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We present a brief review of the works devoted to a study of critical phe-
nomena in three-dimensional model systems dwelling on the Yukhnovskii
approach in detail. This approach which is based on the use of non-Gauss-
ian measures allows one to obtain both universal and non-universal quan-
tities. In order to illustrate the advantages of the approach proposed by
I.R.Yukhnovskii we apply it to a study of non-universal quantities, namely:
(1) the phase transition temperature of a 3D one-component lattice model,
(2) the gas-liquid critical point properties of fluid systems.
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1. Introduction

A description of phase transitions as well as critical phenomena connected with
them remains a relevant problem. By now a number of theoretical approaches in this
field have been proposed and the original schemes of numerical calculations of critical
properties of model systems have been developed. A new stage in the development
of the phase transition theory was related to the hypothesis of universality put by
L.Kadanoff [1]. The idea of an e-expansion which appeared to be effective for the
calculation of universal characteristics of statistical systems in the vicinity of their
phase transition points was proposed in [2]. This idea occupied a significant place
in the theory of critical phenomena. Considerable progress towards the calculation
of universal quantities was also made due to the technique of the resummation of
asymptotic series proposed in [3-5]. Among the approaches devoted to the study
of critical phenomena one should distinguish works [6,7] which were not connected
with the use of an e-expansion.
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One of the relevant approaches to the theoretical description of phase transitions
was proposed by K.Wilson in [8] and was developed in his further paper, namely in
[9]. In these works the Kadanoff idea [1] was embodied in the concrete mathematic
formulas. As the result of these investigations the calculation scheme of both critical
exponents and critical amplitude ratios near the phase transition point was proposed.
The theory was constructed by means of the moments of the Gaussian distribution.
As is known these moments tend to the infinity when the system approaches the
critical point. Consequently, the approach by K.Wilson did not allow one to obtain
the explicit expressions for non-universal characteristics of the model systems under
consideration. However, one can get reliable results for many universal quantities
using the effective methods of the asymptotic series resummation (see [10]).

In this work we present some results of the latest calculations of non-universal
characteristics for statistical models of the phase transition in the critical region us-
ing the approach proposed by I.Yukhnovskii [11]. This approach similar to Wilson’s
work is based on the hypothesis of universality [1]. The distinction between these
approaches consists in using different basic distribution types. The Wilson method is
based on the use of the Gaussian basic measures and therefore, results in the emerg-
ing of diverging diagrams near the phase transition point [12]. In contrast to Wilson’s
works the Yukhnovskii approach is based on the use of the non-Gaussian measures.
As a result, there arise no diverging diagrams in the calculating of the critical be-
haviour of three dimensional models. This approach allows one to calculate both
the universal and non-universal quantities for a number of phase transition mod-
els. Among the systems investigated by the Yukhnovskii method is the Ising model
[13-14], the n-component model [15-18], the hierarchical model [19], the cluster fer-
roelectric model [20], the fluids in the vicinity of their critical points [21-23] and
others. The construction of the phase transition theory for each of these models has
some special features.

In contrast to lattice systems, the description of phase transitions in continu-
ous systems has a number of the important peculiarities. On the one hand, as one
usually does in the liquid state theory, we should distinguish a reference system
describing the behaviour at short distances. This will allow us to take into consid-
eration the short-range and long-range interactions simultaneously. On the other
hand, the grand canonical ensemble (GCE) should be used in order to describe the
processes relating to the phase transitions in multi-component fluids in which the
composition fluctuations play a crucial role (e.c., the gas-gas and liquid-liquid equi-
libria in binary fluid mixtures). The task of the development of the CV method for
the case of the GCE is also caused by the problem of a selection of the CV phase
space which includes the variable connected with the order parameter. Therefore, it
is necessary to introduce the GCE in the CV method in the studies of the gas-liquid
critical point in a one-component fluid.

We present herein the main aspects of the CV method with a reference system
for a multi-component continuous system in the GCE as well as some results for
simple and binary fluids obtained using the Yukhnovskii approach.

Yukhnovskii’s approach is the synthesis of several basic constituents. First this is
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a choice of a phase space in which the system is described by means of a certain type
of collective variables (CV) [11]. For a magnetic system the CV are the variables
connected with spin density fluctuation modes; for a ferroelectric they are connected
with cluster state fluctuation modes; for a charged-particles system, with generalized
charge fluctuation modes; for a binary alloy, with modes of one-particle distribution
function; for a one-component fluid, with particle density fluctuation modes and etc.
The description of phase transitions is connected with collective effects. Choosing the
collective variables specific for a certain physical model we obtain a set of variables
the averaged values of which are related to the order parameters. In this approach
it is not necessary to introduce the quantities from the “outside” for a description
of the ordering in the system. The following constituent of Yukhnovskii’s approach
is justifying and then using the non-Gaussian density measures as the basic ones
[12]. This feature distinguishes this approach from the widely known methods of the
phase transition description based on the use of the Gaussian moments. It allows one
to obtain the explicit analytical expressions for main thermodynamic functions near
the phase transition point as the final result. The following and basic constituent
of Yukhnovskii’s approach is the way of calculating the partition function near the
phase transition point. Although this original calculation method [24] as well as
Wilson’s approach exploit the renormalization group (RG) ideas, it is based on the
use of the non-Gaussian measures. This allows one to obtain a qualitatively new form
of the recurrence relations (RR) between the coefficients of the block Hamiltonians.
In the limiting case (corresponding to the Gaussian basic density measure) these
RR reduce to the Wilson RR [9]. As was shown in [25], while this limiting case does
not allow one to perform the calculation of the expression for the free energy of the
system under consideration, it provides reliable results for the critical exponents of
thermodynamic characteristics.

