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It is shown that in a two-dimensional system with the linear dispersion a resonance is present in the Dirac

point vicinity, when the impurity perturbation magnitude exceeds the bandwidth. The corresponding spec-

trum rearrangement, which follows at a certain critical impurity concentration, results in the square root de-

pendence of the concentration smearing region width on the concentration. If the perturbation magnitude

does not exceed the bandwidth, or the critical concentration is not reached, the concentration smearing re-

gion width remains exponentially small.
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Introduction

Graphene is a material that has been obtained around

two years ago [1]. It looks especially fresh when com-

pared to other traditional subjects of investigation in solid

state physics. New theoretical questions connected with

this material immediately formed a nucleus for the area of

active research. Intriguing properties of graphene are cal-

ling upon their prompt explanation not only because of

the pure scientific interest, but also because of the highly

possible forthcoming practical implementation of this

material.

It is well known that the localizing action of impurity

centers is, generally speaking, more pronounced in low-

dimensional systems. However, a number of experiments

evidently demonstrate that graphene, which is the first

truly two-dimensional system, is highly tolerant to impu-

rity effects. Basically, the effect of impurities on elemen-

tary excitation spectra in disordered systems is deter-

mined by the quotient of the system’s dimensionality and

the exponent in its dispersion relation. When this quotient

is larger than one and half, the system possesses an in-

creased dimensionality, and it behaves like a low-dimen-

sional when the quotient is less than unity [2,3]. Because

of the unusual linear electron dispersion close to the Fer-

mi level, graphene should manifest some properties that

are characteristic to four-dimensional systems, which is

favorable for the localization reduction. Based on the

proven method of cluster expansions, we suggest possible

clues for the unique robustness of graphene to the impu-

rity induced perturbation and describe the process of the

spectrum rearrangement, which occurs on increasing the

impurity concentration.

The spectrum rearrangement has been studied for a

large variety of disordered systems [4–6]. The physical

reason of this phenomenon roots in the spatial overlap of

the impurity states that have large effective radii. The im-

purity state radius can far exceed the lattice constant,

when its energy is close to any of the van Hove singulari-

ties in the spectrum. This overlap results in a qualitative

change in the dispersion of carriers and the density of

states of the disordered system. Our study is dedicated to

the 90th anniversary of I.M. Lifshitz, whose contribution

to the physics of disordered systems can not be overem-

phasized.

Model

A model for the host should be simple enough in order

to make a certain advance in analytical calculations, and,

at the same time, it should retain all the physics of the

electron subsystem in graphene that is essential for the
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impurity problem. It has been confirmed by ARPES [7,8]

that the electron dispersion in graphene can be quite suc-

cessfully reproduced within the tight-binding scheme by

taking into account only the nearest neighbors hopping.

As it follows from this approach, the total electron den-

sity of states (DOS) � �( ) in the pure graphene sheet de-

pends linearly on energy � in the vicinity of the Dirac

point, i.e., � � �( ) ~ | |. This result is indirectly supported

by the unconventional quantum Hall effect in graphene

[9,10] and has been verified by strait measurements [7]. It

will be assumed below that this linear behavior of the

DOS is maintained for the whole energy range inside the

adjacent bands, which preserves their actual symmetry in

the unperturbed system. In addition, because of the sym-

metry of the underlying honeycomb graphene lattice, di-

agonal elements of the Green’s function (GF) must

be identical on both sublattices, g gn n n n1 1 2 2( ) ( )� �� ,

where numbers denote sublattices, and n ranges over lat-

tice cells. Since � �( ) is the sum of the DOSs for the

corresponding sublattices � �� ( ), it should be demanded

that

� �
�

� � � � � � �� � � �
�

( ) ( ) | | , ( ) ( )� � � �
�
	1

1

2

Im gn n , (1)

where � is some constant. The normalization condition for

the conduction band implies that

� � ��
� �
	
 �

1

2

0

1

W

d( ) , (2)

whereW is the bandwidth. The same holds true for the va-

lence band as well. These relations define the value of the
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In a turn, real parts of the diagonal elements of the host

