecting on the Hubbard basis of Fermi-operators
is used for its solution. A system of DMFT equations is obtained in the
approximation which is a generalization of the Hubbard-III approximation
and combines it with a self-consistent renormalization of the local electron
levels. It is shown that the proposed approach includes as simple spe-
cific cases a number of known approximations (Hubbard-III, AA, MAA, . . . )
based on the assumption of the single-site structure of the electron self-
energy.
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1. Introduction

Strongly correlated electron systems have been the subject of a growing attention
of the investigators in recent years. Despite the relative simplicity of the models used
for their description the theory of electron spectrum and thermodynamic properties
of such systems is far from its final completion. The use of localized (atomic) basis

c© I.V.Stasyuk 437



I.V.Stasyuk

of electron states is the general feature of the models. Corresponding Hamiltonians

H =
∑

i

Hi +
∑

〈ij〉

∑

σ

tija
+
iσajσ (1)

include, on the one hand the electron transfer (hopping) tij between neighbouring
sites (atoms) in the crystal lattice and on the other hand the short-range single-site
electron correlations. It is primarily the on-site energy of Coulomb repulsion U in
the case of the Hubbard model and the models based on that one:

Hi = Uni↑ni↓ − µ
∑

σ

niσ . (2)

Models like (1), (2) can be solved exactly in two limiting cases: atomic limit
(t = 0) and band electrons (U = 0). Near these extreme cases the expansions
in terms of t or U are used, but the consistent formulation of the perturbation
theory especially in the case of strong coupling is not a simple task. The case of an
intermediate coupling t ∼ U is more complicated for consideration. In this region
of parameter values, the splitting in the band electron spectrum and the metal-
insulator transition takes place.

Due to the presence of strong electron correlations, a state of the electron sys-
tem and its properties depend essentially on the mean electron concentration. At
a different filling of electron states and depending on the relation between t and U
parameters, the system can be paramagnetic or the transition into ferro- (antiferro-)
magnetic phase can take place. In the case of a more complicated structure of the
Hamiltonian Hi (due to the allowance for the other, besides electron, degrees of
freedom) or when the interaction is extended to the nearest neighbours in a lattice,
the charge ordering can appear; the effects of phase separation become possible as
well. The listed phenomena are the subject of study in the framework of various
approaches and methods.

A new impulse in the investigations in this field is connected with the devel-
opment of a new approach having its origin in works [1–3] where the study of the
(1), (2)-type model in the limit of infinite dimensionality of space (d = ∞) has
been proposed. Due to principal simplifications taking place in this case in the per-
turbation series the possibility exists to obtain exact results using the scheme that
corresponds to the well known coherent potential approximation (CPA) in the the-
ory of disordered crystalline alloys. The rapidly developing corresponding method
became known as the dynamical mean-field theory (DMFT).

The central point in this method is formulation and solution of the auxiliary
single-site problem. An initial model is mapped on that one while considering one
site characteristics of the electron spectrum, such as single-site electron Green’s
function (see [4–6], as well as the review [7]). In this case the separated lattice site is
considered as placed in some effective environment. Since the processes of electron
hopping from the atom and returning into the atom are taken into account, the
mean field acting on the electron states of the atom possesses a dynamical nature.
This field is described by the coherent potential Jσ(ω) that should be determined in
a self-consistent way.
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Only in some simple cases the single-site problem can be solved analytically. In
general, including the Hubbard model, the application of numerical or seminumerical
(such as quantum Monte Carlo or exact diagonalization, see [7]) methods turns out
to be necessary.

At the same time it is of interest to develop approximate analytic approaches to
the solution of the single-site problem. Their application at that stage is more effec-
tive than at considering the full model (a short review of such attempts was given
recently in [8,9]). The availability of the analytical (even of approximate) method is
useful especially for new models as well as at the transition to the finite dimension-
ality of the system. The accuracy of approximation can be estimated relating to the
results of numerical calculations.

In this work the approximate scheme of calculation of the electron Green’s func-
tion for the auxiliary single-site problem is proposed. The approach is based on the
technique of the irreducible Green’s functions. The procedure of projecting onto the
basic set of operators is used (the set consists of the single-site electron Hubbard
operators of the Fermi-type).

The recipe is given for the construction of the system of equations for the coherent
potential and self-consistency parameter (having the meaning of a static part of the
effective internal field) in the approach that is a generalization of the Hubbard-
III approximation. Specific cases are considered corresponding to the more simple
approximations of the alloy-analogy (AA) or modified alloy-analogy (MAA) type
[10,11] in the DMFT method as well as to the certain decoupling procedure in the
two-time Green’s function method when applied to the initial electron problem.

2. Hubbard model and similar models in a limit of infinite di-
mension of space ( d = ∞ )

The transition to the d = ∞ in the DMFT approach is accompanied by the
scaling of the electron transfer parameter

t =
t∗√
d
. (3)

In the case of d-dimensional hypercubic lattice with an electron spectrum

εk =
2t∗√
d

d∑

α=1

cos kαa, (4)

this procedure leads to the Gaussian density of electron states [2]

ρ0(ω) =
1

2
√
πt∗

e−
ω2

4t∗2 . (5)

The average kinetic energy remains constant in this case in the limit d = ∞.
The scaling (3) has a significant effect on the structure of diagrammatic series for

single-electron Green’s functions of the model of the (1) and (2) type. In particular,
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the irreducible self-energy part of such a function becomes a purely local (a single-
site) quantity [2,3]:

Σij,σ(ω) = Σσ(ω)δij, d = ∞. (6)

The Fourier-transform of Σij,σ(ω) is hence momentum-independent

Σσ(~k, ω) = Σσ(ω). (7)

This leads to tremendous simplifications in all many-body calculations for the Hub-
bard model and related models and enables us to obtain the exact numerical results
for the main parameters of the electron spectrum, to describe magnetic phase tran-
sitions and the metal-insulator transformation etc. (see, for example, [7,9]).