Hereafter we apply the Yukhnovskii approach to the description of non-universal
quantities, namely: (1) the phase transition temperature for a 3D one-component
lattice model, (2) the gas-liquid critical point properties both of a one-component
fluid and a binary mixture.

2. A partition function in the CV representation for a one-co m-

ponent lattice model

Let us consider a simple one-component system of spins on a three dimensional
crystal lattice with a period c¢. The Hamiltonian of such a system can be written as

The interaction potential ®(r;;), where 7;; = | — 7| is chosen in the following form

®(ri;) = Aexp(—ry/b), (2)
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where b is the effective interaction radius of the potential. The Fourier transform of
(2) has the form [27]

Dy(k)=2(0)(1+0%k*)7%,  ®(0) = Ag87 <9)3. (3)

c
In the case of a simple cubical lattice with a period ¢ we have the Brillouin zone®

- T 21

= k= kx,k,kz l{?z:—— — =, i:1727---7Ni y 4
B {F = (kb kol = =T+ 2% } (@)

where i = z,y, z, N is the total number of particles (N = N,N,N.).
In the region of small values of the wave vector k£ we shall use the parabolic

approximation for (3)

B(k) = B(0)(1 - 27K2), (5)
which takes place for & < B’. The quantity B’ is found from the condition ®(k) =0

and is equal to
1

N

Let us introduce the parameter Sy determining the size of interval (B', B|

!/

(6)

Sy = B/B' =7V2 (9) v b (7)

™ C

Corresponding to (7) we have Sy > 1 and hence b > by, where

C T
boin = —— (Z) ~ 0.181413¢.
ﬂ\/i((s) 81413¢ ®)

For most models of statistical physics the quantity b is considerably larger than b ;.
Let us write a partition function of the model (1) in the CV representation [28§]

2= [exp | 538000 | Jo)aop)™ (9)

keB

!The calculation of (3) is performed using spherical coordinates. For a lattice system the fol-
lowing condition should be satisfied
1
~ di=1

keB

In the spherical coordinates this condition can be rewritten in the form

1 1V B
— 1= ——4 k2dk
N l; N (27)3 7T/0 ’

B=" (ﬁ)l/s.
C s

where
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where the module of the wave vector k is changed within the interval (— B, B]2, J(p)
is a Jacobian of the transition. Variables p; and p; are related by the relations

1 iR 1 iR
pg:\/—ﬁzpfe : Pf:\/—ﬁzpk’e- (10)

leA keB

We assume that

[6(pp+ 1) +6(pp—1)] (11)

DO | —

Jp) =117, J(op) =

leA

as it is in the case of Ising-like systems.

We shall calculate (9) according to the method proposed in [27]. This method
is based on the Wilson approach [8] which consists in the layer-by-layer calculation
of a partition function by means of the successive exclusion of short-wave-length
fluctuations from consideration. This is the realization of the Kadanoff idea of the
construction of effective block lattices described in detail in [9]. The essence of
the calculation of (9) reduces to a certain approximation for the potential ®(k)
by its replacement with a set of constant values ®,,, different for each interval of
k € (Bni1, By). Such a procedure allows one to calculate the free energy of the
system in the non-Gaussian measure approximation and to describe the critical
behaviour without using the traditional methods, particularly, an e-expansion. As
a result, within the framework of a unified scheme one can perform the calculation
of the full expressions for thermodynamic functions and thus obtain both universal
and non-universal characteristics of the model under consideration.

2.1. Calculation of the partition function

The long wave-length fluctuations (which correspond to small values of the wave
vector E) play an important part in determining critical properties of the model.
For this reason the Fourier transform of the potential ® 5 (k) can be replaced by its
parabolic approximation (5). However, values of the phase transition temperature 7'
depend on how accurately an effect of ®(k) is taken into account (especially for large
values of the wave vector). Here we cannot restrict our consideration to small values
of k. Therefore we use the following approximation for the interaction potential

] ®(0)(1 - 20%k2), ke B,
(k) = { P(0)® = by, k€ B\B. (12)
Here
P = (D) + P, (13)

2In our calculation we shall use “spherical” analogue of the Brillouin zone, where the wave
vector k (in contrast to (4)) will be written in spherical coordinates.
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Now we integrate in (9) over variables p; for k € B\B,. For this we present Z in
the form

Z = /eXp g > (®(k) — Po)pgo_i + %6% S oere| [T 7epder (14)

keBg keB leA

We pass from variables p; (in the first term of (14)) to variables 7y by means of the
transformation

2

exp J D (@(k) — Do)ppp_g :/R Ao (i — prp)e? Zremo PO g (15
EEBO !

and use the integral representation for delta function §(n; — pz)

(g — pg) = / exp | 2mi Z (g — pp)wi | dwg. (16)
Fa EEBO
The integration in (15) and (16) is performed over the N’ variables, where N’ =

H‘j:l N,.. The Brillouin zone corresponding to the crystal lattice with the period ¢’
(¢ = ¢Sp) and with N’ cites is determined by means of the relations

_ ALY NI L A
BO - {ko—(ko ,...,]{IO)V{;O —FE, n = 1,27...,Ny},
Ao = {fo =, D =, n = 1,2, N} (17)

In further calculations we shall use the spherical coordinates system. We obtain from
(14), taking into account (15) and (16)

