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chemical models. The associative mean spherical approximation (AMSA)
for electrolyte theory is reviewed. It is shown that AMSA in combination
with the Ebeling association constant satisfactorily reproduces the ther-
modynamic measurement data up to high concentrations for nonaqueous
solutions of solvents of relative permittivities in the range 20 < ε < 36 . For
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trimers and tetramers to obtain a correct description of osmotic coefficients
and ionic conductivities.
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1. Introduction

It is our pleasure to dedicate this article to I.R. Yukhnovskii whose fundamental
work in statistical physics yielded a considerable progress in the theory of electrolyte
solutions. To his work belongs a general scheme of plasma-parameter expansions for
pair distribution functions of ionic fluids [1], the application of the collective variables
method to the correct treatment of long and short-range interionic interactions [2]
and the development of the ion-molecular approach for the correct description of
solvation phenomena in electrolyte solutions [3–6].

Another important aspect of electrolyte solutions is connected with the ionic
association concept introduced by Bjerrum [7] and used in the chemical model ap-
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proach [8,9]. In the framework of this approach the electrolyte is considered to be
a mixture of free ions and ion aggregates (usually ion pairs and sometimes trimers,
tetramers etc.) which are assumed to take part in chemical equilibrium according to
the corresponding mass action law (MAL). For the description of such mixtures the
theory of ionic fluids is traditionally modified by simply correcting the ion concen-
trations using the concentration of free ions obtained from the MAL [7–9]. However
this approach neglects the contributions of electrostatic interaction from ionic ag-
gregates and therefore is correct only in the regime of weak association. At the
increasing association, the electrostatic contributions of the ion aggregates increase
and are not negligible.

Another route [10] starts from the associative mean spherical approximation
(AMSA) [11] based on the theory of associating fluids [12–14]. It was shown that
this approach coincides with the traditional approach of weak association, but also
is correct in the regime of strong association. With Ebeling’s expression of the asso-
ciation constant [15,16] the theory correctly reproduces both the high coupling limit
of ion association and the low density limit. This theory reproduces satisfactorily the
experimental osmotic coefficients of nonaqueous electrolyte solutions with solvents
of relative permittivities in the range 20 < ε < 36 up to high ion concentrations [10].
For solvents with lower permittivities the theory was modified to take into account
the effect of ion trimers and tetramers [17], and then satisfactorily reproduces the
experimental data of low permittivity electrolyte solutions.

This AMSA approach will be reviewed in the present paper. Applications used
for the description of the concentration dependence of vapour pressures and conduc-
tivities of nonaqueous solutions of associating electrolytes will be discussed.

2. Model and theory

The description of thermodynamic and transport excess properties of nonaqueous
electrolyte solutions is based on the ionic approach (McMillan-Mayer level) using a
chemical model considering free ions and ion associates in equilibrium. The effect of
solvent molecules is accounted for by introducing the permittivity ε into Coulomb’s
interaction law and by appropriately choosing the short-range part of interionic
interactions.

We begin with the formation of electrically neutral ionic pairs in the framework
of the restricted primitive model given by the following interactions

Uab(r) =

{ ∞, r < R,
ZaZbe

2

εr
, r > R,

(1)

where Z+ = −Z− = 1, R is the diameter of ions, e is the elementary charge, ε is the
solvent permittivity.

After solving the corresponding AMSA for this model we will modify the results
obtained to take into account the possibilities of trimer and tetramer formation.

658



AMSA in the theory of nonaqueous electrolyte solutions

2.1. AMSA theory

AMSA theory represents the two-density version of the traditional mean spherical
approximation [18,19] for an ionic fluid of associative particles. To treat the ion
pairs we introduce in the chemical picture in addition to the charged hard sphere
interaction, equation (1), a formal short range cation-anion interaction, U as

+−
(r),

which is responsible for the formation of electrically neutral ion pairs [C +A−]0 fixed
by the value of the second ionic virial coefficient of the system in Ebeling’s physical
picture of complete dissociation [15,16].

The formation of ion pairs determines the concentration of free ions c+ = c− = αc
according to the MAL

1− α

α2
= cKA

(y
′

±
)2

y
′

0

, (2)

where α is the degree of dissociation, c = ρ/2NA is the analytical electrolyte concen-
tration, ρ = ρ+ + ρ− is the total number density, NA is the Avogadro constant, KA

is the equilibrium constant of ion-pair formation, y
′

±
is the mean activity coefficient

of the free ions in solution, and y
′

0 is that of the ion pairs.