The possibility of obtaining exact solutions in the d = ∞ limit opens the way to
the development of a theory based on the expansion in powers of 1/d (the results for
d = ∞ can be considered as zero approximation in this case). Such approaches have
been elaborated for the last few years [12,13]. On the other hand, consideration in
the framework in the d = ∞ limit is not only of an academic interest. It turns out
that a set of the known approximating schemes or methods is correct in the d = ∞
limit. Besides, the obtained physical conclusions can be transferred in many cases
to the system with finite dimensions keeping their suitability even at d = 3.

The formal scheme of calculating the electron Green’s functions and the main
thermodynamical quantities can be developed basing on the diagrammatic expan-
sions in powers of interaction parameters (such as energy U in the case of the Hub-
bard model) or matrix elements of the electron transfer tij . The electron Green’s

function in (~k, ω) representation

Gσ
k(ω) =

∑

i−j

ei
~k(~Ri−~Rj)Gij,σ(ω) (8)

can be expressed in the first or in the second of these cases as

Gσ
k(ω) =

1

ω + µ− tk − Σσ(ω)
(9)

or

Gσ
k(ω) =

1

[Ξσ(ω)]−1 − tk
, (10)

where Σσ(ω) or Ξσ(ω) are the self-energy parts, which are irreducible (in the dia-
grammatic representation) according to Dyson or Larkin, respectively.

To calculate the Σσ(ω) (or Ξσ(ω)) function, the effective single-site problem
is used. As was shown in [14], the transition to this problem corresponds to the
replacement

e−βH → e−βHeff = e−βH0T exp

{

−
∫ β

0
dτ
∫ β

0
dτ ′

∑

σ

Jσ(τ − τ ′)a+σ (τ)aσ(τ
′)

}

, (11)

where
H0 = Hi (12)
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and Jσ(τ−τ ′) is an effective auxiliary field which is determined self-consistently from
the condition that the same self-energy part Ξσ(ω) determines the lattice function
(10) as well as the Green’s function G(a)

σ (ω) of the effective single-site problem. The
last one is connected with Ξσ(ω) and Jσ(ω) by the relation

G(a)
σ (ω) =

1

[Ξσ(ω)]−1 − Jσ(ω)
. (13)

In this case

G(a)
σ (ω) = Gii,σ(ω) =

1

N

∑

k

Gσ
k(ω). (14)

Dynamical field Jσ(τ − τ ′) describes electron hopping from the given site into
the surroundings and vice versa; the electron propagates in the environment without
going through this site between moments τ and τ ′. The expression

Gσ(ω) =
∑

kj

tiktijG
(i)
kj,σ (15)

corresponds to this situation (the relation (15) is known from the standard CPA

scheme [15,16]); here G
(i)
kj,σ is the electron Green’s function for a crystal with the

excluded site i.

The set of simultaneous equations (10), (13) and (14) becomes closed when it is
supplemented by the functional dependence

G(a)
σ (ω) = f([Jσ(ω)]), (16)

which is obtained as the result of solving the effective single-site problem with the
statistical operator exp(−βHeff). It is possible to do this in an analytical way only
in some cases of simple models (a Falicov-Kimball model [17]; a pseudospin-electron
model at U = 0 [18]; a usual binary alloy model). In general, numerical methods are
used.

The scheme described lies at the basis of the above mentioned DMFT approach
used in the last years in describing strongly correlated electron systems.

3. Electron Green’s functions of the effective single-site
problem

As it was mentioned, the central point in the DMFT approach is the solution of
the effective single-site problem and the determination of the connection between
the dynamical mean field (coherent potential) Jσ(ω) and the single-site electron
Green’s function G(a)

σ (ω). We propose in this work an approximate scheme, which
is based on the technique of the irreducible two-time temperature Green’s functions
and leads to the results having an interpolating character. The Hubbard model is
taken into consideration to illustrate the method.
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Let us reformulate a single-site problem introducing explicitly an effective Ha-
miltonian

H̃eff = H0 + V
∑

σ

(a+σ ξσ + ξ+σ aσ) +Hξ , (17)

where the auxiliary Fermi-field is brought in. It describes the environment of the
selected site and formally is characterized by the HamiltonianH ξ. The single-electron
transitions between the site and the environment are taken into account.

An explicit form of the Hamiltonian Hξ is unknown. Let us consider, however,
the Green’s function

Gσ(ω) = 〈〈ξσ|ξ+σ 〉〉(Hξ)
ω (18)

for auxiliary fermions as the given function. The function Gσ(τ−τ ′)=〈Tτξ
+
σ (τ)ξσ(τ

′)〉0
(where averaging is performed with the partHξ of the Hamiltonian (17)) corresponds
to the function (18) in the Matsubara’s representation. It is shown in appendix A
that the expansion of the exp(−βH̃eff) operator in powers of V and the subsequent
averaging over the states of ξ-subsystem using the Wick’s theorem and the functions
(18) leads to the statistical operator (11):

〈exp(−βH̃eff)〉(Hξ) = exp(−βHeff). (19)

The relation

2πV 2Gσ(ω) = Jσ(ω) (20)

takes place in this case.

The obtained result points out to the possibility of the Green’s function G(a)
σ (ω)

calculation based on the Hamiltonian H̃eff . The averaging over the a, a+-variables
is performed with the use of the Gibbs distribution while over the ξ, ξ+-variables it
is done with the help of function (18).