1
7 = / d,o,;/ d77/§/ dw; exp 55 Z(‘P(k) — Po)mgm_;
RN ' RN keB

+2mi Y (g — pp)wz | [T 71000 (18)

keBo leA
Here the following notation is introduced
Tipp) = e27* 1 (pp). (19)

It should be noted that the transformation (15) was first used in [28]. In the following
the modification of this transformation proposed in [19] will be used. Following this
work we introduce the variable

- Wi, ke B(),
wk - { O, ke B\BQ (20)
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We have the relations for w;

ikl -

1 1 o
(I)E = ﬁ Z (Dfe_ ; Wy = \/—N Z (Z}Eelkl. (21)
Taking into consideration (20) we can write

D Wi =) Wi = ) Wiy (22)

keBg keB leA

Let us integrate over variables p;. We introduce the notation

R | )
RN -
leA

Taking into account (11) we find

Q@) = exp (%&DON) [T cos(2rnp). (23)
leA

It is known that cos(2mi;) is the Fourier image of the probability measure 6(z? —1).
According to Martsynkevich’s theorem [29], the function exp[P(w)]| (where P(w)
is a polynomial within powers of w) can be the exact Fourier transformation of
a probability measure if P(w) is the Gaussian type polynomial, namely P(w) =
Py(w) = —a*w?. Therefore, function exp(P,(w)), where P,(w) is a higher order
polynomial, is not an exact Fourier transformation of the probability measure.

On the other hand, it is proved that Gaussian type distributions do not allow
one to describe correctly the behaviour of three dimensional systems in the critical
region. The higher order correlation functions play a crucial role in the vicinity of
T, and one should describe the physical processes using non-Gaussian distributions
of fluctuations.

For small w; the Fourier image of the probability measure 6(z* — 1) can be
presented in the following form:

cos(2mwy) = exp [Z(Qﬂi)"%/\/lnwl%] . (24)
n=0

We find for cumulants M,: My = My,1 = 0; My =1, M, = =2, Mg = 16,
Mg = —272, and etc. The relation (24) is an exact one for small w;-values. For small
wy-values the Fourier image of the probability measure d(z* — 1) can be written
in the form exp(Pa, (@), where Py, = 37 - ((271)" s Myw)' is the non-Gaussian
polynomial of an infinite order. Let us perform an analytical continuation of Ps,.
The coefficients standing at all the powers of @, in the exponent (24) are negative.
Such a function is analytical, finite and it decays rapidly if w; increases. We choose

the function "
Q@) = exp (Z(z*m)?n o w?") (25)

n=0
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as a Fourier image of some measure. This measure will be considered to correspond
to some three-dimensional lattice system with a one-component order parameter. It
is easy to verify that such a measure corresponds to a model with an unbounded
spin and the Fourier transform of this model is given by (25).

Such an approximation took place implicitly in a series of the works, namely in
[13-16]. The work [30] is also devoted to similar problems.

We use (25) as a Fourier transform of the measure and write the partition func-
tion (18) in the form

Z:C/ dngexp[ /22 — Do) npn_ ]/ dwge 2™ X ke W
RN/ RN

keBy
—2n)

Here C = exp(3 3P0 N), @, is found from (20)—(22) and certain type relations for 7j;
hold. Let us perform some transformation

-2 - L
wa = Z“k“fk’

e (Z "

leA

leA keBy
1
7271 _ =, — B
Z N Nn—1 Z wklmwk?nék‘ﬁr Akan’
leA E1,....keBy

where 55 AR is a Kronecker symbol on the lattice with Brillouin zone B. We
17T-.. 2n

assume that
58 _ ¢Bo
ki+.. +k?2n k1+...+k2n.

It allows us to pass to a new (block) lattice with Brillouin zone B, (17). This con-
ventional approximation [8,11,15] is the realization of the Kadanoff’s idea [1] about
the block structure generation in the vicinity of the phase transition point. As a
result,

7 _ / iy /2 S (P T0)gn_g / Qo o7 Ticey 457
RN/ RN’

mo

Z 1 1—n Z B
xexp | =) (2m)" (2n) <N/) M, wEl'"wE?néEer...JrEzn

n=1 K1,....k2n€Bg

where
/2 = M27 Mﬁl = _M456d7 % = M6562d7 /8 = _M8563d7
Let us calculate the integral over w. For this we pass to the w;-representation

1 iR
w,; = —N’ Z er ;

leAg keBo
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We have

[o¢] i M/ MI MI /
H _ dwy 2™ exp l—(27r)22—!2wl%—(27r)44—!4 ;—<27r)66—!6 g—(2ﬁ>88—!8wl§ .
leAo

(26)
Integrals of this type were calculated in [27]. Expression (26) can be presented in
the form 3

a N’ 1 1 a/
eV [ Jexp [‘5‘“2?7? — gy 6‘??7?} ,
leA
where
, o0 ! M
% = / fl)s: f) = exp (= So@nn (27)
mn:
—0o0 n=1

and we find for the coeflicients as,

ay = (2m)°Qa,  aj = (2m)*[-Qu +3Q3), a5 = (27)°[Qs — 15QuQ2 + 30Q3], (28)

= [ s ) [ o

Since the coefficients a),, depend on the values of the renormalized cumulants MY,
they are functions of b/c. We have for b/c large enough

where

ag = —0.918939, a5 = 1.000,

and ab,, are all zero at n > 2.
For large values of interaction radius b we can use the function

J'(w) = exp(—w? — gu' — fu — k)
instead of the function f(w) from (27), where

!/
M4 —d

M
= —0F = S , 6
I=6mpz — 900

9OM}

_ Mg
2520 M

f= = f0S5*, = koS ™.
Here gy = 1/3, fo = 8/45, ko = 34/315, the quantity Sy is presented in (7). We find
for the coefficients a),,

1 ]2 2
%:% moa a/2:M,2T27
! 4 2 ! 8 3
=1 [—T) + 3T5] t = s [Ts — 15715 + 3073 (29)
2 2

3Although there are the higher order terms with respect to n;in the exponent we shall restrict
ourselves below to the p® model approximation.