The MAL (2) is written in the form [12–14]

1− α

α2
= 4πcNA

∫

∞

0

f as
+−

(r)g00+−
(r)r2dr, (3)

where f as
+−

(r) = exp(−βUas
+−

(r))− 1 is the Mayer function for the associative inter-
action, β = 1/kT , T is the temperature, k is the Boltzmann constant.

At the sticky limit follows

f as
+−

(r) = Bδ(r − R) (4)

and the equation (3) can be rewritten in the form

1− α

α2
= c4πNABR2g00+−

(R), (5)

where g00+−
(R) is the contact value at r = R of the pair-distribution function of the

unbound oppositely charged ions.
From the comparison of equations (5) and (2) for charged hard spheres follows

KA = 4πNABR2eb,
(y

′

±
)2

y
′

0

= e−bg00+−
(R), (6)

where b = e2/(εkTR) is the Bjerrum parameter characterising the Coulomb inter-
actions between ions at contact distance, and one has [15]

KA = 8πNAR
3
∑

m>2

b2m

(2m)!(2m− 3)
. (7)
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The total pair correlation function hij(r) between two ions i and j is represented
as a sum of four terms [10–12]

hij(r) = h00
ij (r) + h01

ij (r) + h10
ij (r) + h11

ij (r), (8)

where the upper index 0 announces that the corresponding ion is free, and the index
1 indicates, when it is bounded in an ion pair, the function g 00

ij (r) = h00
ij (r) + 1.

The functions hαβ
ij (r) satisfy the system of Wertheim-Ornstein-Zernike (WOZ)

equations [11,12]

hij(r12) = Cij(r12 +
∑

l

ρl

∫

Cil(r13)xhlj(r32)dr̄3, (9)

where the matrices hij(r) and Cij(r) have the elements hαβ
ij (r) and Cαβ

ij (r), and

x =

(

1 1
1 0

)

. (10)

As usual, due to the symmetry of the RPM it is possible to define the sum and the
difference functions

hαβ
s (r) =

1

2

(

hαβ
++(r) + hαβ

+−(r)
)

, hαβ
D (r) =

1

2

(

hαβ
++(r)− hαβ

+−(r)
)

(11)

and corresponding expressions for the C-functions.
Then the WOZ equation (9) decouples into a set of two matrix equations

hs(r12) = Cs(r12) + ρ

∫

Cs(r13)xhs(r32)dr̄3, (12)

hD(r12) = CD(r12) + ρ

∫

CD(r13)xhD(r32)dr̄3. (13)

The AMSA closures for the electroneutral sum problem (index s) are the same
as for the associative hard sphere Percus-Yevick (PY) approximation [20]

h00
s (r) = −1, h00

s (r) = h10
s (r) = h11

s (r) = 0, r < R;

C00
s (r) = C01

s (r) = C10
s (r) = 0, C11

s (r) =
(1− α)

4πρ
δ(r − R), r > R. (14)

Similarly, this follows for the difference case (index D)

h00
DD(r) = h01

D (r) = h10
D (r) = h11

D (r) = 0, r < R;

C00
D (r) = −bR

r
, C01

D (r) = C10
D (r) = 0, C11

D (r) = −(1 − α)

4πρ
δ(r −R), r > R. (15)

The function g00+−
(r), introduced into the MAL, equation (5), is defined by

g00+−
(R) = 1 + h00

+−
(R) = 1 + h00

s (R)− h00
D (R) (16)
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or in its exponential approximation [21]

g00+−
(R) = [1 + h00

s (R)] exp[−h00
D (R)]. (17)

The solution for hs(r) formally coincides with Wertheim’s solution [20] for dimer-
izing hard spheres with α calculated from equation (5). The solution for hD(r) was
also obtained [10,11] and here we briefly repeat the general features of this solution.
Using the Wertheim-Baxter factorization technique, equation (13) is transformed
into two equations:

SD(r) = Q(r)−
∫

∞

0

dtQ(r + t)xQT (t), (18)

JD(r) = Q(r) +

∫

∞

0

dtJD(|r − t|)xQ(t), (19)

where

Jαβ
D (r) = 2πρ

∫

∞

r

shαβ
D (s)ds, Sαβ

D (r) = 2πρ

∫

∞

r

sCαβ
D (s)ds. (20)