Let us write the Hamiltonian (17) for the case of the Hubbard model in terms
of Hubbard operators

H̃eff = −µ(
∑

σ

Xσσ + 2X22) + UX22

+ V
∑

σ

[(Xσ0 + σX2,−σ)ξσ + ξ+σ (X
0σ + σX−σ,2)] +Hξ . (21)

Here the standard basis of single-site states is used (σ = +,−)

|0〉 = |(1− n↑)(1− n↓)〉, |−〉 = |(1− n↑)n↓〉,
|2〉 = |n↑n↓〉, |+〉 = |n↑(1− n↓)〉. (22)

In this case the Green’s function G(a)
σ (ω) can be written in the form

G(a)
σ =〈〈X0σ|Xσ0〉〉ω+σ〈〈X0σ|X2,−σ〉〉ω+σ〈〈X−σ,2|Xσ0〉〉ω+〈〈X−σ,2|X2,−σ〉〉ω (23)

(a representation in terms of two-time Green’s functions is used).

442



Mean-field approach to strongly correlated electron systems

We will write the equations for functions (23) using the equations of motion for
X-operators:

i
d

dt
X0σ(t) = [X0σ, H̃eff ] = −µX0σ + V (X00 +Xσσ)ξσ

+ V X−σ,σξ−σ + σV X02ξ+−σ ,

i
d

dt
X−σ,2(t) = [X−σ,2H̃eff ] = (U − µ)X−σ,2 + σV (X22 +X−σ,−σ)ξσ

− σV X−σ,σξ−σ − V X02ξ+−σ . (24)

As a result, we have

(ω + µ)〈〈X0σ|Xσ0〉〉 =
1

2π
A0σ + V 〈〈(X00 +Xσσ)ξσ|Xσ0〉〉

+ V 〈〈X−σ,σξ−σ|Xσ0〉〉+ σV 〈〈X02ξ+−σ|Xσ0〉〉,
(ω + µ− U)〈〈X−σ,2|Xσ0〉〉 = σV 〈〈(X22 +X−σ,−σ)ξσ|Xσ0〉〉

− σV 〈〈X−σ,σξ−σ|Xσ0〉〉 − V 〈〈X02ξ+−σ|Xσ0〉〉, (25)
where Apq = 〈Xpp +Xqq〉; A0σ = 1− n−σ, A−σ,2 = n−σ.

Let us separate in Green’s functions of higher order the irreducible parts using
the method developed in [19,20]. Proceeding from the equations of motion (24)
we express derivatives i d

dt
X0σ(−σ,2) as a sum of regular (projected on the subspace

formed by operators X0σ, X−σ,2) and irregular parts. The latter ones describe an
inelastic quasiparticle scattering. We obtain

[X0σ, H̃eff ] = −µX0σ + α0σ
1 X0σ + α0σ

2 X−σ,2 + Z0σ,

[X−σ,2, H̃eff ] = (U − µ)X−σ,2 + α−σ,2
1 X0σ + α−σ,2

2 X−σ,2 + Z−σ,2. (26)

Operators Z0σ and Z−σ,2 are defined as orthogonal ones to operators from the
basic subspace:

〈{Z0σ(−σ,2), Xσ0}〉 = 0,

〈{Z0σ(−σ,2), X2,−σ}〉 = 0. (27)

These equations determine the coefficients α
0σ(−σ,2)
i .

Using the described procedure we come to the expressions

Z0σ = V
︷ ︸

(X00 +Xσσ)ξσ +V
︷ ︸

X−σ,σξ−σ +σV
︷ ︸

X02ξ+−σ ,

Z−σ,2 = σV
︷ ︸

(X22 +X−σ,−σ)ξσ −σV
︷ ︸

X−σ,σξ−σ −V
︷ ︸

X02ξ+−σ , (28)

where
︷ ︸

(X00 +Xσσ)ξσ = (X00 +Xσσ)ξσ ,
︷ ︸

(X22 +X−σ,−σ)ξσ = (X22 +X−σ,−σ)ξσ ,
︷ ︸

X−σ,σξ−σ = X−σ,σξ−σ −
1

A0σ

〈ξ−σX
−σ,0〉X0σ − 1

A2,−σ

〈X2σξ−σ〉X−σ,2,

︷ ︸

X02ξ+−σ = X02ξ+−σ −
1

A0σ

〈Xσ2ξ+−σ〉X0σ − 1

A2,−σ

〈ξ+−σX
0,−σ〉X−σ,2. (29)
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In this case

α0σ
1 = −σα−σ,2

1 =
V

A0σ
ϕσ ,

α0σ
2 = −σα−σ,2

2 = − V

A2,−σ

σϕσ ,

ϕσ = 〈ξ−σX
−σ,0〉+ σ〈Xσ2ξ+−σ〉. (30)

(here we put ϕσ = ϕ∗
σ).