615



M.P.Kozlovskii, O.V.Patsahan

where - -
Ty, = / W f(w)dw/Ty; Ty = / [ (w)dw.
Formulas (29) are equivalent to (28). The existence of the small parameter Sy ¢ in
(29) (for large values of b/c) makes them more advantageous ones than (28).
We perform the approximate calculation of the coefficients af,, from (29) taking
into consideration that Sy is the small quantity. We have

00 A1t 2m
Jop = / w?™ exp [— Z <(2n)z)' 'Qmwm] dw

—00

1 1
2 \""2 /1 \TTE O 6
— - n, —v-—gv*—fr°—kv d
(M;) ((W) [ :
We find for the small S;3-values (it corresponds to the large b/c-values, b/c > 0.5)
2\ (2n+1 2n + 5
= | =—— r — gl
= (aan)  P(%20) - (%57
1, (2n+9 o + 7
—g°T — fr
rarr (557) - (%57
1 2 1 2 11 2
——g?’r<”+ 3)—|—ng(”; )-kf(”;9)+...+o<so2d)].

6 2
Introducing the notation
QQn = JQn/J07
we have (with an accuracy to O(S;*?))
i 45 1125 105
Q: = (2m)2|1-3g+24g° — 19— 297¢" + ——gf — 74 ,

[ 75
Qs = (2m)™* |1 —8g+99¢* — 79 1632¢> + 13359 f — 2104 ,

i 339 16407 1113
Qs = (2m)° |1 - 159+ 267" — = =g — 5706¢° + - k:] .

PR
According to (28) we find

2
ags = 1—559+ 550% + OS54,

ags = 2S5%(1 —3Sy% + 45,2 + O(Sy ',
ags = 2455241 —55;%) + O(S;). (30)
The values of the coefficients ass can be calculated for each value Sy and therefore
for each b/c (Sy = mv2(£)3/c).
In table 1 the values of the coefficients a}, from (30) as well as their values
obtained from (29) are presented. As is seen, the approximate formulas (30) allow
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us to obtain these coefficients with reasonable accuracy even with the comparatively
small values of b/c. Therefore, for all b/c > 0.5 we can use the approximate formulas
(30) for the calculation of the coefficients as,.

The partition function can be written as

Z = e_%BCDON / dT/E 65/2 ZEGBO((I)(k)iq)O)nEW,E
RN’

! U
x e®N" exp —E on

a’2n

n>1

k €Boy

1 n E :
?7]61 nkQ” k1+ +k2n ’

where coefficients a),, are determined by (28) or by (29). For b/¢ > 0.5 the coefficients
asy, can be calculated by means of the approximate formulas (30).

Table 1. Coefficients of the partition function functional (asg, asg, asg) and their

approximate values (ags, a4s, Ggs)

b

Ags

Ays

g

agg

a4g

aGg

0.20

0.624568

2.961750

0.586520

0.207385

0.424144

0.25

0.624568

2.961750

0.586520

0.207385

0.424144

0.30

0.715424

0.435715

0.723583

0.235174

0.462759

0.35

0.811503

0.246542

-0.759899

0.815973

0.215523

0.355297

0.40

0.873682

0.185498

0.040187

0.875252

0.176854

0.225781

0.45

0.912515

0.141203

0.090953

0.913029

0.138264

0.132073

0.50

0.937343

0.107616

0.064275

0.937514

0.106562

0.075758

0.55

0.953758

0.082734

0.040262

0.953817

0.082342

0.044024

0.60

0.964973

0.064421

0.024909

0.964995

0.64270

0.026281

0.65

0.972869

0.050869

0.015643

0.972877

0.050808

0.016183

0.70

0.978575

0.040728

0.010049

0.978578

0.040702

0.010276

0.75

0.982796

0.033038

0.006614

0.982797

0.033026

0.006714

0.80

0.985981

0.027125

0.004456

0.985982

0.027120

0.004502

0.85

0.988430

0.022519

0.003068

0.988430

0.022516

0.003090

0.90

0.990341

0.018884

0.002156

0.990341

0.018883

0.002167

0.95

0.991855

0.015982

0.001543

0.991855

0.015981

0.001548

1.00

0.993069

0.013639

0.001123

0.993069

0.013639

0.001126

1.05

0.994053

0.011729

0.000830

0.994053

0.011728

0.000831

1.10

0.994860

0.010156

0.000622

0.994860

0.010156

0.000623

1.15

0.995528

0.008851

0.000472

0.995528

0.008851

0.000473

1.20

0.996085

0.007759

0.000363

0.996085

0.007759

0.000363

2.2. Calculation of the phase transition temperature

We use the results for the coefficients a), obtained above for calculating the
phase transition temperature. Using the results of the work [31] we can write the
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partition function in the p*-model approximation

a/ ! 1
Z = (e /eXp(—§ > dk)pgo_i

EEBO
/

a n —-n !
- Z (2721)! (V') Z pgl.../)xzméﬁw...%zn) (dp)™, (31)

n>2 Ey...kop
k;€Bq

where d(k) = ay — fP(k).