After differentiation equations (18)–(19) read

2πρrCD(r) = −Q′(r) +

∫

∞

0

dtQ′(r + t)xQT (t), (21)

2πρrhD(r) = −Q′(r) + 2πρ

∫

∞

0

dt (r − t)hD(|r − t|)xQ(t). (22)

From the AMSA closures Q(r) has the form

Q(r) = q(r)− lim
µ→0+

Ae−µr, (23)

where
q(r) = q0 + q1(r −R), r 6 R, q(r) = 0, r > R. (24)

The matrix A has nonzero values only in the first row

Aαβ = aβδα0. (25)

Taking into account the structure of hαβ
D (r) for r 6 R according to equation (15)

we have from equation (19) for the matrix elements of q1

qαβ1 = Jαaβ , (26)

where

Jα = 2πρ

∫

∞

0

r dr
∑

β

hαβ
D (r). (27)

From the boundary conditions one has

q000 = q010 = q100 = 0, q110 = −1− α

2
. (28)
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From equation (21) in the asymptotic cases r → ∞ and r → 0 four independent
equations are obtained

(κR)2 = a20 + 2a0a1 ,

2a1 + (κR)2J1R + a0(1− α) = 0,

(κR)2(1 + J0R)2 + 2a0J0R = 0,

a0J1R + a1J0R + (1 + J0R)

(

κ2R2J1R +
1

2
a0(1− α)

)

= 0, (29)

which make up a system of equations for the four parameters J0, J1, a0 and a1
depending on α and κ2R2, where κ2 = 4πe2βρe2/ε is the Debye-Huckel screening
parameter. After some algebra this system can be presented as a single nonlinear
equation of the parameter J0

(κR)2(1 + J0R)4[α− J0R(1− α)] = 4(J0R)2. (30)

This equation can be written in another form, if Blum’s screening parameter ΓB

instead of J0 is introduced

J0R = − ΓBR

1 + ΓBR
. (31)

Then a simple nonlinear equation is derived for the scaling parameter ΓB first
given by Bernard and Blum [21]

4(ΓBR)2(1 + ΓBR)2 = (κR)2
α + ΓBR

1 + ΓBR
. (32)

The equations (32) and (30) containing the degree of dissociation α are consid-
ered together with the MAL equation (5). For the contact value hD(r) needed for
the calculation α from equation (22) we have

h00
d (R) = − q001

2πρR
= −b(1 + J0R)2 = − b

(1 + ΓBR)2
(33)

and using the exponential form (17) for g+−(R), the equation (5) can be written as

1− α

α2
= c4πNABR2[1 + h00

s (R)] exp

[

b

(1 + ΓBR)2

]

. (34)

In the AMSA the contact value of 1+h00
s (R) is equal to the Percus-Yevick value

for the hard-sphere model [5,9]

1 + h00
s (R) =

1 + 0.5η

(1− η)2
, (35)

where η = 1
6
πρR3.

The analysis of equation (30) for J0 or equation (32) for ΓB suggests the exis-
tence of two different regimes, namely the weak (α → 1) and the strong (α → 0)

662



AMSA in the theory of nonaqueous electrolyte solutions

association regimes. In the regime of weak association equation (32) for ΓB reduces
to

4(ΓBR)2(1 + ΓBR)2 = (κR)2α (36)

and in this regime only the electrostatic contribution of free ions is important; contri-
butions from ion pairs can be neglected. The regime of weak association corresponds
to the traditional description of electrostatic ion association [7–9] and is realized for

1 > α ≫ ΓBR

(1 + 2ΓBR)
. (37)

In the strong association regime, equation (32) for ΓB reduces to

4ΓBR(1 + ΓBR)3 = (κR)2(1− α) (38)

and only the electrostatic contribution from ion pairs is important; the contribution
from free ions can be neglected. This regime is realized for

0 6 α ≪ ΓBR

1 + 2ΓBR
. (39)

In the AMSA the thermodynamic properties contain three different contribu-
tions: the hard sphere contribution (HS), the contribution from the mass action law
(MAL) and a contribution from electrostatic ionic interaction (el.) [10,21,22]. The
osmotic coefficient is

Φ =
posm
ρkT

=
pHS

ρkT
+

pMAL

ρkT
+

pel

ρkT
, (40)

where the hard sphere contribution may be calculated by the Carnahan-Starling
expression for hard spheres [23]