The set of equations (25) can be rewritten now in the form

(

ω − aσ σ V
A2,−σ

ϕσ

σ V
A0σ

ϕσ ω − bσ

)(

〈〈X0σ|Xσ0〉〉
〈〈X−σ,2|Xσ0〉〉

)

=

(
A0σ

2π
+ 〈〈Z0σ|Xσ0〉〉

〈〈Z−σ,2|Xσ0〉〉

)

, (31)

where a notation is used:

aσ = −µ+
V

A0σ

ϕσ ,

bσ = −µ+ U +
V

A2,−σ

ϕσ . (32)

An equation for Green’s function 〈〈Z0σ(−σ,2)|Xσ0〉〉 can be obtained by means of
differentiation with respect to the second time argument:

〈〈Z0σ(−σ,2)|Xσ0〉〉(ω + µ) =

= 〈〈Z0σ(−σ,2)|Xσ,0〉〉α0σ
1 + 〈〈Z0σ(−σ,2)|X2,−σ〉〉α0σ

2 + 〈〈Z0σ(−σ,2)|Zσ0〉〉. (33)

The similar procedure can be applied to the functions containing the operator X 2,−σ

on the right side. Joining them together with the previous ones into a single matrix
Green’s function

Ĝ = 2π

(

〈〈X0σ|Xσ0〉〉 〈〈X0σ|X2,−σ〉〉
〈〈X−σ,2|Xσ0〉〉 〈〈X−σ2|X2,−σ〉〉

)

, (34)

we can write the following equation, which corresponds to (31) and (33):

Ĝ = Ĝ0 + Ĝ0P̂σĜ0 . (35)

Here the nonperturbed Green’s function Ĝ0 is introduced

Ĝ0 =
1

Dσ

(

ω − bσ −σ V
A2,−σ

ϕσ

−σ V
A0σ

ϕσ ω − aσ

)

, (36)

where

Dσ = (ω − aσ)(ω − bσ)−
V 2

A0σA2,−σ

ϕ2
σ, (37)
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the matrix

P̂σ = 2π

(

A−1
0σ 0
0 A−1

2,−σ

)(

〈〈Z0σ|Zσ0〉〉 〈〈Z0σ|Z2,−σ〉〉
〈〈Z−σ,2|Zσ0〉〉 〈〈Z−σ,2|Z2,−σ〉〉

)(

A−1
0σ 0
0 A−1

2,−σ

)

(38)
has the meaning of a scattering matrix. Being expressed in terms of irreducible
Green’s functions it contains the scattering corrections of the second and the higher
order in powers of V . The separation in P̂ of the irreducible, with respect to V ,
parts enables us to obtain a mass operator M̂

P̂σ = M̂σ + M̂σĜ0M̂σ + M̂σĜ0M̂σĜ0M̂σ + . . . ,

M̂σ = P̂σ|ir . (39)

In this case the relation (35) can be transformed into Dyson equation

Ĝ = Ĝ0 + Ĝ0M̂σĜ (40)

with the solution
Ĝ = (1− Ĝ0M̂σ)

−1Ĝ0, (41)

which provides a formed final expression for the Green’s function (34).

4. Different-time decoupling of irreducible Green’s funct ions

We will restrict ourselves hereafter to the simple approximation in calculating
the mass operator P̂ , taking into account the scattering processes of the second
order in V . In this case

M̂σ = P̂ (0)
σ , (42)

where the irreducible Green’s functions are calculated without allowance for correla-
tion between electron transitions on the given site and environment. It corresponds
to the procedure of the different-time decoupling [21], which means in our case an
independent averaging of products of X and ξ operators.

Let us illustrate this approximation with some examples.

1. The Green’s function 〈〈
︷ ︸

(X00 +Xσσ)ξσ) |
︷ ︸

ξ+σ (X
00 +Xσσ)〉〉ω ≡ I1(ω).

According to the spectral theorem we have

I1(ω) =
1

2π

∫ +∞

−∞

dω′

ω − ω′
(eβω

′

+1)
∫ +∞

−∞

dt

2π
e−iω′t〈ξ+σ (t)(X00+Xσσ)t(X

00+Xσσ)ξσ〉ir.
(43)

Due to different-time decoupling

〈ξ+σ (t)(X00 +Xσσ)t(X
00 +Xσσ)ξσ〉ir ≈ 〈(X00 +Xσσ)t(X

00 +Xσσ)〉〈ξ+σ (t)ξσ〉. (44)

We will take the first of these correlators in a zero approximation

〈(X00 +Xσσ)t(X
00 +Xσσ)〉 ≈ 〈(X00 +Xσσ)2〉 = A0σ, (45)
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and substitution of (44) into (43) leads in this case to the result

I1(ω) = A0σ〈〈ξσ|ξ+σ 〉〉ω . (46)

2. The Green’s function 〈〈
︷ ︸

X−σ,σξ−σ |
︷ ︸

ξ+−σX
σ,−σ〉〉ω ≡ I2(ω).

The representation of the I2(ω) function in the form analogous to (43) leads to
the time correlation function 〈ξ+−σ(t)X

σ,−σ(t)X−σσξ−σ〉ir that can be approximated
as

〈ξ+−σ(t)X
σ,−σ(t)X−σ,σξ−σ〉ir ≈ 〈Xσ,−σ(t)X−σ,σ〉〈ξ+−σ(t)ξ−σ〉 (47)

and, respectively
〈Xσ,−σ(t)X−σσ〉 ≈ 〈Xσσ〉. (48)

In this case
I2(ω) = 〈Xσσ〉〈〈ξ−σ|ξ+−σ〉〉ω . (49)

3. The Green’s function 〈〈
︷ ︸

X02ξ+−σ |
︷ ︸

ξ−σX
20〉〉ω ≡ I3(ω).