The coefficients a),, obtained in [31] are functions of temperature (see formulas
(14)—(16) in [31]). This is due to the calculation method proposed in [31]. The
constant C” also depends on temperature.

Using the calculation method for the coefficients af,, proposed in this work we
obtain the only temperature depending coefficient, namely a,. All the rest coefficients
with n = 0 and n > 2 do not depend on temperature. This result is achieved due to
the extension of the collective variable phase space (equation (20)) proposed first in
[19].

Let us use the values of the initial coefficients as, ) from (31) for the calculation
of the phase transition temperature. The quantities entering into (31) have the form

1
C' = exp <—§B¢ON) exp(agN'),
Ay = al2 _'_ 6(1)07

where a), and a)y are determined from (29) or from (30). Consider the coefficient as
in detail. According to (12)—(13) we have

ay = aby + P(0).

For the calculation of the phase transition temperature we use the equation written
in [31]:

as — B.®(0) — r*(T.) — R(T,)(a), — u*(T:)) = 0.
Here r* and u* are the coordinates of the fixed point of the recursion relations
between the coefficients agl,z of the two successive block structures

' =—foB®(0), u"=(82(0))* (32)
where the quantities fy and ¢y are calculated in [31]. For o’ = 1.00 we find
fo = 0.5426, wo = 0.6894.

In [31] it is also found that
R = RO (u")71/2, (33)

and R = —0.5333. Taking into consideration (32) and (33) we obtain the equation
for 5.®(0)

A(B.2(0))* + B2(0) + D = 0, (34)
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b/c

Figure 1. The values for the phase transition temperature for the exact (curve 1)
and approximate (curve 2) values of the partition function coefficients.

where
A=1-(®), B=-d,, D=d,ROp,""

Using the above expressions for the coefficients from (34) we obtain the value of
temperature 5. ®(0) as a function of b/c. The results of this calculation are presented
in figure 1.

3. Functional representation of a grand partition function of a
multi-component continuous system

Let us consider a classical multi-component continuous system of interacting
particles consisting of N,, particles of species ay, IN,, particles of species as, ...and
N,,, particles of species a,,. The system is in volume V' at temperature 7.

Let us assume that an interaction in the system has a pairwise additive charac-
ter. The interaction potential between particle v at 7; and particle § at 7; may be
presented as a sum of two terms:

Uss(rij) = Uas(1ig) + dr6(rij),

where 1,5(r) is a potential of a short-range repulsion that can be chosen as an
interaction between the two hard spheres 0., and os55. ¢5(r) is an attractive part
of the potential which dominates at large distances.

Let us start with a grand partition function

E= >0 Y ﬁ %/(df)exp [_gz;ZU”‘S(T”)]’ (35)

Nay=0 Ng,=0 Na,p,=0v=a1
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where (dI') = [[, dl'w,, dl'y, = d/dr3 ... dr7}, is an element of the configurational
space of the ~th species; z, is the fugacity of the yth species: z, = exp(ﬁ,u;),
p, = piy + B In[(2mm,B871)32/h%); B = 1/kgT, kg is the Boltzmann constant,
T is temperature; m, is mass of the ~th species, h is the Planck constant. ,u; is
determined from

Oln=
9B,

where (N,,) is the average number of the th species.

Further consideration of the problem is done in the extended phase space: in the
phase space of the Cartesian coordinates of the particles and in the CV phase space.
An interaction connected with the repulsion (potential 1.5(r)) is considered in the
space of the Cartesian coordinates of the particles. We call this multi-component
hard-spheres system a reference system (RS). The thermodynamic and structural
properties of the RS are assumed to be known. Although it is known that mixtures
with only repulsive interactions might undergo a phase transition [32], we assume
that in the region of temperatures, concentrations and densities we are interested in,
the thermodynamic functions of the RS remain analytic. The interaction connected
with an attraction (potential ¢.5(r) ) is considered in the CV space.

Let us introduce the grand partition function of the RS

Z Z Z H exp Buo /(dr) exp [——ZZZW rij ] :

Nay=0Nay=0  Na,,=07=a1

= <N’Y>7

j

(36)
where p] is the chemical potential of the yth species in the RS.
Then the grand partition function (35) can be written as [22,33]:
E - E()El, (37)

where Z is given in (36).
The part of the grand partition function which is defined in the CV phase space
has the form of a functional integral:

== [ epls X iomn - 5 3 3 dralb)og oz
¥ ¥k
X J(panpam"'vpam)' (38)

Here,

1) ¢,5(k) is a Fourier transform of the attractive potential ¢.5(r). k; = 27n;/L
with L = V13, k;, = Ky ky, k2, and n; = 0,£1,£2,..., the thermodynamic limit
L — oo is assumed. The function ¢.s(k) satlsﬁes the followmg requirements: ¢.5(k)
is negative for the small values of k and limg___ ¢+5(k) = 0. The behaviour of ¢.s(r)
in the region of the core r < 0,5 should be determined from the conditions of optimal
separation of the interaction.
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2) 1] is a part of the chemical potential of the yth species
Yy, Y p b (k
i = = 1+ oy Y O (R)
K

and is determined from the equation

8 In El
OB

3) J(p) = J(Pays Pass - - - s Par,) 18 the Jacobian of the transition to CV averaged
on the RS:

= <N'y>-

L3Sy e fan

—0 Nay=0 Nayp=0 Na,,, =0 v=a1

X exp [ ZZQ/JWS Tij ] ﬁ 6(poy — P, (0))

y=a1

< [T 6(oe., - pANWU%’)), (39)
k0

where ﬁNw(E) is a Fourier transform of the particle number density operator

0(---) is the Dirac delta function. The prime means that the product over k is
performed in the upper semi-space.

