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The problem of the functional representation for cluster de Gennes model
partition function within the collective variables method is discussed. Con-
trary to the usual Ising model case the coefficients of the obtained parti-
tion function functional (cluster cumulants) depend on temperature 7' and
transverse field I". Therefore there exists a rigorous limitation on the value
of I parameter at low temperatures. The equation for maximum value T';,
temperature and short-range intracluster interaction V is obtained. The
solutions of this equation have been found.
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1. Introduction

The rapid progress in the second order phase transition theory which has taken
place in the last third of the twentieth century was initiated by a revolutionary appli-
cation of quantum field theory methods into this problem. The traditional statistic
physics methods of investigation were, in some sense, relegated to the background.
The idea has arised regarding the limited possibilities of statistical description of
subtle peculiarities of the phase phenomenon. I.Yukhnovskii was the first who put
modern second order phase transition theory on the rigorous base of statistical
physics. There are two most important points in this theory. The first one: a state-
ment about the basic distribution of variables connected with the order parameter
in the phase transition point vicinity. And the second one: a method of layer by
layer integration in the partition function functional which makes it possible to ob-
tain in an explicit form all universal and non-universal characteristics of the system
investigated [1].
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The starting point of the theory is the expression for a partition function func-
tional. For a usual Ising model which is characterized by one kind of interparticle
interaction such a functional may be represented as an unlimited order exponential
form with the constant coefficients. These coefficients are average values of the usual
cumulants calculated with respect to the distribution of the external field Hamil-
tonian hSZ(éi), the so-called “reference system”. When a reference system is not
so simple, for example for cluster ferroelectrics it contains short-range intracluster
interactions and a transverse field, the partition function functional coefficients de-
pend on these parameters, temperature and Matsubara’s frequencies [2]. Naturally,
a problem of their behaviour, namely a possibility to change its own sign, arrises.
It must be noted that the sign of a higher order coefficient in the exponential form
for a partition function functional determines the convergency of all functional in-
tegrals, that is the finity of the theory in a wide range of temperature and energy
parameters. It seems very probable that the so-called anti-Curie points which occur
in cluster ferroelectrics at low temperatures [3], arise due to the sign change in the
higher order coefficient (fourth order) of partition function functional exponential
form.

Therefore, the problem of correct calculation of cumulants of the cluster de
Gennes model and their analysis from the point of convergency of total partition
function functional is actual. For the systems described by long-range and short-
range potential and by the transverse field this task is not trivial. The aim of the
present paper is to construct a total partition function functional for the cluster de
Gennes model and to establish the conditions of its finity. The specific calculations
will be done for a cluster system containing two particles in each cell (fo = 2).

2. Two-particle cluster system cumulants

Let’s consider the cluster de Gennes model Hamiltonian [4, 5]

= DY Sj(R)+hY _Sj(R)+V Y Si(R,)S(R,)
a.f a.f a.f,f
+ Y Jpp(By, By)SHR) S5 (Ry). (2.1)
a.9'.ff

Here I and h are transverse and longitudional external fields, respectively; V is a
pair intracluster interaction of particles; J f/(ﬁq, ]%q/) is a pair long-range potential;
S are Pauli matricies; 1 < ¢ < N is a cell-cluster number; 1 < f < fo is the number
of a particle in the cluster.

In the generalized transition operators representation

YVi(B) = 3 Unn X™(R,), (2.2)

where X m(ﬁq) are Hubbard-Stasyuk operators, U, are eigenfunctions of the total
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interaction matrix, (1.1) takes such a convenient form:

22f0

H=Y" {AA > Vi(R,) - = Z% o By VA (R, )Yk(ﬁqd} : (2.3)
A=1 q

Here A are energy parameters of an isolated cluster (reference system), ® (ﬁ Ry)
are eigenvalues of long-range interaction matrix. For a two-particle (fo = 2)
acting cluster system, for example, there are:

1nter—

Ay = —2h, &, (R,, Ry) = Juu(Ry, Ry) + Ji2(Ry, Ry),

Ao = B, = V2 + 4I2, ®5(R,, Ry) = J11(Ry, Ry) — Jio(Ry, Ry):

Apy = By = —/V2 1 412,

A5 = E3 = -V,

A16 == E4 == ‘/, (24)

all other coefficients Ay and ® A(ﬁq, ﬁq/) in this case are equal to zero.
Taking a “non-interacting” part of the (1.3) Hamiltonian

= S AR, (25)
A#£L g

as a reference system, for partition function functional in the collective variables
representation one may obtain [6]:

2 = 2 [anEoy e {S TS [SesbBinFmE -

22fo

< [ eolin S S aEmEn]

A=1 kv
22fo

xexp{z (=i2m)” Z Z Z Mo, oan (k1,01 ki, v)
n=1 )