PHS

ρkT
=

1 + η + η2 − η3

(1− η)3
. (41)

The effect of ion pair formation on the hard sphere contributions can be calcu-
lated with the help of thermodynamic perturbation theory [20] and is included into
the MAL-terms

pMAL

ρkT
= −1

2
(1− α)

[

1 + ρ
∂ lnhs(R)

∂ρ

]

= −1

2
(1− α)

1 + η − 0.5η2

(1− η) (1− 0.5η)
. (42)

The electrostatic contribution can be obtained by the direct integration of the
internal energy as shown by Bernard and Blum [21]

pel

ρkT
= −(ΓBR)3

3πρR3
. (43)

For the activity coefficient of the free ions one has

ln y± = ln yHS
±

+ ln yMAL
±

+ ln yel
±
, (44)
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where in the same approximation as for osmotic coefficient

ln yHS
±

=
(1 + 2η)2

(1− η)4
, (45)

ln yMAL
±

= lnα− 1

4
(1− α)ρ

∂ lnhs(R)

∂ρ
= lnα− 1

4
(1− α)

5η − 2η2

(1− η)(1− 0.5η)
, (46)

ln yel
±
= −b

ΓBR

1 + ΓBR
. (47)

From the comparison of equations (5), (6), (34) and (47) the electrostatic part
of the activity coefficient of ionic pairs is obtained

ln yel0 = −b
(ΓBR)2

(1 + ΓBR)2
. (48)

2.2. Modified AMSA including the effect of ion trimers and tet ramers

The formation of ion aggregates which are more complex than ion pairs was
first introduced to explain the conductivity of low permittivity electrolyte solutions
[24]. Later on it was shown that this concept is also important for the explanation
of other phenomena [9]. We suppose that in the modified AMSA the formation of
trimers and tetramers follows the reaction

(C+A−)0 + C+(A−) ↔ [(C+A−)0C+(A−)], (49)

where the notation C+(A−) means that the cation C+ can either be a free ion or
is bound in another pair. In the first case we have the formation of ion trimers and
in second case we have the formation of tetramers. A relation corresponding to (49)
holds for the anion A−. As a simplification we consider bilateral triplet formation
[9], assuming that the formation of a trimer is characterized by only one association
constant K2. This means that the concentration of negative trimers (ACA)− equals
that of positive trimers (CAC)+.

Introducing γc as the concentration of ions of a species which is not bound either
in a trimer or in a tetramer. Correspondingly (1 − γ)c will be the concentration of
ions of each species bound in trimers and tetramers. Then the ionic solute is assumed
to exist in the form of single ions of concentration αγc, pairs, (1 − α)γc, trimers,
α(1− γ)c, and tetramers, (1− α)(1− γ)c

αγc+ (1− α)γc = γc, α(1− γ)c+ (1− α)(1− γ)c = (1− γ)c. (50)

Correspondingly, αc is the solute concentration of the charged particles (mono-
mers and trimers) and (1−α)c is the solute concentration of the noncharged particles
(pairs and tetramers)

αγc+ α(1− γ)c = αc, (1− α)γc+ (1− α)(1− γ)c = (1− α)c. (51)
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Note that αc is only the solute concentration. The concentration of charged
particles of one kind ( + or – ) is

αγc+
1

3
α(1− γ)c =

2γ + 1

3
αc. (52)

For the concentration of the noncharged particles one has

(1− α)γc+
1

2
(1− α)(1− γ)c =

γ + 1

2
(1− α)c. (53)

Now we can write the MAL of the ion-pair formation as

1− α

α2
= cγKA(1 + h00

s (R))
(yel

±
)2

yel0
, (54)

which differs from equation (2) by the factor γ. As before KA is the association
constant of ion pairs, for which we can use equation (7). The hard sphere contribution
1 + h00

s (R) is given by equation (35).
We use the expressions (47) and (49) for the electrostatic contributions of the

activity coefficients of free ions, y
′

±
, and of the ion pairs, y

′

0, with correction of
equation (32) for ΓB. For this purpose, we can neglect the electrostatic contribution
from ion trimers and tetramers in y el

±
and yel0 as for equation (36) in the regime

of weak association, α → 1. For γ → 1 we generalize the equation for ΓB in the
following way

4(ΓBR)2(1 + ΓBR)2 = γ(κR)2
α+ ΓBR

1 + ΓBR
. (55)