Py = pk 1pk are collective variables of the yth species, where the indices ¢
and s denote the real part and the coefficient of the imaginary part of Pk Piny
describes the value of the k-th fluctuation mode of the number of ~v-th species
particles. Each pﬂ and pﬂ takes all the real values from —oo to +o00. (dp) is a
volume element of the Y% phase space:

H dpo, [ dtdoj..

E£0

P~ is related to ﬁNw(lg) by means of the relations

Sy

05,0005, — P, (K))dps: .

i) = [ 68065, — i D,
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Substituting into (39) the explicit forms for delta functions, we obtain
90) = [ 1) T exvlizn 3 v o))
v k

where the variables Vg, are conjugate to the CV PR~

Vi kyy

1 C 2,8 7
:5(1/];;;\/‘|“11/H ), kj?éo

and

H dvy A,H dy dy

E4£0

J(v) is a Fourier transform of the Jacobian of the transition J(p)

X / (dI") exp [—gzzwvg(w)l [ exp(—i2mv;:_pw, (). (40)
v6 i

7712

Applying the cumulant theorem [34] to (exp(—i2m > ;| VEVﬁNw(E)»v we can present
J(p) in the form [22,33]:

J(p) = /dI/ Hexp 127rZyk,yka

y=a1
—127T -
X exp E E E A /{;1, ce k">”ﬁl,v1 Ve | (41)
7L>1 < Yn kl kn

where the nth cumulant M., . %(krl, ..., ky) is connected with Soromm (k1y -2, ), the
n-particle partial structure factor of the RS, by means of the relation

MM---%(EM SRR En) = "v Nw s N%Sw--ﬂ/n(kla R kn)5151+---+13n’

where 5,;1 +.gk, 18 a Kronecker symbol.

In general, the dependence of M., %(El, e En) on wave vectors El, vy ky s
complicated. Since we are interested in the critical properties, the small- k expansion
of the cumulants can be considered. Hereafter we shall replace M., (l{;l, cen k )
by their values in the long-wavelength limit M., .. (0,...,0). We have a recurrence
formula for M., .. (0,...,0) [8].
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3.1. A one-component fluid

For the case of a one-component continuous system of the N classical particles
equations (36)—(41) reduce to the forms [21,23,36]:

=3 w / (dI) exp [_g > w(rij)] , (42)

N=0

where g is the chemical potential of the particle in the RS;
5 / (dp) exp[Brirpo — =— Z o(k)pgp_) T (p). (43)

Here

J(p) = /(dw)exp iZWZprE

E

X exp
n>1 ’ By kon

and M, (1, ..., ky) = NSy (ky, ..., kn)ox

it where Sy (ky, ..., k) is the n-partic-

le structure factor of the RS. One can obtain the following expressions for S,,(0, . . ., 0)
(n < 4) [37]:
N
SQ(O) = kBTvl‘iT,
055(0
5:0) = (5207 +05:(0) 2,
955(0 05,(0)*
500 = (S5(0)° + an(5:0) 72 4 y25,(0) (22
I I
9%55(0)
+ 772(52(0))2 8?72

Here the CV p; is connected with the density fluctuation modes.

3.2. A binary fluid mixture

Now let us consider a two-component system consisting of N, particles of species
a and N, particles of species b (71,72, ..., = a,b in (37)—(41)). Having passed in
(38) to CV p; and cj; by means of the orthogonal linear transformation

Ve V2

5 Pratrps) =5 (ga = Pis),
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we obtain for =;:
= = [ W)@ esp [Butp + Brea — o SV (Kipgr_g
1 1 oV _ kM —k
i

+ W(k)ege_g + 20 (K)oge_] J(p, o). (45)

Here the following notations are introduced:

py and ¢ are CV connected with the total density fluctuation modes and the
relative density (or concentration) fluctuation modes respectively.

Functions pf and u; have the forms:

V2,

V2, .,
pi = 7(#1 + ub), py = 7(#1 ) (46)

and are determined from the equations

6lnEl .
B (N), (47)
6lnEl i
B (Na) — (V). (48)

Functions V (k), W (k) and U(k) are combinations of Fourier transforms of the initial
interaction potentials ¢.s(k):

V) = Bualh) + k) + 2600(k)) /2.
Wf(k:) = (?aa(k‘) + ?bb(k‘) - 2¢ab(k))/27
U(k) (Paa(k) — du(k))/2. (49)

Hpve) = [ (@) (@) exp fi2m 3w + )] Her), (50)

k

J(w,y) = exp [ZZ <_13'7T>n Z M0, ...,0)

n>1 >0 Ry

X Vi, - Vi wginﬂ .. .w,;n} ) (51)

in

where

V3 V3

Wi =5 Wi T Vi) = 5 (g — Vi)

Index ¢, indicates the number of variables ; in the cumulant expansion (51). Cu-

mulants Mr(fn) are expressed as linear combinations of the partial cumulants M., .
(see (41)) and are presented for n < 4 in [22].
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4. Gas-liquid critical point: a one-component fluid and a bin ary
fluid mixture

Gas-liquid critical points of both a one-component fluid and a binary symmetrical
mixture were studied using the approach proposed for the 3D Ising model. Hereafter
we present some results of this investigation.