The corresponding time correlation function is decoupled as

〈ξ−σ(t)X
20(t)X02ξ+−σ〉ir ≈ 〈X20(t)X02〉〈ξ−σ(t)ξ

+
−σ〉. (50)

In the zero approximation

〈X20(t)X02〉 = exp[i(U − 2µ)t]〈X22〉. (51)

Using these expressions we obtain

I3(ω) =
1

2
〈X00+X22〉〈〈ξ+−σ|ξ−σ〉〉ω+2µ−U

+ 〈X00−X22〉 1

2π

∫ +∞

−∞

dω′

ω+2µ−U−ω′
th

βω′

2
[−2Im〈〈ξ+−σ|ξ−σ〉〉ω′+iε]. (52)

Let us mention that at the half-filling of electron states (when n = 1, 〈X 00〉 =
〈X22〉)

I3(ω) = −〈X22〉〈〈ξ−σ|ξ+−σ〉〉U−2µ−ω . (53)

Following the described procedure and taking into account the relation (20) we
will come to the following expressions for irreducible Green’s functions:

〈〈Z0σ|Zσ0〉〉ω = A0σJσ(ω)− Rσ(ω),

〈〈Z−σ,2|Z2,−σ〉〉ω = A2,−σJσ(ω)− Rσ(ω),

〈〈Z0σ|Z2,−σ〉〉ω = 〈〈Z−σ,2|Zσ0〉〉ω = Rσ(ω), (54)

where

Rσ(ω) = −〈Xσσ〉J−σ(ω) +
1

2
〈X00 +X22〉J−σ(U − 2µ− ω)

+ 〈X00 −X22〉 1

2π

∫ +∞

−∞

thβω′/2

ω + 2µ− U − ω′
[−2ImJ−σ(−ω′ − iε)]dω′. (55)
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5. Basic set of equations

Using the results obtained in the previous section we can write the expressions
for mass operator components

Mσ,11 =
1

A0σ
Jσ(ω)−

1

A2
0σ

Rσ(ω), Mσ,22 =
1

A2,−σ

Jσ(ω)−
1

A2
2,−σ

Rσ(ω),

Mσ,12 = Mσ,21 =
1

A0σA2,−σ

Rσ(ω). (56)

It follows from the relation (41) that

∑

αβ

Gσ,αβ(ω) ≡ G(a)
σ (ω) =

∑

αβ G
0
αβ + det||G0|| (Mσ,12 +Mσ,21 −Mσ,11 −Mσ,22)

1−∑

αβ G
0
αβMσ,βα + det||G0|| det||Mσ||

.

(57)
Substitution of expressions (36) and (56) into (57) leads to the result

(
∑

αβ

Gσ
αβ)

−1 =

[

(ω − aσ)(ω − bσ)− (ω − aσ)

(

Jσ −
Rσ

A2,−σ

)

− (ω − bσ)
(

Jσ −
Rσ

A0σ

)

+ J2
σ − (2V ϕσRσ − V 2ϕ2

σ − JσRσ)
1

A0σA2,−σ

]

×
[

(ω − aσ)A2,−σ + (ω − bσ)A0σ − 2V ϕσ − Jσ +
Rσ

A0σA2,−σ

]−1

. (58)

Let us now use the relation

[Ξσ(ω)]
−1 =




∑

αβ

Gσ
αβ





−1

+ Jσ, (59)

which follows from (13), to determine the single-site self-energy part. We obtain

Ξσ(ω) =
ω − ε+A0σ − ε−A2,−σ − Ω̃σ(ω)

(ω − ε+)(ω − ε−)− ωΩ̃σ(ω) + (ε+A2,−σ + ε−A0σ)Ω̃σ(ω)
, (60)

where ε+ = U − µ, ε− = −µ and

Ω̃σ(ω) = Ωσ(ω) +
V ϕσ

A0σA2,−σ

,

Ωσ(ω) = Jσ(ω)−
Rσ(ω)

A0σA2,−σ

. (61)

It should be mentioned that formula (60) can be also represented in the form

(Ξσ(ω))
−1 =

[

A0σ

ω − ε− − Ω̃σ(ω)
+

A2,−σ

ω − ε+ − Ω̃σ(ω

]−1

+ Ω̃σ(ω). (62)
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The relation (60) creates together with (10), (13) and (14) a set of equations for
the coherent potential Jσ(ω), self-energy part Ξσ(ω) and Green’s functions Gii,σ(ω)
and Gσ

k(ω).
It should be noted that the parameter ϕσ, which is expressed in terms of average

values of the products of X and ξ operators (formula (30)), is a functional of the
potential Jσ(ω). According to the spectral theorem

V 〈Xσ0(2,−σ)ξσ〉 = i
∫ +∞

−∞

dω

eβω + 1
[V 〈〈ξσ|Xσ0(2,−σ)〉〉ω+iε − V 〈〈ξσ|Xσ0(2,−σ)〉〉ω−iε].

(63)
On the other hand, using the linearized equation of motion (26) and neglecting

the irreducible parts, we can obtain the following system of equations

V 〈〈ξσ|Xσ0〉〉
(

ω − ε− − V
A0σ

ϕσ

)

+ V 2σ ϕσ

A2,−σ
〈〈ξσ|X2,−σ〉〉 = A0σ

2π
Jσ ,

V 2σ ϕσ

A0σ
〈〈ξσ|Xσ0〉〉+ V 〈〈ξσ|X2,−σ〉〉

(

ω − ε+ − V
A2,−σ

ϕσ

)

= σA2,−σ

2π
Jσ .

(64)

It follows herefrom

V 〈〈ξσ|Xσ0〉〉ω =
1

2π

Jσ(ω)

Dσ

[

A0σ(ω − ε+)− V
ϕσ

A2,−σ

]

,

V 〈〈ξσ|X2,−σ〉〉ω =
1

2π

Jσ(ω)

Dσ

σ
[

A2,−σ(ω − ε−)− V
ϕσ

A0σ

]

. (65)

In particular, in the U → ∞ limit

V 〈〈ξσ|Xσ0〉〉ω =
1

2π
Jσ(ω)

A0σ

ω − ε− − V ϕσ

A0σ

,

V 〈〈ξσ|X2,−σ〉〉ω = 0. (66)

In this case

V ϕσ = −V 〈X−σ0ξ−σ〉 = − 1

2π

∫ +∞

−∞

dω

eβω + 1



−2Im
A0,−σJσ(ω)

ω − ε− − V ϕ−σ

A0,−σ





ω+iε

, (67)

or, in the Matsubara’s representation

V ϕσ = − 1

β
A0,σ

∑

ωn

J−σ(ωn)

iωn − ε− − V ϕ−σ

A0,σ

. (68)

Thus, we obtain a self-consistent equation for the parameter ϕσ.
Using a similar procedure one can construct an equation for ϕσ in the case of

finite values of U .