Al An#EL ke, kn<Bwvi,..vn=0

X wy, (1, v1)..wn, (kn, yn)}. (2.6)

Coefficients M, ., (k1,v1, ...kn, v,) are usual cumulant average values of the

generalized transition operators Y)(R,) products in the frequency-momentum rep-
resentation

— 1 ﬁ al N — D
ox(k,v) = B/ dﬁ'e_lﬁyZe_BHOY,\(Rq)eBH"e‘qu. (2.7)
0 -
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In the (1.6), p,\(/;, v) are collective variables, corresponding to /3,\(/;, v); v=21/pn
(n=0,£1,42,...) are Matsubara’s frequencies; § = 1/kT, T is the absolute tem-
perature; k is the Boltzman constant; B is the Brillouin zone boundary; ®,(k) is a
Fourier transform of @A(ﬁq, éq/); Zy = Sp{exp(—SHy)}.

Since collective variables p,\(/;, v) decribe only a long-range part of the total
Hamiltonian (short-range interactions are taken into account by Z,) among different
cumulants in (2.6), it is enough to take only the ones with A, for which ® ,\(ﬁg, ]%g/) +
0. In the two-particle cluster system such indeceis are A = 1 and A = 5. Thus, all
cluster cumulants in this case may be expressed by cumulant average values

(RYA(Ryy, B)YA(Ryy, B2). Ya(Ry,, Bin)-on) (2.8)
in which
0 0 bePE1s ()
- 0 0 aeP2s ()
}/1( q> /6) = befﬁEls ae’ﬁEQS 0 0 ’
0 0 0 0
0 0 0 —aqelbu
~ 0 0 0 befEa
—qe BB po—BE2 0 0
where
1 V 1 Vv
Y (USRS Y
4 VV?2 4412 4 VVZ 44172

R in (2.9) is a symbol for “time” arrangement with respect to the inverse tem-
perature 3.

(..o =Sp{..e”?M} [Sp {e_ﬁH"H_l. (2.11)

It may be easily tested that the non-equal, identically to zero expressions (2.8),
contain only an even number of operators Yy (R, ).
The calculation of (2.8) is based on the method similar to the Vikh-Blokch-

Dominisis theorem [7] with the commutation relation

—

[Yk(ﬁq)a YA’(ﬁq’)] - Z W;\LA/YM(ﬁq)é(éq — Ry),

W){LX = Z (Urs)\Ust)\’ — Ust)\Urs)\’> Urtua (2-12)

r,8,t

where r, s,t are ordinary indicies and A\, \’, u are double indices.
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For the n-th order cluster cumulant we have a formula:

Mgr\z)(];l? Viyeuny Egn, Vgn) = <RY)\(E17 Vl)---Y)\(EQna V2n)>(c]
- - - B B
= — ! Z ei(kqu1+~~~+k2anzn)/ dﬁl/ dﬁzneii(ﬁlererﬁ%y%)
0 0

(B2N)r e~
X (RYA(Ryy, B1).. YRy, Bon)). (2.13)
The general form of the (2n)-th order cumulant is:
Moy = Moy [%Mﬂ n %M Vo
T aamey L NP
! — —~
i (229)!((222); 2p)! (1 B 5n;2p>2p<nM2pM2n2p]
o [2!(2!)2(?;2; — 4)!/%/\72"4 + %Mﬂ%ﬁ@m
%M%%”—m " %%%%n—w
* 2!(6!)2((227;3!— 12)!/%/\72"12 + %ﬂuﬁgﬂgnu
" 2!10!((22;1)i 12)!/%/\710/\72“2 T
- 3!(2!)%71!— (5)!/?4/%/\72"‘6 * 2!(2!)2512!?2); — 8)!MV§MV4MV2"_8
" 2!(2!)2(512(2)75 — 10)!/\A/?%/T/T@’/\A/??"—10
+ 2!2!(4!)(22(231! — 10)!/\72MZ/\72"—10
" 2!(2!)255!2(221! — 12)!M§A78ﬁ/72n12
" 2!4!6!23?!— 12)!/\72/12‘”\76/%"12
- 3!(4!)3((2272!— 12)!/\73/%”—12 + }
i 4!(2!)512(7;7): — ea)!/%ﬁ/lv?"8
" 3!(2!)3552 — 10)!M§ﬂ4ﬂ2“10 + }
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o4 (=) (- 1)!%Ng, (2.14)

where M, are redusible parts of (2.13). After a precise calculation of (2.13), (2.14)
we obtain a final formula for the (2n)-th order cumulants

AN(BE — E3"
231 Z, } Cn-1(22)

X O(ky 4 oo 4 kon)0(v1 + ..+ van).  (2.15)

