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Fine structure of critical opalescence spectra
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The effect of the 1.5-scattering mechanism on the time and temperature behavior of the electric field

autocorrelation function for the light wave scattered from fluids has been studied for the case where the or-

der-parameter fluctuations obey the diffusion-like kinetics with spatially-dependent kinetic coefficient. The

leading contributions to the relevant static correlation functions of the order-parameter fluctuations were

obtained by using the Ginzburg–Landau model with a cubic term, and then evaluated with the use of the

Gaussian uncoupling for many-point correlation functions and the Ornstein–Zernicke form for the pair cor-

relation function. It is shown that the presence of the 1.5-scattering effects in the overall scattering pattern

may be detected in the form of a small but noticeable deviation from exponential decay of the total electric

field autocorrelation function registered experimentally near the critical point. Obtained with the standard

methods of analysis, the effective halfwidth of the corresponding spectrum can reveal a stronger tempera-

ture dependence and a multiplicative renormalization as compared to the halfwidth of the spectrum of the

pair correlator.

PACS: 05.70.Fh Phase transitions: general studies;
64.70.Fx Liquid-vapor transitions;
78.35.+c Brillouin and Rayleigh scattering; other light scattering.

Keywords: 1.5-scattering, critical opalescence, electric field autocorrelation function, halfwidth, multipli-
cative renormalization.

1. Introduction

Not counting multiple scattering effects, the intensity

of critical opalescence spectra is thought to be propor-

tional to the Fourier transform, with respect to the time

and spatial variables, of the pair correlation function for

the scalar order-parameter fluctuations �� [1]. The central

polarized component of these spectra is formed by the dif-

fusion-like modes of �� and is usually believed to have

a Lorentzian line shape with halfwidth �( ) ( )q q q� � 2,

where q is the change of the light wavevector due to scat-

tering, and �( )q is the relevant kinetic coefficient (heat

conduction or mutual diffusion).

Recently [2], we called attention to the fact that a

so-called 1.5-scattering mechanism can become of impor-

tance as the critical point is approached, and presented ex-

perimental facts in support of this conclusion for the case

of pure fluids [2–4]. In the present report, we scrutinize

the role of the 1.5-scattering effects in the formation of

critical opalescence spectra. In particular, we show that

their presence in the overall scattering pattern can cause a

small but noticeable deviation from exponential decay of

the experimentally-measured electric field autocorre-

lation function. Calculated with the standard methods of

analysis, the effective halfwidth �exp of the correspond-

ing spectrum can reveal a stronger temperature depend-

ence in the form of a multiplicative renormalization, as

compared to the halfwidth of the pair correlator spectrum.

2. General structure of the critical opalescence

spectrum

To begin with, we analyze the critical opalescence

spectrum by taking into account the effects of scattering

by compact groups of fluctuations. A compact group is

defined here as any group within which all the distances

between the scattering centers are far less than the light

wavelength in the medium. From a point of view of physi-

cist, scattering by such groups is single, so that the overall

single-scattering spectrum is expected to have a complex

structure.

The electric field of a light wave propagating in an

inhomogeneous fluid of permittivity �( , )r t obeys the

equation [1]
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where c stands for the speed of light in vacuum. Suppose

that the inhomogeneity of the fluid is caused by relatively

slow fluctuations ��( , )r t of the permittivity about its equi-

librium value � 0, � � ��( , ) ( , )r rt t� 	0 , which cause only

small frequency changes � in the frequencyof the scat-

tered wave, as compared to the incident wave frequency

0: � � � �� � � ��  0 0. For visible light, this condition

is surely satisfied for the central line in the spectra of scat-

tering from solutions and pure fluids (� � � �10 4 5 1s ), and

even for the near wing of the Rayleigh line (� � �1010 1s ).

Then
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and we can change to the equation

�E E E E	 � � �k k2
0
2grad div �� . (2)

The form of (2) and that of the corresponding equation

for the static case are formally the same, the time variable

t playing the role of a parameter. This means that after

changing to the equivalent integral equation and applying

the iteration procedure, the desired compact-group con-

tributions to the scattered field can be extracted from

every iteration step by following approach [2], based on

analysis of the short-range singularities of the propagator

in terms of the theory of generalized functions. As a result,

the scattering intensity at frequency  � 	0 �, which is

proportional to the frequency Fourier transform of the

autocorrelation function I t t( ) ( , ) ( , )*� � � � � �E R E R 0 for

the scattered field, is determined mainly by the sum

I I nm

n m
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q q �
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1

, (3)

where the term

I

dt d t
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represents the contribution from pairs of compact groups

of n and m fluctuations.

