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Oscillatory spectra of surface atoms in
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Vibrations localized near the surface have been analyzed using the Jaco-
bian matrix method taking into account discreteness of the lattice. It has
been shown that localized surface vibrations in layered crystals have got
quasi-one-dimensional character and their properties are described by ex-
act solutions obtained in the framework of the one-dimensional model.
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1. Introduction

The special interest for the practical applications is in the peculiarities of oscillatory
spectra of micro- and nanostructures and their effect on electron-phonon interaction.
To understand physical processes which take place in such compositions, including
phonons, it is necessary to know not only the effect of a complex defect on the
total phonon spectrum of the crystal as a whole but also local characteristics of
each individual atom, especially of atoms of the defect and atoms located at the
nearest distance from a defect. Besides, to analyze the electron-phonon interactions
and numerous technical calculations it is most desirable to obtain the spectral char-
acteristics of these atoms in the form of analytical expressions “of a visible form”.
This is possible at the microscopic investigation of the systems with complex defects
only in the case of one-dimensional structures. In this work a quasi-one-dimensional
behaviour of oscillatory characteristics of the atoms of non-quasi-one-dimensional
system is investigated.

Here we consider a layered crystal with a simple lattice having a free surface,
which coincides with one of the layers as well as we study the behaviour of oscillations
polarized perpendicularly to the layers and localized near the surface. It is shown
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below that in cases when the values of anisotropy of interatomic interaction are large
enough, but quite real and appropriate to the anisotropy of some existing crystals,
the behaviour of such surface oscillations has got a quasi-one-dimensional character
and, hence, can be described by analytical expressions obtained for a semi-infinite
linear chain with monoatomic unit cell.

In [1] it was shown that in a layered crystal, the atoms of which in different
layers are bound with each other much weaker than the atoms of a single layer, the
interaction between oscillations polarized along the layers and the oscillations po-
larized along the direction perpendicular to the layers appears to be proportional to
quadrate of the “parameter of anisotropy” γ ≪ 1 (relation of a weak interlayer inter-
action to a strong intralayer interaction). Therefore, isofrequency surfaces of phonon
modes which are polarized along the layers are strongly extended along the direction
of a weak coupling and open along this direction within a very wide frequency inter-
val. In this interval, the spectral properties of the appropriate oscillations are practi-
cally two-dimensional1. The quasi-two-dimensional behaviour of phonons polarized
along the layers means that practically all of them (except for extremely long-wave
phonons) are localized in the plane of layers. Indeed, the anisotropy of propagation
velocities for phonons of q-th branch (here we shall be restricted by examining the

acoustic oscillations) can be described by the relation v (q)
z /v

(q)
‖ , where v(q)z is the pro-

jection of phonon group velocity ∇kωq(k) (k is as usual the quasi-wave vector) on

the direction of a weak coupling (axis z), and v
(q)
‖ ≡

√

(v
(q)
x )2 + (v

(q)
y )2 is a projection

of this group velocity to the plane of layers (so-called basis plane xOy). For phonons

which are polarized along the layers (q = 1, 2) quantity v (1,2)
z /v

(1,2)
‖ ∼ √

γ ≪ 1.
There is a long-wave limit relation for phonons polarized along the direction of a
weak coupling (q = 3) v(3)z /v

(3)
‖

>∼1 (the longitudinal velocity of a sound is higher),
for shorter waves this inequality can change its sign because of the bending stiff-
nesses of layers2. Isofrequency surfaces of the branch ω3(k) are not prolate along
any crystallographic direction and there have not been any quasi-low-dimensional
features discovered in the behaviour of the appropriate phonons in an ideal layered
crystal.

Practically for all layered crystals (see, for example, [3]) the value of bending
stiffness of the layers is much smaller than the strong intralayer interaction and
the maximum frequency of phonons for the branch ω3(k) is noticeably lower than
the maximum frequencies of two other branches. It has the same order as the fre-
quencies of Van Hove singularities corresponding to the transition of isofrequency
surfaces from the closed to the opened ones for these branches. It means that in
the range of frequencies where a two-dimensional nature of phonons polarized in the
plane of the layer is most brightly exhibited, oscillations of the ideal layered lattice
polarized in the direction of weak links are practically absent. Such oscillations in

1In [1] it is illustrated by the behaviour of Van Hove singularities which are extremely sensitive
to the variation of interatomic interaction character.