GF must comply with the Kramers–Kronig relation
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Combining the obtained results, finally one has
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The introduced magnitude W should be brought into cor-

respondence, at least qualitatively, with the factual band-

width in graphene. It had been mentioned already that the

graphene Hamiltonian with the interaction between near-

est neighbors t yields a reasonable approximation for the

electron dispersion law. According to it, in the close vi-

cinity of the Dirac point

�( ) , , ,k � � � �� �v k v
at

kaF F
3

2
1 1� , (6)

where the vertex of the Dirac cone is taken as the refer-

ence point for the wave vector k, and a is the lattice con-

stant [11]. Because there are two nonequivalent Dirac

cones in the Brillouin zone of graphene, the correspond-

ing tight-binding DOS is given by
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The total DOS in the devised model should match at the

low energies with the latter expression. Both DOSs agree

with each other, when

W t� 3� . (8)

Thus, the bandwidth in the model with the triangular DOS

is noticeably less than the graphene bandwidth, which is

equal to 3t within the tight-binding approximation. This

result should be expected, since the triangular DOS mani-

fests the unnatural rise towards the band edges. However,

our analysis will be focused only on the effects at the low

energies, where this model is fully adequate. So, the

meaningful expression for the diagonal elements of the

GF in the host reads (cp. (5))
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From here and on we let the bandwidth W be unity, which

specifies the energy scale.

As regards the impurity perturbation, we take for

granted that it can be described within the well-known

model of a substitutional binary alloy with the diagonal

disorder. The origin of this model can be traced back to

the pioneering works of Lifshitz [12]. According to it, im-

purities are supposed to be distributed absolutely at ran-

dom in space. On-site potentials are allowed to attain only

two different values depending on the type of the atom

that is occupying the respective lattice site. In the asym-

metric scheme of the impurity perturbation, the on-site

potentials are VL with the probability c, which corre-

sponds to impurities, or 0 with the probability 1� c, which

corresponds to host atoms. Thus, the full tight-binding

Hamiltonian of the disordered system can be expressed as

the sum of the translationally invariant host Hamiltonian

H 0 and the impurity induced perturbation H imp ,
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H H H H

n

n n� � � �	0 imp imp,

,

†V c cL

�
� � , (10)

where cn�
† and cn� are electron creation and annihilation

operators at the lattice site situated on the sublattice � in

the cell with radius-vector n. The prime over the summa-

tion sign denotes that the summation in (10) is restricted

to those sites that are occupied by impurities. The local

character of the impurity perturbation justifies the choice

of the simplified model with the triangular DOS for the

host.

Single impurity problem

Let us consider the case of an isolated single impurity

in the otherwise undistorted graphene lattice. It is not dif-

ficult to calculate the diagonal element of the GF

� � � �(� H)
1 at the lattice site the impurity is positioned

right on,
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The corresponding expression for the local density of

states (LDOS) at the impurity site can be unfolded by sub-

stituting the model host GF (9) into this relation,
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It is evident, that for the sufficiently large impurity per-

turbation VL there is a marked peak in the impurity site

LDOS. The energy � r , at which this peak is situated, is de-

termined, as it should be, by the renowned Lifshitz equa-

tion,

1 20� �V g VL r L r rRe ( ) ln | |� � � . (13)

The peak at � r sits above the Dirac point, when the param-

eterVL � 0, and vice versa. This unusual positioning prop-

erty holds true for arbitrary two symmetric bands, which

touch each other at a certain energy. The denominator in

(12) can be expanded about � r:
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is met. The inequality (15) will be fulfilled provided the

energy � r is in the narrow vicinity of the Dirac point. Ac-

cording to (13), this corresponds to a large in the absolute

value VL. The physics of the condition (15) lies in the

smallness of the effective impurity state damping �r com-

pared to the distance from the energy � r to the nearest van

Hove singularity in the spectrum, which role plays the

Dirac point in the present case. This means, that the state

with � r can be regarded as a well-defined impurity reso-

nance, when the condition (15) holds. Simultaneously,

the LDOS is getting the Lorentz shape near the resonance

energy. In contrast, a well-defined resonance state cannot

appear near the band edge of two- and three-dimensional

single-band systems with the common quadratic disper-

sion of electrons within the Lifshitz model (10) for any

possible combination of impurity and host parameters.

The difference  � �( ) between the total DOS of the sin-

gle impurity system and the host can be also calculated

analytically:
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It is not hard to check that electron states of the host

are redistributed within their respective bands. For, say,

VL � 0, some amount of states is removed from the va-

lence band to the split off local level, while in the conduc-

tion band states are pushed from its both sides towards the

resonance energy.