For the standard experiment geometry, where the scat-

tered wave is registered in the plane perpendicular to the

polarization vector of the incident wave, Eqs. (3) and (4)

represent the intensity of polarized single scattering. It

should be emphasized that it is the term I11 alone that has

been believed so far to form the critical opalescence

spectra.

3. Derivation of the 1.5-scattering spectrum for

diffusion-like modes

Now, we derive a formal expression for the contribu-

tion I q tD
15. ( , ) from the 1.5-scattering mechanism to I t( ),

provided the fluctuations �� obey the diffusion-like kinet-

ics. The desired contribution occurs in the terms with

n �1, m � 2 and n � 2, m �1in Eq. (3). In the time represen-

tation, those give

I q t

d ti

15
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3
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3
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For the diffusion-like modes, changing to the wave-

vector space, we can write

�� � �( , ) ( ) ( )
r k

kr

k

t
V

k k t i� � 	�1
0

2

e . (6)

In terms of Eq. (6), the statistical averaging in (5)

should be understood as averaging over the statistic of the

initial values � �k k( )0 � . The need arises to use the

third-order static correlation function � �� � �k k k1 2 3 ,

information of which is scanty at present. Nonetheless,

some estimate becomes possible if we take into account

the following facts [2–4] regarding the 1.5-scattering by

pure fluids: 1) its contribution makes itself evident at a

certain distance from the critical point, where nonlocal

correlation between fluctuations is relatively weak; 2) it

becomes considerable as a shift from the critical isochore

occurs; 3) for the gas phase and, at least, densities $ $� c ,

$c being the critical one, its contribution is negative.

Then, in view of the noninvariance of the fluid with re-

spect to the transformation � �( ) ( )r r% � , let us suppose

that it can be treated in terms of the Ginzburg–Landau

Hamiltonian with a nonzero cubic term and a certain ex-

ternal field h [5], the cubic and quartic terms being under

the normal product sign [6]:

H
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The equilibrium value � of the order-order parameter

is expected to be uniform, so that the gradient term in

Eq. (7) vanishes. Then

� �� �
1

0
V

k , d

V

r r��( )" � 0 ,

and the fluctuation part of Eq. (7) can be represented as
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with redefined coefficients a� and c�. Near the critical

isochore, we expect them both to have the structure close

to a� � 	- . - 1 2 and c� � 	/ . / 1 2 , where - i and / i are

constants, and the parameter � � � � $ $ $� � 0 1 � 0V V Vc c c

describes the deviation from the critical isochore.

Treating the two last terms in Eq. (8) as a perturbation

and using the Gaussian uncoupling, we find

� � �

� �
�
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k k k

k k k

1 2 3

1 2 3 3 1 2
2c

k T V
G k G k G k O c

B

( ) ( ) ( ) (, �d ) , (9)

where k B is the Boltzmann constant and G k( ) | |� � �� k
2 .

Note that Eq. (9) resembles the convolution approxima-

tion for the tree-particle structure factor [7]. With Eq. (9),

we find
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To advance, additional assumptions are needed. In

particular, the coefficient c� can be evaluated if we

a c c e p t t h e O r n s t e i n – Z e r n i c k e f o r m f o r G k( ),

G k k T k rB c( ) ( )� 0 	2 1 2 2 , where 2 is the susceptibility

of the system. According to formulas (5) and (9), the

integrated 1.5-scattering intensity I q I q t15 15 0. .( ) ( , )� � is

then equal to

I q
c k T

qr q r
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In the hydrodynamic limit qrc �� 1, this expression

must transform to the result [2], relating I q15. ( ) to the

third thermodynamic moment of the order-parameter

fluctuations:

I q V15
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where
~
V rc� 3 is the volume of the region over which the

correlators are averaged to pass to the corresponding ther-

modynamic moments. The proportionality coefficient in

the latter relation can be recovered if we require that the

computations of the contribution I q t22 0( , )� with two

different methods, the Gaussian model for �� and the

macroscopic averaging [2], give identical results. Then
~
V rc�12 3# , which exceeds estimates [2].

The functional structure of the third moment was ob-

tained earlier for the pure fluids (2 $ 3� 2
T , 3T being the

isothermal compressibility) that obey the van der Waals

(see [2,3]) and Dieterici ([4]) equations. In the latter case,

using the above
~
V , we have (Pc is the critical pressure):

c PT c� � � 	 0�( )3  $1 34 3 , �� 1.

Since I q15. ( ) is basically formed by the heat modes as

the critical point is approached, I q I q tD
15 15 0. .( ) ( , )1 � , this

value can also be used for c� in Eq. (10). It also follows

from Eq. (11) that for  � 0: 1) I q rc15. ( ) � as qrc �� 1,

which is close to the scaling estimates [2,6]; 2) I q15 0. ( ) %
as qrc �� 1, in accordance with the conformal invariance

hypothesis [6].