4.1. A one-component fluid

The gas-liquid critical point of a one-component continuous system was studied
within the framework of the CV method with a RS in [21,23,36-38]. Based on the
relations (42)—(44) the expression for the grand partition function in the vicinity
of the gas-liquid critical point was obtained [21,37]. In this case the form of this
expression is similar to (31). But the main difference is the presence of odd powers of
CV py in the exponent. In the vicinity of the gas-liquid critical point p is connected
with the density fluctuation modes.

Using the layer-by-layer integration method [27] for the calculation of the parti-
tion function of a one-component fluid in the vicinity of the gas-liquid critical point
the following results concerning the non-universal quantities were obtained [36,38]:

e the equation of state for T' > T, and T' < T¢;
e the equation for the parameters of the critical point;

e the chemical potential isotherm and the equation for the density jump below
T..

4.2. The microscopic Ginsburg-Landau-Wilson (GLW) Hamilt  onian for a bi-
nary fluid mixture

In order to derive the partition function of a binary fluid mixture in the vicinity
of their phase transition points we should first find the CV connected with the order
parameter. To this end we restrict ourselves to the consideration of the Gaussian
approximation of the functional integral (45)—(51) by setting n = 2 in (50)—(51).
While this approximation yields the classical critical behaviour, it provides the cor-
rect qualitative picture of the phenomenon under consideration. In order to deter-
mine the phase space of the CV connected with the order parameter we introduce
independent collective excitations by diagonalizing the square form by means of the
orthogonal transformation:

pp = AR+ B(k)Eg, ¢ = C(k)ng + D(k)E,

where A(k), B(k), C(k) and D(k) are certain functions of the microscopic parame-
ters, temperature, density and concentration of the system (see appendix B in [35]).
As a result, we obtained the following expression for the square form:

1
-3 Z(é‘l(k)ﬁgmk’ + e2(k)&E p)-
E

625



M.P.Kozlovskii, O.V.Patsahan

The explicit expressions for £1(k) and e9(k) are given in [35]. The detailed analysis
of the coefficients €1 (k) and e2(k) allows us to draw the following conclusions:

1. Only one of the two quantities, €1(k) and e5(k), is critical, no matter whether
the system approaches the gas-liquid or mixing-demixing phase transition
point. This is branch e (k).

2. Because e1(k) has the minimum at || = 0, the CV connected with the order
parameter is the variable 1y in the case of the gas-liquid critical point, as well
as in the case of the mixing-demixing phase transition. The particular form of
1o for each of these phenomena can be determined by means of the relations
between the microscopic parameters, temperature, density and concentration
of the system or by means of the thermodynamic relations.

3. In the plane (po, co) we distinguished two directions: the direction of strong
fluctuations 7y and the direction of weak fluctuations &;. The direction of
strong fluctuations (the order parameter) is determined from the equation

(0

tanf = ——=, or tanezg,

(0)’

where 6 is the rotation angle of axes 7y and &, in the (pg,cy) plane, 5 =
p(vg —vp), v; = (%)T,P,N#i is a partial volume.

Based on the Gaussian distribution we have determined the critical branch and,
correspondingly, CV 7,y connected with the order parameter. Now we can accomplish
the second important task, namely, we can derive the basic density measure with
respect to ;. To this end we shall follow the program: (i) having passed from CV pj
and c; to CVryy; and &;; in (45), we shall integrate over irrelevant variables £ (which
do not include the variable connected with the order parameter) with the Gaussian
density measure; (ii) then we shall construct the effective GLW Hamiltonian (we
shall restrict our consideration to the n*-model).

The result of the first step of the proposed program is the functional with respect
to the variables n;; (and xj conjugate to n;):

L 5 1
2= :O:EAg /(dn) exp [#1710 3 Zm;n,,;P(k)} J(n) (52)
E

where E? and AS are the results of integrating over £ which do not include x7,

B

P(k) = V(AQV(/%) + C*W (k) + 2ACU (k).
J(n) has the form:
B . o . (—i2m)? o
Jm) = [d)expizn Y = 27M(0) D Xl + - Ma(0) D XeX g
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(—i2m)?
o Ms (0, ) D X X X, O ey
ooy
(—i2m)*
4' M4<07 t ) Z X]gl XEQXESXE45E1+EQ+ES+E4] ' <53)
' T Fakiakis

Here
M,(0,...) = M™(0,...) + AM,(0,...).
AM,(0,...) are corrections obtained as a result of integrating over ;.

It can be shown that the behaviour of function P(k) in the neighbourhood of the
point of phase transition is similar to the behaviour of the initial potential éy(;(k):
P(k) takes both negative (at small |k|) and positive (at large |k|) values. In the
region |E| > B we can integrate over x; and 7; with the Gaussian measure density
as the basic one. As a result, we obtain the similar expression for = in which the
summation is performed over |k| < B and coefficients Ms(0), M(0), and M;(0)
are replaced by new coefficients M(0), M5(0), and M4(0) [35]. Similar to the one-
component system we consider the quantity B as the size of the first Brillouin zone
of the block lattice.