6. Some specific cases

Equations obtained in the previous section form an approximate analytical sche-
me of calculating both the single-site and the full electron Green’s function in the
framework of DMFT. Let us compare it with the standard approximations known
from literature which are based on the assumption of the single-site structure of the
electron self-energy. For this purpose we will consider some specific cases.
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6.1. Hubbard-I approximation ( Jσ = 0, Rσ = 0, ϕσ = 0; Ω̃σ = 0 )

It is the simplest approximation; renormalization of energies of atomic electron
transitions is absent and the scattering processes via coherent potential are not taken
into account. The expression for the single-site self-energy part

Ξσ(ω) =
A0σ

ω − ε−
+

A2,−σ

ω − ε+
(69)

corresponds to the Hubbard-I approximation [22]. Electron energy spectrum de-
scribed by Green’s function Gσ

k(ω) consists in this case of two Hubbard subbands
divided by a gap existing at any relationship between the values of U and t param-
eters.

6.2. Static mean-field approximation ( Jσ = 0 , Rσ = 0 ; Ω̃σ = B ≡

V ϕσ/A0σA2,−σ )

In this case only a self-consistent shift of the energy levels of the single-site
atomic problem is taken into account. The coherent potential Jσ(ω) is replaced in
the expression for ϕσ by the approximate expression

Jσ(ω) =
∑

kj

tiktijGkj,σ(ω) (70)

following from (15) when the difference between Gkj,σ(i) and Gkj,σ is neglected.
The expression for the self-energy part

[Ξσ(ω)]
−1 = [Ga

σ(ω)]
−1 =

[

A0σ

ω − ε− − B
+

A2,−σ

ω − ε+ −B

]−1

+B, (71)

that can be obtained in this case, corresponds to the summation of the series

Ĝ = ĝ0Î − ĝ0Ŵ ĝ0Î + ĝ0Ŵ ĝ0Ŵ ĝ0Î − . . . , (72)

where

ĝ0 =

(

(ω − ε−)
−1 0

0 (ω − ε+)
−1

)

, Î =
1

2π

(

A0σ 0
0 A2,−σ

)

,

Ŵ = B

(

−A2,−σ A0σ

A2,−σ −A0σ

)

. (73)

A sum of the diagrams with loop-like inclusions into the line of the electron single-
site Green’s function corresponds to this series in a diagrammatic representation.
Such inclusions lead to the renormalization of energies of the electron levels [23]. In
particular, at U = ∞

G(a)
σ (ω) = 〈〈X0σ|Xσ0〉〉ω =

1

2π

A0σ

ω − ε− − V ϕ−σ

A0σ

. (74)
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Energy shift of the electron transition

∆ε− = A2,−σB = − 1

A0σ

1

β

∑

ωn

∑

k

tik〈X−σ,0
k X0,−σ

i 〉 (75)

coincides in this case with the previously obtained one in a number of papers (see,
for example [8,24,25]) using a more complicated (in comparison with Hubbard-I
approximation) decoupling procedure in equations for the Green’s function Gσ

k(ω).

6.3. Hubbard-III approximation ( ϕσ = 0; Ω̃σ = Jσ − Rσ/A0σA2,−σ )

We can pass on to this approximation neglecting, at first, the renormalization of
the atomic electron levels and approximating, secondly, in the case of the half filling
(when 〈X00〉 = 〈X22〉) in the expression (G1)

〈Xσσ〉
A0σA2,−σ

→ 1,
〈X22〉

A0σA2,−σ

→ 1, (76)

which becomes exact only in the U → 0 limit. Consequently, an effective potential
of dynamical mean field Ω̃σ(ω) takes the form

Ω̃σ(ω) = Jσ(ω) + J−σ(ω)− J−σ(U − 2µ− ω). (77)

It corresponds (together with the expression (60) for the electron self-energy) to
the Hubbard-III approximation [10]. A potential Ω̃σ(ω) includes (besides the coher-
ent potential Jσ(ω)) the terms which describe a scattering on the spin and charge
fluctuations. Electron energy spectrum consists in this case of two subbands only at
U > Uc where the critical value Uc corresponds to the metal-insulator transition.

6.4. Alloy-analogy (AA) approximation ( Rσ = 0, ϕσ = 0; Ω̃σ(ω) = Jσ(ω) )

The scattering processes are taken here into account only via coherent potential.
The single-site Green’s function looks like

Gii,σ(ω) = G(a)
σ (ω) =

A0σ

ω − ε− − Jσ

+
A2,−σ

ω − ε+ − Jσ

(78)

in this case. This expression is analogous to the locator function for a binary al-
loy [16]. The procedure of the Gσ

k(ω) function calculation corresponds to the CPA
method. Let us write for this approximation an irreducible, according to Dyson,
self-energy part Σσ = ω − ε− − (Ξσ)

−1, using the expression (60) at Ω̃σ = Jσ:

Σσ = A2,−σU

/ (

1− A0σU

ω + µ− Jσ

)

. (79)

Or, after excluding a coherent potential

Σσ(ω) =
A2,−σU

1−Gσ
ii(ω)(U − Σσ(ω))

. (80)