The second MAL relation for the ion trimer and tetramer formation can be
written in two different forms. For the regime of weak ion pairing (α → 1) the
trimer formation process is the dominating process and

1− γ

γ2
= (1− α)yHS

2 cK2

yel
±
yel0

yel3
. (56)

For the regime of strong ionic pairing (α → 0) the tetramer formation process is
the dominating process and

1− γ

γ2
= (1− α)cyHS

2 K2
(yel0 )

2

yel4
. (57)

The association constant K2 is related to the formation of ion trimers and
tetramers and by analogy with the Ebeling association constant it can be given
as part of the third ionic virial coefficient in the case of equation (56) or as part of
the fourth ionic virial coefficient in the case of equation (57). Third and fourth ionic
virial coefficients can be approximated as electrostatic parts of the second virial co-
efficient for ion-dipole and dipole-dipole interactions, correspondingly [17]. For the
case of simplicity we consider K2 as an adjustable constant and neglect the hard

665



J.Barthel et al.

sphere contribution of equations (56)–(57) assuming that yHS
2 = 1. For the electro-

static part of the activity coefficient of the ion trimers, y el
3 , and ion tetramers, yel

4 ,
we assume that by analogy with the relations (47) and (49) we can write

ln yel3 = −b
(ΓBR)3

(1 + ΓBR)3
, ln yel4 = −b

(ΓBR)4

(1 + ΓBR)4
. (58)

The formation of trimers and tetramers is a process following the ion-pair for-
mation. Usually KA ≫ K2 [9]. This leads to the following order of the quantities α
and γ

0 6 α 6 γ 6 1. (59)

Due to this fact equation (57) is preferable.
The equations (54), (55) and (57) for α, γ and (ΓBR) form a nonlinear system

which in the general case can be solved numerically, e.g. by a Newton-Raphson
technique.

After including trimers and tetramers the osmotic coefficient Φ has a form similar
to equation (40), where the hard sphere contribution PHS/ρkT is again given by
equation (41). For the MAL-contribution we take into account only the ideal terms
from free ions, ion pairs, trimers and tetramers. As a result instead of equation (42)
we have

PMAL

ρkT
= αγ +

1

2
(1− α)γ +

1

3
α(1− γ) +

1

4
(1− α)(1− γ)− 1. (60)

The electrostatic excess contribution is given by equation (43) where ΓB is cal-
culated from equation (55). We note that due to the approximation made for the
calculation of ΓB in equation (55) we neglect in this calculation electrostatic contri-
butions from trimers and tetramers for the osmotic coefficient because with γ → 0
also ΓB → 0.

The activity coefficient of the free ions has the form (44) with a similar modifi-
cation for yMAL

±
and yel

±
.

The results obtained are also useful for the calculation of the ionic conductivity
of nonaqueous electrolyte solutions. Several attempts exist for the calculation of the
molar conductivity of associating electrolytes beyond the limiting law in the chemical
model at the level of the mean spherical approximation [9,25,26], where, however,
only ion pairs were taken into account. Ion pairs and tetramers are electrically
neutral, non-conducting species in the solution, by contrast to the ion trimers. The
total concentration of charged particles is given by equation (52) and due to this we
modify the result obtained by Turq et al. [25,26], changing α to 1

3
α(2γ + 1) and Γ

to ΓB. Then we have the following expression for molar conductivity

Λ=α
(2γ+1)

3
Λ0

[

[

1+Srel

(

α
2γ+1

3

)][

1+Sel

(

α
2γ+1

3

)]

+
3

2

[

Srel

(

α
2γ+1

3

)]2
]

,

(61)
where Λ0 is the limiting molar conductivity of the salt in the form of simple ions at
infinite dilution.
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The first order relaxation contribution S rel and the first order electrophoretic
term Sel are given by

Srel = − b

6

1− exp(−
√
2κ′R)

(1 + ΓBR)2 +
√
2(1 + ΓBR) + 1− exp(κ′R/

√
2)
, (62)

Sel = − Nae
2

3πη0Λ0

2ΓB

1 + ΓBR
, (63)

where (κ′)2 = κ2α 2γ+1
3

is the Debye-Huckel screening parameter for charged parti-
cles, η0 is the solvent viscosity.

3. Experimental data

Ionic association occurring as a result of strong Coulomb interactions increases
at decreasing solvent permittivity ε. However, ionic association also occurs as a
result of chemical interactions due to specific solvation forces [9]. In the following
discussions on solutions of LiClO4 we focus our attention only on the first case.
LiClO4 is known for its remarkable solubility in low permittivity solvents.