After the integration over y; we can present (53) in the form (within the frame-
work of the n*-model):

== [ explEum)lian).
where the effective GLW Hamiltonian E,(n) has the form:

1
Eyn) = hno— m ; d2(k7)77/577_15

ay -
B 4!<NB>3 Z 77;;’177/;277;;37715’45;;1+;;2+;;3+;;47 ‘kl| < B (54)

k1...ka

Here the following notations are introduced:

h:ﬂl_P«))Ml_'_%a
=a Qg = £<NB> z
d2<k) - 2+P<k>7 2 ‘~4| <N> IC( )7
B (Np) 1 9 2 2
a, = 36 ™) [IC (z)+§/C(Z)—§],
_ ; s L_g |3 V)
K =000, 2=l

Sp = 2"2M, /(N).

Ul(a, z) is the parabolic cylinder function. The radius B in (54) is found from the
condition P(k = B) = 0 and it is considered as the size of the first Brillouin zone of
a certain block lattice.
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E4(n) has the form analogous to the basic density measure of the 3D Ising model
in an external field. But the main difference is the dependence of coefficients ag, a-
and a4 on the microscopic parameters of the system.

4.3. Gas-liquid critical temperature of the symmetrical sq uare-well mixture

We consider a binary symmetrical fluid mixture, i.e., a system of equal-size
particles interacting via the same attractive potentials between “like” particles
(Paa(r) = dw(r) = ¢(r)) and via different attractive potentials between “unlike”
particles (¢(r) # ¢a(r)). The concentration x = 0.5 is a critical one for this model
mixture. Notwithstanding its simplicity, the symmetrical mixture exhibits all the
three types of two-phase equilibrium which are observed in real binary fluids: gas-
liquid, liquid-liquid and gas-gas.

We consider the binary symmetrical mixture in the vicinity of the gas-liquid
critical point. In this case the basic density measure has the same form as (54) but
the main quantities from (54) are reduced to the following ones [26]:

and the cumulants are reduced to the cumulants of a one-component system. The
interaction in the system was described by the potential

00, r <o,
Uys(r)=4¢ —€s, 0<1 <0,
0, r > Ao.

where o is a hard sphere diameter, A is a range of the potential, and €, is a well-
depth of the interaction between the particles of types v and 6.

For a symmetrical mixture the following relations occur: €., = €y = € # €4, We
introduce parameter r measuring the relative strength of the interaction between
the “like” and “unlike” particles: r = €,,/e. The case r = 1 corresponds to a one-
component fluid.

1.6

4.5
A=15 77 A=2.0
15F Gaussian approx. g —— Gaussian approx.
I — o' model approx. P Rl i p* mode approx.
o 13} 5 35}
- e —
1.2 +
3.0+
11f 3
251"
1.0 L L L L 1 1 1 L L
0.8 10 12 1.4 0.8 1.0 1.2 14 16 1.8 2.0
r r

Figure 2. The gas-liquid critical temperature as a function of the microscopic
parameter r at A = 1.5 (left) and A = 2.0 (right) [26].
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Table 2. Critical properties of a symmetrical binary mixture, calculated by the
CV method and MC simulations (r = 1.0 corresponds to a one-component sys-
tem).

\ r TCV TMC 77CCV né\/IC

C C

15 072 1055 1.06(1)[39] - -
20 1.0 2753 2.684(51) [40] 0.129 0.123(43) [40]

Using the expression for the GLW Hamiltonian and the method of layer-by-layer
integration proposed for the three dimensional Ising model [27, 31] we calculated
the critical parameters (critical temperature and critical density) of the symmetrical
mixture square-well mixture [26]. The results are presented in figure 2 as well as in
table 2.
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Onuc KPUTUYHOI NOBEAIHKU MOAEeJIbHUX CUCTEM,
BUKOPUCTOBYIOUYM HEraycosi mipu (nigxig,
OxHOBCbLKOro)

M.IN.Ko3noscbkuin, O.B.Mauarax

IHCTUTYT di3nKmM koHgeHcoBaHUx cnctem HAH YkpaiHu,
79011 JlbBiB, ByN. CBEHLjUBKOrO, 1

Otpumaro 11 TpaeHa 2000 p.

Mu npeacTaBnsieMo KOPOTKUIA Ornsg, PobiT, NPUCBAYEHMX BUBHEHHIO KPU-
TUYHNX ABULL, Y TPMBUMIPHUX MOOEJIbHUX CUCTEMAX, AeTaNlbHO 3YMNUHSA-
lounch Ha nigxoni KOxHoBCbKOro. Len nigxia, aKkmMin rpyHTYETbCS Ha BU-
KOPMCTaHHI HEerayCcoBmx Mip, 403BOJISIE OTPUMATM SK YHIBEPCabHi, TakK i
HeyHiBepcanbHi BennyinHu. LLLo6 npointoctpyeaTtu nepesaru nigxoay, 3a-
nponoHoBaHoro |.P.KOXHOBCbKMM, M1 3aCTOCOBYEMO MOr0 AJ1 BUBYEH-
HS HeyHiBepcanbHUX BeNn4YnH, a came: (1) Temneparypm ¢asoBoro rne-
pexony TPMBUMIPHOI OAHOKOMIMOHEHTHOI rPaTKkoBOi Moaeni, (2) BnacTtu-
BOCTEN KPUTUYHOT TOYKW ras-piguHa GAigHNX CUCTEM.

KnrouoBi cnoBa: ¢pazoBuii nepexia, KpUTUYHI BJIAaCTUBOCTI, HeraycoBsa
Mipa, TPUBUMIPHA OJHOKOMITOHEHTHA rparkoBa Moe b, KDUTUYHA
TOYKa ras-pianHa

PACS: 05.70.Fh, 05.70.Jk, 65.10.+h
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