This equation corresponds to the alloy-analogy (AA) approximation [8].
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6.5. Modified alloy-analogy (MAA) approximation ( Rσ = 0 ;
Ω̃σ = Jσ + V ϕσ/A0σA2,σ ≡ Jσ +B )

An AA-approach is supplemented here by the inclusion of renormalization of
single-site electron levels. It can now be obtained that

Σσ = A2,−σU

/ (

1− A0σU

ω − ε− − Ω̃

)

. (81)

This relation can be transformed into the equation

Σσ(ω) = A2,−σU

/ (

1− Gii,σ(U − Σσ)

1−Gii,σB

)

(82)

known in the so-called Modified AA-approach [8,11].
One can see from the quoted specific cases that the approach developed in this

work includes a number of known approximations giving in addition their unifica-
tion and generalization. The proposed scheme is more complete than Hubbard-III
approximation (which in its turn is the most general of the quoted ones) and differs
from it by the allowance for a self-consistent renormalization (due to the static inter-
nal field) of the local energy spectrum as well as by the modification of the potential
Ω̃σ constituent parts to a more elaborated inclusion of the magnon and charge fluc-
tuation scattering processes. Participation of Bose-particles in such a scattering is
taken into account in our scheme in a more consistent way.

Quantitative changes in the electron spectrum (in particular, in the electron
density of states) and then in the thermodynamics of the model, that might be
the consequence of applying the approach suggested herein, can be the subject of
subsequent calculations with the use of numerical methods.

7. Simple applications of the method

Let us demonstrate here the potentialities of the developed approximative scheme
using the examples of two models (the Falicov-Kimball model and the simplified
pseudospin-electron model) which are analytically solvable in the DMFT approach.

7.1. Falicov-Kimball model

It is supposed in this model [17] (which can be considered as a specific case of
the Hubbard model) that the electron transfer from one lattice site to another one
takes place only in the case of the only (σ = +) orientation of spins. Electrons with
the opposite spin orientation (σ = −) remain localized. They can effect the energy
of delocalized electrons being a source of scattering.

The Hamiltonian of the effective single-site problem looks in this model like

H̃eff = (U − 2µ)X22 − µ
∑

σ

Xσσ

+ V [ξ+↑ (X
0,+ +X−,2) + (X+0 +X2−)ξ↑] +Hξ . (83)
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In this case, in the equations of motion for X-operators

[X0+, H̃eff ] = −µX0+ + V (X00 +X++)ξ↑ ,

[X−,2, H̃eff ] = (U − µ)X−,2 + V (X22 +X−−)ξ↑ . (84)

those terms are absent which are responsible for the scattering with the participation
of Bose-particles (magnons and charge excitations). Only the components

Z0+ = V
︷ ︸

(X00 +X++)ξ↑ , Z−,2 = V
︷ ︸

(X22 +X−−)ξ↑ (85)

of irregular parts of the time derivatives of X-operators are present.
The corresponding irreducible Green’s functions are equal to

2π〈〈Z0+|Z+0〉〉ω = V 2A0+ · 2πG↑(ω) = A0+J↑(ω),

2π〈〈Z−,2|Z2−〉〉ω = V 2A−,2 · 2πG↑(ω) + A−,2J↑(ω),

〈〈Z0+|Z2−〉〉ω = 〈〈Z−,2|X+0〉〉ω = 0. (86)

Using now the formulae (38)-(40) we obtain

G
(a)
↑ (ω) =

A0+

ω + µ− J↑(ω)
+

A−,2

ω + µ− U − J↑(ω)
. (87)

This expression has the same structure as the Green’s function for the AA-approxi-
mation and is exact for the Falicov-Kimball model (see, for example, [14]).

7.2. Simplified pseudospin-electron model

In recent years the pseudospin-electron model (PEM) has been among the ac-
tively investigated models in the theory of strongly correlated electron systems. In
addition to the Hubbard type correlation, an interaction with locally anharmonic
lattice vibrations is included into the model. The corresponding degrees of freedom
are described by the pseudospin variables with S = 1/2. The Hamiltonian of the
PEM has the form [26] analogous to (1) with

Hi = Uni↑ni↓ − µ
∑

σ

niσ + g
∑

σ

niσS
z
i − hSz

i + ΩSx
i (88)

(here h is internal asymmetry field; Ω is a parameter of the tunnelling type splitting).
One can put U = 0 and Ω = 0 for simplification. Such a situation was considered

in [18,27]. It is possible to analytically solve an effective single-site problem for this
case too.

The effective Hamitlonian for the simplified model is as follows

H̃eff = −µ
∑

σ

nσ + g
∑

σ

nσS
z − hSz + V

∑

σ

(ξ+σ aσ + a+σ ξσ) +Hξ . (89)

Let us write the required single-site Green’s function in the form

G(a)
σ (ω) = 〈〈P+aσ|P+a+σ 〉〉ω + 〈〈P−aσ|P−a+σ 〉〉ω, (90)
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where P± = 1/2±Sz are the operators projecting into states with a given pseudospin
orientation.

Following the procedure described in section 3 we consider the equation of mo-
tion.

[P±aσ, H̃eff ] = E±P±aσ + V P±ξσ, (91)

where E± = E0 ± g/2. The irregular part in this case is

Z± = V
︷ ︸

P±ξσ ≡ V P±ξσ . (92)

The different-time decoupling gives

〈〈
︷ ︸

P±ξσ |
︷ ︸

P±ξ+σ 〉〉ω = 〈P±〉〈〈ξσ|ξ+σ 〉〉ω . (93)

As a result, we obtain Dyson equation

G±
σ (ω) = G±

0 +G±
0 M

±
σ G

±
σ (94)

with

G±
0 =

〈P±〉
ω − E±

, M±
σ(ω) =

1

〈P±〉Jσ(ω). (95)

It follows herefrom that

G(a)
σ (ω) =

〈P+〉
ω −E+ − Jσ(ω)

+
〈P−〉

ω −E− − Jσ(ω)
. (96)

This expression coincides with the one obtained in the d = ∞ limit in the framework
of DMFT [18]. The different-time decoupling (93) is an exact procedure in this case.