To compare theoretical and experimental data, experimental osmotic coefficients
were chosen for acetonitrile and aceton [27], 2-propanol [28], 1,2 dimethoxyethane
(DME) and dimethylcarbonate (DMC) [29] solutions of LiClO4 with solvents of
relative permittivities ε = 35.95 for acetonitrile, ε = 20.70 for acetone, ε = 19.39
for 2-propanol, covering the range 20 < KA[mol−1dm3] < 2000 of the association
constant. For electrolytes with solvents of significantly lower permittivities, ε = 7.02
for DME and ε = 3.09 for DMC, the association constant is much higher (KA >
106mol−1dm3).

Osmotic coefficients ΦLR were obtained by measurements of vapour pressures p
at molalitiesm and temperature T from vapour pressure lowering ∆p = p∗−p, with
p∗ – the vapour pressure of the pure solvent, using the relationship

ΦLR = − 1

2mMs

[

ln
p∗ −∆p

p∗
− ∆p(B − V

∗(l)
s

RT

]

, (64)

where Ms is the molar mass of the solvent, B is the second virial coefficient of the
gas phase solvent, V

∗(l)
s is the molar volume of the liquid solvent, R = kNA is the

gas constant.
To compare with theoretical data, the experimental osmotic coefficients in the

Lewis-Randall (LR) system must be converted to the McMillan-Mayer (MM) system
and molarity c

Φ = ΦLR(1 + 10−3mME)
d∗

d
, Φc =

md

(1 + 10−3mME)
, (65)

where d and d∗ are the densities of solution and solvent, ME = 105.39 g/mol is the
molar mass of salt LiClO4. The densities are available in the form of polynomials

d = d∗ +
3

∑

i=1

Aim
i. (66)
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Table 1. Solvent properties.

Solvent acetonitrile acetone 2-propanol DME DMC
Ms[g/mol] 41.053 58.08 60.069 90.123 90.079
B[cm3/mol] –6190 –2132 –3424 –2000 –1950
d∗[g/cm3] 0.77675 0.78421 0.780716 0.86135 1.06335

V
∗(l)
s [cm3/mol] 52.852 70.995 76.971 104.63 84.664

Pi[Pa] 11745 30803 5777 9136 7226
ε 35.95 20.70 19.39 7.08 3.108

η0[cP] 0.34 0.303 2.08 0.41 0.5902

Table 2. Coefficients of the density polynomials, equation (66) for the various
electrolyte solutions of LiClO4.

Solvent acetone acetonitrile 2-propanol DME DMC
A1 ∗ 102 8.2131 7.1513 7.0936 7.5609 8.087
A2 ∗ 102 –1.5952 –0.64268 –0.8510 5.3787 –0.4516
A3 ∗ 103 10.844 0.8780 1.972 –0.4516 –0.0958

The data used to calculate the osmotic and the activity coefficients for the so-
lutions studied in this paper are taken from [27–29] and are given in table 1 and
table 2.

The experimental ∆p data used to calculate the osmotic coefficients are repre-
sented in the cited literature by polynomials of the type

∆p =
5

∑

i=1

Bim
i−1. (67)

The coefficients Bi are summarized in table 3.
The experimental data for the ionic conductivity of LiClO4 solution in DME and

DMC were taken from the references [30] and [31].

Table 3. Vapour pressure lowering ∆p = p∗ − p of various electrolyte solutions of
LiClO4.

Solvent Conc. range B1 B2 B3 B4 B5

Acetone 0.02–0.58 0.030530 17.7091 –12.3816 22.8147 –14.5306
Acetonitrile 0.06–1.15 0.027440 5.67914 –1.43816 1.36384 –0.433865
2-propanol 0.05–1.48 0.015177 2.74737 –1.01672 1.24942 –0.232199

DME 0.02–0.35 0.003686 6.57103 –19.2202 47.1899 –49.6216
DMC 0.03–1.77 0.052101 3.50040 –4.02156 3.40816 –0.682103
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4. Description of the experimental data with the AMSA