The explicit form of � as a function of q and tempera-

ture must be specified as well. To sufficient accuracy, we

take � � .4( )q q rc� 	0
2 21 , which is often considered to

be a good interpolation formula for the entire critical re-

gion [6,8] and has certain theoretical justifications [9–12]

behind.

4. Features of the 1.5-scattering spectrum

We use the data for xenon to analyze the time and tem-

perature behavior of the electric field autocorrelation

function (10). We first assume a deviation  � � �2 10 1

from the critical isochore, where the correlation length

exponent 4 1 0 6. , take � 0
83 10� � � m s2 / for the value of

the heat conduction coefficient far away from the critical

point (as . % 1), and use q � � �2 10 7 1m . The other date are

(see [13]): � 0 1 3� . ; ( ) .$ � $
 0 
 �T 0 33; r0
102 2 10� � �. m;

Tc � 290 K; Pc � 5 83. MPa. The results of the analysis are

as follows:

1. The relative magnitude � �I q I q15 1. ( ) ( )0 of the inte-

grated 1.5-scattering intensity, as compared to the inte-

grated intensity I q I q tD
1 11 0( ) ( , )1 � of the «standard» con-

tribution
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increases from 0.1 to as high as 0.35 as . decreases from

1 10 3� � to 1 10 4� � .

2. The time dependence of (10) deviates from expo-

nential decay. Consequently, the 1.5-scattering spectrum

has a non-Lorentzian line shape. The ratio � �15. 0 de-

pends on the point chosen to calculate the slope of the

ln ( , ).I q tD
15 versus �t plot and increases as �t decreases:

for instance, if . � � �1 10 4 , then � �15 1 1. .0 1 for �t � 0 6.

and � �15 1 4. .0 1 for �t � 0 2. .

3. For a fixed value of �t, the ratio � �15. 0 increases as

the critical point is approached.

Assuming now
~
V r /c� 4 33# [2], we see that c c�% �9 and

the above results hold for the  � � �2 2 10 2. isochore.

Thus, the 1.5-scattering spectrum is represented by a

line whose effective halfwidth �15. exceeds �; the ratio
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� �15. 0 gets greater as we shift toward (a) the region of

higher frequencies and/or (b) the critical point. Contribut-

ing, in addition, negatively to the total scattering inten-

sity, the 1.5-scattering can manifest itself in the form of

an additional narrowing of the registered spectrum. This

narrowing can be interpreted as a stronger temperature

dependence of the registered halfwidth �exp as compared

to that of �, thus necessitating the introduction of a new

critical exponent 5 and a multiplicative coefficient R.

5. Effective halfwidth of the experimentally-

registered spectrum

The temperature behavior of �exp is determined as

follows. For different fixed values of ., we plot

ln [ ( , ) ( , )].I q t I q tD D
11 15	 as a function of �t and then calcu-

late the ratio � �exp 0 as the slope of the straight line ap-

proximating this plot on a fixed segment, say �t 6 [ . , . ]0 2 0 6 .

Then we represent �exp in the form � �exp � R.5 , which is

equivalent to

log log log( )exp� �0 � 	R 5 ., (13)

and determine the values 5 and log R as, respectively, the

slope and the intercept of the line tangent to the

log ( )exp� �0 versus log . plot.

The results for the temperature region . � � �5 10 5–6 10 3� �

are shown in Fig. 1. In the region . � � �1 10 3, where the

1.5-scattering is inessential, 5% 0 and R % 1. For the in-

terval . � � �5 10 5–4 10 4� � , where � exp reduces to 90% of

�, we find 5 1 0 035. and R 11 31. (the straight line in

Fig. 1); the use of segment �t 6 [ . , . ]0 1 0 6 results in 5 1 0 05.

and R 11 48. . These estimates are consistent with experi-

ment (see [14]).

6. Conclusion

The above analysis reveals that the spectrum of molec-

ular light scattering from fluids near the critical point has

a complex structure. Besides the pair correlation function

of the order-parameter fluctuations, it is also contributed

to by the 1.5-scattering mechanism. The latter can mani-

fest itself in the form of a stronger temperature depend-

ence of the experimentally-measured spectral halfwidth,

as compared to that of the pair correlation function. The

effect is usually attributed to other factors, such as the

presence of large background parts in the kinetic coeffi-

cients [15] or multiplicative renormalization of these

coefficients [16] in the vicinity of the critical point.

In the case of pure fluids, the 1.5-scattering effects

come into play whenever a shift from the critical isochore

occurs, planned or accidental. Since such a shift is greatly

favored by the gravity effect, taking the 1.5-scattering

contribution into account becomes of crucial importance

for correct processing and interpretation of experimental

data.
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