Let us mention that the two-pole structure of the single-site Green’s function
leads to the effect of the metal-insulator transition type at t ∼ g. In the case t > g
the electron spectrum consists of one broad band while at t < g there appears a gap
and the splitting into two Hubbard bands takes place [18].

8. Concluding remarks

The developed approach to the analytic solution of the effective single-site prob-
lem in the DMFT method is an approximate interpolating scheme that in specific
cases includes a number of known approximations for the Hubbard model and sim-
ilar models. The scheme is based on the application of the equations of motion
method and the technique of the irreducible Green’s functions with the projection
onto the single-site Hubbard basis of the Fermi-type operators. The examples are
given where the proposed approach gives exact results.

The simplicity and availability of this scheme make it attractive for the approx-
imate analytical consideration. It seems useful to apply it to the problems which
have been considered up to now by means of numerical methods. At the same time
an accuracy that can be achieved in the framework of the proposed scheme can
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be established after comparing the results of calculations of the parameters of the
electron spectrum and thermodynamical functions.

Let us mention that the question of calculating the electron mean occupation
numbers (and deriving an equation for chemical potential) as well as determining
the grand canonical potential was not elucidated in this work. It will be the subject
of a separate publication.

A. Statistical operator for the effective single-site prob lem

Thermodynamic perturbation theory for the effective single-site problem with
the Hamiltonian H̃eff can be formulated based on the interaction representation
for the statistical operator with the use of the H0 +Hξ operator as the zero-order
Hamiltonian:

e−βH̃eff = e−β(H0+Hξ)σ(β) ≡ e−β(H0+Hξ)Tτ exp

{

−
∫ β

0
dτ
∑

σ

V Q̂σ(τ)

}

, (A.1)

where
Q̂σ(τ) = a+σ (τ)ξσ(τ) + ξ+σ (τ)aσ(τ). (A.2)

Let us average over the variables of the auxiliary Fermi-field

〈σ(β)〉ξ =
1

Zξ

Sp e−βHξσ(β), (A.3)

using the semi-invariant expansion. As a result we will come to the statistical oper-
ator for a given atom

ρ̂(a) =
1

Z(a)
e−βH0Tτ exp

{
∞∑

n=2

V n

n!
Mn(a

+, a)

}

. (A.4)

Here only the even order semi-invariants are presented

M2(a
+, a) =

∫ β

0
dτ1

∫ β

0
dτ2

∑

σ1σ2

〈Tτ Q̂σ1
(τ1)Q̂σ2

(τ2)〉cξ,

M4(a
+, a) =

∫ β

0
dτ1 . . .

∫ β

0
dτ4

∑

σ1...σ4

〈Tτ Q̂σ1
(τ1) . . . Q̂σ4

(τ4)〉cξ, (A.5)

etc.; after the averaging over the ξ-subsystem they are the operators acting on the
atomic electron states.

Introducing the Green’s function

−〈Tτξσ1
(τ1)ξ

+
σ2
(τ2〉ξ = δσ1σ2

Gσ1
(τ1 − τ2) (A.6)

and applying the Wick’s theorem we can see that only the semi-invariant of the
second order exists

M2(a
+, a) = −

∑

σ

∫ β

0
dτ1

∫ β

0
dτ2Gσ(τ1 − τ2)a

+
σ (τ1)aσ(τ2), (A.7)
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while all semi-invariants of the higher order are equal to zero

M4(a
+, a) = M6(a

+, a) = . . . = 0. (A.8)

(the ξ-subsystem with the Hamiltonian Hξ is defined as an ideal one).
Finally we obtain

ρ̂(a) =
1

Z(a)
e−βH0Tτ exp

{

−
∑

σ

∫ β

0
dτ1

∫ β

0
dτ2Jσ(τ1 − τ2)a

+
σ (τ1)aσ(τ2)

}

, (A.9)

where the notation V 2Gσ(τ1 − τ2) = Jσ(τ1 − τ2) is introduced.
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Наближена аналітична схема методу динамічного

середнього поля для сильно скорельованих

електронних систем

І.В.Стасюк

Інститут фізики конденсованих систем НАН Укpаїни,

79011 Львів, вул. Свєнціцького, 1

Отримано 17 березня 2000 р.

У роботі розроблена наближена аналітична схема методу динамічно-

го середнього поля (МДСП), який використовується для електрон-

них систем з хаббардівськими кореляціями і є точним при безмежній

розмірності простору. Ефективна одновузлова задача, що виникає

в цьому методі, сформульована за допомогою допоміжного фермі-

поля. Для її розв’язання використано техніку незвідних функцій Грі-

на при проектуванні на хаббардівський базис фермі-операторів. От-

римано систему рівняннь МДСП у наближенні, яке є узагальненням

наближення Хаббарда-ІІІ і поєднує його із самоузгодженим перенор-

муванням локальних електронних рівнів. Показано, що ряд відомих

наближень, що базуються на одновузловій структурі власноенерге-

тичної частини електронної функції Гріна, є простими частинними ви-

падками запропонованої схеми.

Ключові слова: сильні електронні кореляції, модель Хаббарда,

теорія динамічного середнього поля, допоміжне фермі-поле,

незвідні функції Гріна

PACS: 71.10.Fd, 05.30.Fk
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