2Here it is quite unessential that the value of bending stiffness essentially exceeds the interlayer
interaction and results in quasibending curving of the appropriate dispersion curve [2]. It is sufficient
that these values are of the same order, which is true for almost all of the layered crystals.
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the mentioned range of frequencies can arise due to the presence of particular defects
– light or strongly linked impurity atoms or impurity monolayers. Really, in strongly
anisotropic crystals, the oscillations along the direction of weak links of light impu-
rities [4,5] or those of the atoms of light sublattices [6] are very strongly localized.
In this case, the frequency of strongly resonant oscillations, as a rule, lies in the
interval (ω3max, ω1,2max), that is in the frequency range where isofrequency surfaces
of the vibrations polarized along the basis plane are opened along the direction of
weak links. Such a strong localization of oscillations in the frequency range where
the phonon density of states of the ideal lattice is not completely small is caused
by the absence of ideal lattice oscillations polarized perpendicularly to the layers
and weak coupling of phonons of such polarization with two-dimensional phonons
polarized along the layers. Quasi-one-dimensional features should be exhibited by
the behaviour of the mentioned strongly localized oscillations. The present paper is
also devoted to their study.

The sharp resonant maxima of phonon density of states show the localization
of oscillations on separate atoms and should be described by methods of atomic
dynamics. The point oscillator (as we assume a separate atom in physical mechanics
of a crystal lattice) is a source of spherical waves. The description of its oscillations
based on the traditional classification of decomposition on plane waves leads to
extremely cumbrous expressions even for rather simple systems (see, for example,
[7,8]). The natural exclusions are one-dimensional systems because in such systems
the “plane” and the “spherical” waves do not differ from each other.

This work used the classification of oscillations based on their representation as a
superposition of divergent waves and differing from the traditional decomposition on
plane waves. J -matrix method (recursive method) [9]–[11] corresponds very well to
such a classification. This method does not explicitly use the translational symmetry
of the lattice, and consequently its application for both ideal and defect structures
has no principal differences.

All calculations, both analytical and numerical, are carried out through the
method of Jacobi matrices (J -matrices) which is especially convenient for calcu-
lations of a spectral density of lattices with broken regularity of the atomic order
[9]–[11]. The frequency distributions of atom oscillations in the system are usually

expressed through matrix elements of the Green’s operator Ĝ =
(

λÎ − L̂
)−1

(λ is

squared frequency and an eigenvalue of the operator L̂). If we take h0 = |r|u〉,i.e.
the displacement of u atom with a radius-vector r as a generating vector, then the
matrix element

G00(λ) ≡
(

h0, Ĝh0

)

(1)

contains the full information about frequency characteristics of system oscillations,
in which the given atom moves along u. The conditions of the presence of the imag-
inary part of G00(λ) determine the boundaries of bands of the continuous oscillatory
spectrum, and the value of the imaginary part characterizes the frequency distribu-
tions of the given atom inside these bands.
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2. One-dimensional behaviour of quasi-localized vibrations of
surface atoms in layered crystals

We will discuss some spectral characteristics of atoms located at the surface of a
crystal with a simple lattice in which the atoms form the layers weakly interacting
with each other. We take the body-centered tetragonal lattice as a model. The
matrices of force constants have the form:

Φik(r
(n)) = αnx

(n)
i x

(n)
k + βnδik, (2)

where r
(n) are radius-vectors of interacting atoms, and x

(n)
i are their components,

the index n numbers coordination orbs: n = 1, 2 correspond to the first and the
second neighbours in a basis plane (r(1) = a, r(2) = a

√
2); n = 3 corresponds to the

nearest neighbours from adjacent planes r(3) = 1
2

√
2a2 + c2. Here a and c are the

lattice parameters in the layer plane and along the axis of the fourth order (axis C)
respectively. As the atoms of adjacent layers in the given model are shifted from each
other, assuming that the interlayer interaction is weak, we restrict ourselves to the
consideration of only central interaction of the nearest neighbours, i.e β3 ≡ 0; α3 =
γα1 (γ ≪ 1). At the investigation of stronger intralayer interaction we shall take into
account the interaction of the first and the second neighbours in the layer plane,
both central and noncentral one. Force constants α1 and α2 describe the central
interaction of the first and the second neighbours in the layer plane respectively,
and β1 and β2 describe the noncentral interaction between the same atoms. The
conditions of transition from the equations of lattice dynamics to the equations of
the elasticity theory in a long wavelength limit (a requirement of symmetry of elastic
modules tensor Ciklm with reference to transposition of pairs of indices) [7] and the
condition of absence of strain at the boundary of a sample are identically fulfilled
in a lack of noncentral interaction and reduced to the following relation between
parameters βn: β2 = −β1/2.