Mgib)(];l,ljl, ...Ezn,yzn) = [

Here C,,_1(x)) is a (n — 1)-order polynomos

n

Coci(zy) = > (=1l ™

p=1
= aﬂt\hl — aﬂK*Q + ...+ (—l)pflap:pz*p + o+ (D" ay,,
Ty = B(/\)ZO zy >0
C T g - P
A()‘) e BE2 _ oTAE3 eTBEs _ o—BE1
+ ;
(EQ + E3)2 + v? (E1 + E3)2 + 2
B™ — (E1 F E3)(cosh B(Ez F E3) — 1) B (E2 F E3)(cosh B(Ey F E3) — 1)
(E2 F E3)2 + v? (El F E3)2 + V2 ’
Zy = ZG_BE* = 2cosh BV + 2 cosh SV V2 + 42 (2.16)

A

a, coefficients are equal to the simple sum of corresponding coefficients of the p-th
level separation in (2.14). So, for example

m=1, c¢y=1,
m=2 ¢ =x—3,
m=3, ¢ =a>—15z+ 30,
m=4, c¢3=1>— 632>+ 4202z — 630,
m=>5, ¢4 =at— 25523 4+ 44102% — 18900z + 22680,
m=6, c5=a"—1023z*+ 422402 — 3950102 + 1247400z — 1247400,
m="17, c¢¢=a°—40952° + 390390z — 72072002> + 454053602>
— 113513400z — 97297200,
m=38, ¢ =a" —163832° + 355446025 — 123513390z* + 13945932002°
— 65837772002 4 136216080002 — 10216206000. (2.17)

—

Taking into account the factors connected with the normalization of Y, (R,) op-
erators (1/2)?™ and the cluster structure of the Hamiltonian 2 at V = 0; I' = 0 case,

for example

sin ]- . 3
MIA)\)\g)\ = §<\/§)22 -2

— (V/2)22.92 = 9
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one obtains all values of the classic Ising model cumulants:

My = 1,
My = =2,
Mg = 16,
Mg = —272,

Mo = 7936,
M, = —353792,
M, = 22368256,

and so on. In the cluster case at V =0, I' = 0 we have:

1
My =+ T 0.25,

M, = —IE — —0.0625,
Mg = 75 = 0.0625,

Ms = —% ~ —0.1328,

My = —1903757312 (2.18)
31
— 2"~ 0.4844
Mo — ~ 04844,
691
= T~ 26992
Mo oG 6992,
87375
— 227 ~21.331 2.1
My 1006 3318, (2.19)
798569
- _ ~ —194.9631
Mas 4096 963

and so on. (2.19) demonstrate that at V' = 0, I' = 0 all cumulants possess a good
sign and the (2.6) functional is signified correctely.

3. Role of V and T parameters in the cluster cumulants be-

haviour

It may be easily seen that cumulants ./\/12”(/;1, vy, ...l;zn, Von,) behaviour with re-
spect to intracluster interaction V' and transverse field I' are absolutely different.

For instance let’s consider A = 1.

V=0
(6T)"sinh™ 25T

n — Cnf )
Mo B2 (412 + v2)7(cosh 25T + 1)7 1(7)

sinh 25T
x o 22 (3.1)
=0

etV mC

Mon= gy O

2 cosh gV

At large I' all cumulants starting from n = 2 are divergent. But at large V' they
are finite. So, these two types of interactions play different role in the cluster system

stability formation.

The cumulants increasing at I' — oo is not a unique danger for (2.6) functional.
Because C,_(x) is the (n — 1)-order polynomos, the higher order cumulants (n >

743



N.A.Korynevskii

Table 1. The first real root of polynomos C,_i(z) and the limited values of
transverse field intensity (for short range interaction absence case) which satisfy
the investigated system stability.

m | 1 2 3 4 3 6 7 8
x | — | 3.0 | 23765 | 2.2017 | 2.1264 | 2.0868 | 2.0634 | 2.0482
Bl o0 [0.8111| 0.5175 | 0.3833 | 0.3049 | 0.2534 | 0.2171 | 0.1895

2) become a non-monotonous function of the xz-parameter (2.16), so C,_1(x) may
change its sign at certain values of V" and I'. As a result the functional (2.6) becomes
infinite at certain values of these parameters and temperature. Evidently, the first
root of Cy,_1 () (for fixed T') determine a region of physically possible values of those
parameters.