As shown previously [10] the regime of weak ion pairing with ΓB calculated from
equation (36) correctly describes ionic solutions with electrostatic ion association
for solvents of dielectric permittivity ε > 36. For electrolyte solutions with solvent
permittivities in the range 20 < ε < 36 the correct description is obtained in the
framework of the usual AMSA theory. This result is illustrated in figure 1, where
the osmotic coefficients of LiClO4 in different solvents, derived from vapour pressure
measurements, are compared with the predictions of the AMSA. For the association
constant, equation (7) is used yielding KA which is connected with the association
parameter B according to equation (6). ΓB and α are calculated from equations (32)
and (34). The osmotic and activity coefficients are calculated using equations (40)–
(43) and (44)–(47) respectively. Figure 1 shows the satisfactory agreement of one-
parameter AMSA calculations with the experimental results. Distance parameters
between 0.42 nm and 0.48 nm in protic solvents are reasonable, they are larger than
the sum of ionic radii, indicating contributions of contact and solvent shared ion
pairs.

0.0 0.2 0.4 0.6 0.8 1.0
c (mol/l)

0.0

0.2

0.4

0.6

0.8

1.0

Φ , y

(1)

(2)

(3)

(2)

(1)
(3)

y

Figure 1. Osmotic coefficients Φ and mean ionic activity coefficients y± of LiClO4

solutions of different solvents at 25◦: Experimental Φ-values: (circles: acetone;
squares: acetonitrile; diamonds: 2-propanol). Calculations from AMSA theory
(solid lines) (1): acetone, R = 0.48 nm; (2): acetonitrile, R = 0.42 nm; (3):
2-propanol, R = 0.43 nm. Mean ionic activity coefficients: (broken lines).

For ionic solutions of very low permittivity, here for DME and DMC solutions
of LiClO4, the occurrence of ion trimers and tetramers should be considered as it
is known from conductivity measurements [30,31]. For the description of such ionic
solutions we take into account that the permittivity of LiClO4 solutions increases
with ionic concentration in both solvents. This effect can be described up to c =
0.3mol/dm3 by quadratic polynomials in c [9]

ε = 7.08 + 24c− 21.3c2 (68)
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for DME and
ε = 3.11 + 13.3c− 7.7c2 (69)

for DMC.
Experimental data for the osmotic coefficient of LiClO4 solutions in DMC is

known up to 1.77mol/dm3 (see table 3). For higher concentrations the relation (69)
has been altered to a kind of Pade-approximant, to include the saturation effects

ε = 3.11 + 13.3c

(

1 +
7.7c

13.3

)−1

. (70)

The increase of ε with ionic concentration produces an increase of α. This is im-
portant to understand the concentration dependence of the electrolyte conductivity.
For the calculations, the association constant KA of equation (7) was used. ΓB, α
and γ were calculated from equations (54), (55) and (57). The osmotic coefficient is
calculated from equations (40), (41), (43) and (60). To calculate the molar conduc-
tivity we use equations (61)–(63) with Λ0 = 176.4 cm2Ω−1mol−1 for LiClO4 solution
in DME [30] and Λ0 = 115.7 cm2Ω−1mol−1 for LiClO4 solution in DMC [31].

Now our approach contains two adjustable parameters, namely the contact dis-
tance R and the second association constant K2. The calculations show that the
osmotic coefficients can be described up to 0.4mol/dm3 with fixed K2 = 1dm3/mol
and again with the contact distance as fitting parameter, namely R = 0.318 nm for
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ΓR
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]
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ΓR

Φ

α
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✸
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✸✸✸

✸✸✸✸✸✸✸✸✸ ✸✸✸✸✸✸✸✸✸ ✸ ✸

Figure 2. Osmotic coefficients Φ, of LiClO4 solu-
tions in DME. ( ✸ ) experimental values, (solid
line) theoretical values. Also shown: γ – the de-
gree of particles not bound in a trimer or a
tetramer, and α, the degree of charged particles
in the system., and the dimensionless screening
parameter ΓBRi See the text for details.