Figure 1 represents the evolution of spectral densities with varying of the pa-

rameter α3. The frequency is convenient to be measured with values ω1 ≡
√

α1/m,
and the other parameters are measured with α1. Curves 1 with α3 = 0.06 on both
parts of figure 1 are appropriate for layered crystals with a rather slight anisotropy.
Curves 2 correspond to α3 = 0.03. According to the relation c/a = 2 that we
chose, it corresponds to a slightly anisotropic crystal (such as PbI2). The rest of
the parameters are fixed: α2 = 0.15, β = 0.05 and c/a = 2. The curves 3 with
α3 = 0.01 correspond to layered crystals, in which the relation of elastic modules
C33/C11 ∼ C44/C11 ∼ 0.1, that is characteristic of many layered compounds (GaSe,
GaS, In3Se4, etc.). The offered model quite satisfactorily presents the basic distinc-
tive characteristics of GaSe phonon spectrum at values α3 = 0.01, α2 = 0.2 and
β = 0.05. Curves 4 and 5 correspond to these values of the parameters: α3 = 0.003
and α3 = 0.001 respectively. This is the case of strongly anisotropic crystals (such
as graphite).

The spectral densities νx,y(ω) have the Debye type up to the frequency ω′
z (the

value (ω′
z)

2 = 16α3/m), at which isofrequency surfaces become opened along the
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Figure 1. Evolution of spectral densities with varying of parameter α3.

direction of weak links. These functions have at this frequency a Van Hove singularity
of a “break” type (their dependences near this singularity are figured on the insert
in a zoomed scale) and further have the evident two-dimensional character and vary
slightly with the varying of α3. Thus the maximum oscillation frequency of the
lattice depends on α3 very slightly. The “two-dimensional” Van Hove singularities
relevant to the transition from the closed isofrequency surfaces to the opened ones
and backward along the direction of propagation of the transverse wave in a basis
plane (that is the direction ky for a wave polarized along abscissa axis and direction
kx for the wave polarized along the axis of ordinates) look like very sharp maximums
(Van Hove singularities are logarithmic singularities at the complete absence of
interaction between layers).

On spectral densities νz(ω) under decreasing of interlayer interaction, a sharp
low-frequency maximum is formed. It defines most of the anomalies in behaviour
of the oscillatory thermodynamic performances of such systems (see, for example,
[12,13]). At α3 < β the topology of isofrequency surfaces of the oscillatory mode
polarized along the direction of weak links is determined mainly by the first (quasi-
bending) addend. The strong anisotropy of this addend in a basis plane (oblongness
of isofrequency surfaces along coordinate axes) stipulates oscillations of the appro-
priate spectral densities (curves 2–5).

Figure 2 shows the results of calculations for the crystal with the following pa-
rameters: c/a = 2 and the force constants (in units α1) γ = 0.01, β1 = 0, and
α2 = 0.15 that for the considered model corresponds to the following ratio of elastic
modules: C33/C11 ≃ 0.133; C13/C11 ≃ C44/C11 ≃ 0.033; C12/C11 ≃ C66/C11 ≃ 0.2.
The total phonon density of infinite crystal (as a function of frequency) is ν(ω) =
∑2

q=1

∑3
i=1 ν

r(q)
i (ω). Here and below, for the best definition of low-frequency peaks,

we use the functions νri (ω) ≡ (2ω/3q)π−1ImG00(λ), where G00(λ) is the Green’s
function (1) (λ ≡ ω2, i is a direction of atomic displacement).
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Figure 2. Partial densities ν surf
z (ω) generated by a displacement of atoms of light

surface impurity monolayer. Curve 1 corresponds to m′/m = 0.5; 2 – m′/m =
0.3; 3 – m′/m =0.2; 4 – m′/m = 0.1; and 5 – m′/m = 0.025. Dashed and solid
curves 0 represent the functions νx,y (the corresponding scale on the right) and νz
respectively. Curve 6 shows the dependence ωs

l (ε) calculated for the semi-infinite
linear chain

As it was shown for a layered crystal in [1], the interaction between oscil-
lations which are polarized along the layer plane and oscillations which are po-
larized perpendicularly to that plane is ∼ γ 2 ≪ 1. In other words, the “quasi-
segregation” of a low-frequency mode occurs in the lattice. The maximum frequency
of this mode is ωa = 4(c/a)

√
γω1, where the frequency ω1 is defined above. This

quasi-segregated mode forms a sharp low-frequency peak on the phonon density of
crystal. Isofrequency surfaces of two other phonon modes which have frequencies

ω∗ ∼ γωm
<∼ω<∼

√

ω2
m − ω2

∗ are open along the axis c in the inverse space. Oscil-

lations connected with these modes are two-dimensional by their character (ω∗ is
their lowest Van Hove frequency). As ω∗

<∼ωa, the frequency range [ωa, ωm] is filled
with quasi-two-dimensional phonons. The interaction between them and the phonons
which are polarized perpendicularly to the layers is rather faint. The behaviour of
oscillations of the latter type should be compared with the behaviour of local os-
cillations in monatomic linear chain. Curves 0 in figure 2 are the spectral densities
of the ideal crystal generated by the displacements which are parallel (the dashed
component) and perpendicular (the solid component) to layers.