Introducing A® and B™ into x (2.16) one may test that = depends on Mat-
subara frequency very slightly. So, for the analytic regard of some first polynomos
Ch—1(z) it is possible to put v = 0. In this approximation:

cosh BV + cosh S/ V72 + 412
pr=

X [\/W FAT2(V2 + I?)(cosh BV cosh Bv/V2 + 42 — 1)
— V(V? + 302 sinh BV sinh SVVZ + 4F2]

—1
X [(v2 +2T2) sinh SV/VZ 1+ 412 + V/VZ 1 4T%(cosh BvVZ + 412 — PV)] .
(3.3)

Tr =

The first real root (x > 0) of polynomos (2.16) for m < 8 and the corresponding
values of STy (at V' = 0), calculated from the second equation in (3.1), are presented
in table 1. table 1

The numerical calculations for m > 8 are rather cumbersome, but it may be
prooved that
li_rggO Ci—1(z) =0, at x=2. (3.4)

m

The limiting value (I'; corresponds to the situation when cluster cumulants
change their sign and the partition function functional becomes infinite, so the sys-
tem investigated becomes unstable. The limiting value I'; nonlineary grows when
temperature falls down. At large m BI'; — 0. It means when V' = 0 the total func-
tional (1.6) is convergable only for I' = 0. Transverse field, as is well-known, destroys
the system at low temperatures.

Absolutely different situation takes place when I' = 0. In this case polynomos
Cin—1(z) have no roots in the range 0 < V' < 00, so all cluster cumulants possess a
good sign and the cluster system is stable at every temperature.

The situation when both V' # 0 and I' # 0 is, naturally, more complicated.
The dependence of I'; on V' at different temperatures is presented in figure 1 and
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Figure 1. The limit value of the transverse field I'; dependence on the intracluster
interaction V' at different values of inverse temperature .
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Figure 2. The limit value of the transverse field I'; dependence on the inverse
temperature 8 at different values of the intracluster interaction V.
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the dependence of I'; on 8 at different V' is presented in figure 2. One can see that
there is a limited value I'; which divides I', V' (or I, T') diagram of state into two
regions at every value of temperature and intracluster interactions. In the first one
(I" < I'y) the functional (2.6) is defined correctly and the system remains in the stable
state. Upper of the line I' = I'; cluster cumulants change their sign, functional (2.6)
becomes divergent and the system investigated loses its stability. Correspondingly,
calculated on the base of (2.6) functional thermodynamic functions will demonstrate
unphysical behaviour. It must be noted that the situation discussed here takes place
only for non-Gaussian approximation in (2.6) (when m > 2).

In practice, the calculation on the base of (2.6) functional envisages the usage
of a limited (i.e. ussually not high) power of w(k, v) variables. It is reasonable that
even the first non-Gaussian approximation leads to a certain nonphysical behaviour
of thermodynamic function of de Gennes model at low temperatures. Temperature
points of unphysical behaviour (anomaly of polarization, dielectric susceptibility,
heat capacity etc.) are called anti-curie points [3]. It must be noted that minimization
procedure, used in [3] in the framework of self-consistent cluster approximation in
its origin is close to taking into account some higher order correlation effects like
non-Gaussian fourth order distribution in (2.6).
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Mpo 0co0NNBOCTIi KYMYNSAHTHOrO PO3Kiaay Ang
dyHKUIOHaNy CTaTUCTUYHOI CYMU KJ1aCTEepHOI Moaeni
ae XeHa

M.A.KopunHeBCbKkui

IHCTUTYT @i3nkn koHaeHcoBaHnx cuctem HAH YkpaiHu,
79011 JlbBiB, ByN. CBEHLjUBKOrO, 1

Otpumanro 16 notoro 2000 p.

LocniopxyeTbcs npobnema GpyHKLIOHaNbHOr0 300paxeHHs pyHKLioHana
CTaTUCTUYHOI CyMM K1ACTEPHOI Mmofeni ae XXeHa B MeToj KOIEKTUBHUX
3MiHHMX. Ha npoTmBary Ao 3sBn4anHoi mogeni I3iHra KoediuieHTn oTpu-
MaHOoro ¢yHkLioHana cTaTUCTUYHOI CyMU (KNAaCTEPHI KYMYNSIHTK) 3ane-
XaTb Big Temnepatypu T i nonepeyHoro nonsa I' . BHacnigok uporo npum
HU3bKNX TMMNEpPaTypax BUHNKAE CTPOre 0OMEXEHHS Ha BEIMHYUHY napa-
meTpa ['. OTpuMaHo PIBHAHHSA A9 MAaKCUMabHOrO 3Ha4YeHHa '), Tem-
nepaTypu i BEAMYMHN KOPOTKOCSXKHUX BHYTPIKNACTEPHNX B3aemMogin V .
3HaliaeHo Po3B’A3KM LbOro PiBHSAHHS.

KniouoBi cnoBa: knacrepHa mogesb e )XKXeHa, pyHKUIoOHas
CTatuCTUYHOI CyMu, pa30Bi MePETBOPEHHSI.

PACS: 05.60.+W, 05.70.Ln, 05.20.Dd, 52.25.Dg, 52.25.Fi
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