LiClO4 solutions in DME and
R = 0.1 nm for LiClO4 solu-
tions in DMC. Distances R up
to which two ions are counted as
a pair which are much smaller
than the ion contact distance,
lead to high values of the as-
sociation constant KA, when
calculated from equation (7);
α is practically zero and ac-
cording to equation (61) Λ ≈
0. To avoid this drawback we
modify the theory in such a
way that we introduce two fit-
ting distances, one for the ionic
contact distance, R, which we
use to calculate the associa-
tion constant KA and for the
hard-sphere contribution, equa-
tion (41), and the other one,
Ri, to calculate the electrostatic
contributions connected with
the dimensionless screening pa-
rameter ΓBR, equations (55)
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such that a modified ΓBRi term corrects some of the simplifications introduced
with the chosen forms of the MAL, equations (55) to (57) and the expressions for
the activity coefficients of the higher associates, y el

3 and yel4 , equation (58).
Figure 2 shows the satisfactory agreement of the modified AMSA with two ionic

distances R = 0.42 nm and Ri = 0.22 nm with the experimental results for the
osmotic coefficient of LiClO4 solutions in DME.
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Figure 3. Osmotic coefficients Φ of LiClO4 solu-
tions in DMC and related quantities (as in fig-
ure 2). See the text for details.

Also, the agreement (up
to 0.8mol/dm3) of the modi-
fied AMSA theory with R =
0.55 nm and Ri = 0.13 nm with
experimental results of the os-
motic coefficient of LiClO4 so-
lutions in DMC is presented in
figure 3. The second association
constant for both cases is fixed
as K2 = 1dm3/mol.

In figure 2 and figure 3
the concentration dependences
of α, γ and ΓBRi are also
presented. For both cases the
γ fraction decreases with the
ionic concentration in the limit
of the applicability of the ap-
proximation of equation (55)
for ΓB. The fraction α strongly
decreases, and, beginning from

concentrations near 10−2mol/dm3 slowly increases again. In general α < 0.15 which
justifies the application of the form (57) for the second MAL. Such a behaviour
of α and γ explains the specific features of the concentration dependence of the
conductivity of the considered solutions as shown in the next figures.

A comparison of the experimental data and the theoretical results for the equiv-
alent conductivity obtained from equations (61)–(63) with the parameters used for
the description of the osmotic coefficients is given in figure 4 for LiClO4 solutions
in DME and in figure 5 for LiClO4 solutions in DMC. In both cases the theoretical
curves satisfactorily reproduce the sharp decrease of conductivity for small ionic
concentrations due to ion-pair formation, the existence of a conductivity minimum
at a concentration near 10−2mol/dm3 and the increase of conductivity due to ionic
trimer formation. For higher concentrations we observe for LiClO4 in DMC (fig-
ure 5) a calculable maximum at a concentration near 1mol/dm3 and the decrease of
conductivity at an increasing ionic concentration required by tetramer formation.
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Figure 4. Equivalent conductivity Λ of LiClO4 solutions in DME with the pa-
rameters used to calculate the osmotic coefficient. See the text for details.
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Figure 5. Equivalent conductivity Λ of LiClO4 solutions in DMC. See the text
for details.
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5. Conclusions

An unified approach to the description of the thermodynamic and transport
excess functions of associating and nonassociating electrolytes is proposed which
leads to numerically simple final formulae capable of presenting experimental data
with a minimum of adjustable parameters. These parameters show realistic values
in their definition range.

6. Acknowledgment

This work was completed in the framework of a cooperation between our in-
stitutes at Regensburg and in Lviv, registered under UKR–028–96 at the “Inter-
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Застосування асоціативного середньосферичного

наближення в теорії неводних розчинів електролітів

Й.Бартель 1 , Г.Крінке 1 , М.Ф.Головко 2 , В.І.Капко 2 ,
І.А.Процикевич 2

1 Інститут фізичної і теоретичної хімії, Регенсбурзький університет,
D-93040, Регенсбург, Німеччина

2 Інститут фізики конденсованих систем НАН Укpаїни,
79011 Львів, вул. Свєнціцького, 1

Отримано 9 липня 2000 р.

Іонна асоціація в розчинах електролітів досліджується в рамках хіміч-
них моделей. Дано огляд асоціативного середньосферичного на-
ближення (АССН) в теорії електролітів. Показано, що АССН у комбі-
нації з асоціативною константою Ебелінга задовільно відтворює дані
термодинамічних вимірювань, включаючи область високих концен-
трацій, для неводних розчинів електролітів з розчинниками з діелек-
тричною проникністю в області 20 < ε < 36 . Для іонних розчинів з
низькою діелектричною проникністю АССН модифіковане включен-
ням іонних тримерів і тетрамерів, щоб отримати правильний опис ос-
мотичних коефіцієнтів та іонних провідностей.

Ключові слова: розчини електролітів, асоціативне

середньосферичне наближення, осмотичний і активності

коефіцієнти, іонна провідність

PACS: 61.20.Qg, 66.10.Ed
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