In [14], an exact analytic expression was obtained for the squared frequency of
discrete vibrations in monatomic infinite and semi-infinite linear chains with two-
parametric substitutional impurity. Parameters which describe this defect are: ε =
(m′ −m)/m (m′ is the mass of the impurity), η = (α ′ − α)/α (the force constant α
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corresponds to the host chain, and α′ is the force constant perturbed by the presence
of the impurity). Maximum squared frequency of the chain is λm = 4α/m. As the
spectral density νz(ω) of the ideal crystal is localized within the interval [0, ωa], it is
quite natural to suppose that λm = ω2

a. Thus, taking into consideration that we are
interested in the limiting case η → 0, we finally obtain:

ωs
l (ε) =

ωa
√

−4ε(ε+ 1)
. (3)

Besides, in [14] we showed that ω2
l (1 + 2ε) exactly determines the local oscillations

caused by the isotope of a mass m′ in the infinite chain.

Partial densities ν surf
z (ω) generated by a displacement of the atoms of a surface

impurity monolayer are shown by the curves 1, 2, 3, 4 and 5 (axis OZ‖c) for the case
when a crystal has a surface parallel to layers. These curves differ in values of the
mass ratio m′/m ( m is the atom mass of the host lattice, m′ is the mass of the atom
of the impurity monolayer): m′/m = 0.5, 0.3, 0.2, 0.1, and 0.0253 for the curves 1,
2, 3, 4 and 5 respectively. One has to notice that curve 1 almost coincides with the
curve of function νz of the ideal lattice. Curve 6 shows the dependence (3) calculated
for the semi-infinite linear chain. The well-marked coincidence of quasi-local maxi-
mums in these curves displays the quasi-one-dimensional behaviour of appropriate
oscillations. One can see that relative deviations of frequencies of the quasilocal
maximums in curves 1–4 from corresponding values ω l(ε) in the curve 5 are quite
small and have the order of magnitude γ ≪ 1. As the smearing of the localized
peaks occurs mainly due to the interaction with the phonons of lower frequencies,
the formula (3) determines the right frequency limit of these peaks.The width of a
local peak decreases as its frequency rises and the accordance between the maxi-
mum frequency of this peak and the frequency given by (3) becomes better. If the
frequency of a localized peak is out of the continuous spectrum band, its deviation
from (3) is almost invisible. Thus, the considered quasi-localized oscillations take
place practically without threshold for the impurity monolayer placed in the bulk of
the crystal, and for the impurity surface monolayer – at ε < −1/2 according to (3).
Let us notice that the increase of the frequency of the resonance level is accompanied
by a more intense localization, and the coincidence with (3) becomes better.

Thus, quasi-segregated surface modes in layered crystal possess a quasi-one-di-
me-sional behaviour and can be described adequately by the expressions obtained
within the framework of a one-dimensional exactly solvable model.
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Коливнi спектри поверхневих атомiв у cильно

анiзотропних шаруватих кристалах

(квазiодновимiрна поведiнка)

С.Б.Феодосьєв, I.О.Господарьов, О.В.Гришаєв,

В.I.Гришаєв, M.О.Mамалуй, П.А.Мiнаєв,Є.С.Сиркiн

Фiзико-технiчний iнститут низьких температур iм. Б.I.Вєркiна

НАН України, 61164 Харкiв, просп. Ленiна, 47

Отримано 17 квiтня 2000 р., в остаточному виглядi –

15 листопада 2000 р.

Коливання, що локалiзованi поблизу поверхнi, аналiзуються за допо-

могою методу J -матриць iз врахуванням дискретностi гратки. По-

казано, що в шаруватих кристалах такi коливання мають одновимiр-

ний характер та можуть задовiльно описуватися за допомогою вiд-

повiдних точних аналiтичних виразiв, що отриманi для одновимiрної

моделi.

Ключові слова: поверхневi коливання, шаруватий кристал,

низьковимiрна система

PACS: 63.22.+m
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