There is a pronounced step in  � �( ) near the Dirac

point, which is combined with the negative dip. Since the

host DOS is zero (see (1)) at the Dirac point and is rather

small in its neighborhood, the close vicinity of the Dirac

point can not be properly described by a straightforward

expansion of the impurity system GF in powers of the

concentration, as it was done in [13], even if the impurity

concentration is negligibly small. This is quite clear from

the obvious fact that the width of this negative dip is of

the same order as the resonance state damping �r . There-

fore, other approaches should be utilized to study impu-

rity effects on the graphene spectrum in the vicinity of the

Dirac point.

Finite impurity concentration

Only renormalized approaches, the most widely used

among them is the coherent-potential approximation

(CPA) [14], can be efficient close to the van Hove singu-

larities in the spectrum of a disordered system. The

renormalization is necessary not only to take into account

the effective shift of the singularity position, but mainly

to properly describe the nonuniform shift of adjacent

states at a finite impurity concentration. Of course, same

applies to the neighborhood of the Dirac point in

graphene. Since the CPA does not contain an applicability

criterion in itself, the method of cluster expansions

[15,16] will be used to go beyond the CPA and to estimate
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its validity. Averaged over impurity distributions GF of

the disordered system G is related to the host GF by the

Dyson equation

G g g G� � ! . (17)

Because the translational invariance is restored by the

configurational averaging, the self-energy ! can be ex-

panded into a series as follows:

!�" �" �"� # #( ) ( )( ) ( )
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, (18)

where the momentum-independent # ( )1 is the CPA

self-energy,

#
# � #

( )

( ) ( )( ) ( )

1

1
0

11
�

� � �

cV

V g

L

L

, (19)

which is to be determined self-consistently, and #�"
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represents the contribution from scatterings on all possi-
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Here the single-site T-matrix is denoted by
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and indices l and m enumerate two atom types of the bi-

nary alloy. According to this index, the factor � l attains

the value c for the impurities or 1� c for the host atoms,

while the variable Vl is VL or 0, respectively.

Thorough analysis of the series for the self-energy in-

dicates that this expansion indeed has the small parame-

ter. As a rough guide, the self-energy series can be consid-

ered as a geometric progression with the common ratio

R l

l

l( )� � % � "
" �

�	 	
'

2
0
2

0

G n

n

, (22)

and the scale factor # ( )1 . On approaching any van Hove

singularity, the contribution from cluster scattering is in-

creasing in magnitude. As follows from the above treat-

ment, terms corresponding to the cluster scattering can be

omitted if their sum does not exceed by the absolute value

the CPA self-energy # ( )1 [17],

| ( )|R � ( )1 2 . (23)

This inequality outlines those energy domains, where the

CPA is applicable. If the criterion (23) is fulfilled, only

the first single-site term can be retained in the series.

Moreover, at the low impurity concentration, the multi-

ple-occupancy corrections that are incorporated into the

CPA expression can be also neglected. Thus, the so-called

method of the modified propagator can be employed (cp.

(19)),
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( )

,
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cL

L1
1

0

. (24)

Because just the close vicinity of the Dirac point is exam-

ined, the diagonal element of the host GF can be taken in

the form (9). Then, by means of the conventional substitu-

tion � # * +� � exp ( )i , 0 � �+ �, the imaginary part of (24)

becomes

cV
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� � � �VL* * + + � + (25)

If (25) is considered as an equation in the unknown +, it

always has two solutions for each chosen modulus *, start-

ing from a certain threshold value of *, which depends on c

andVL. These solutions correspond to the two actual bands

in the system. Respective values of � are then determined

by the real part of (24), which constitutes together with

(25) the parametric solution of (24):
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Accordingly, the applicability criterion in the same vari-

ables reads
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The spectrum rearrangement can be outlined by simple

estimations. At a first glance, it may seem that � #� � cVL

can serve as a solution of (24). In reality, it is easy to as-

certain that none of the analytical solutions of (24) is

passing through this point. However, there is always an

energy in the spectrum, at which Re ( )� #� � 0. Indeed,
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the damping Im # at this energy is essentially nonzero and

is given by (24),

1
2

1 2
0

2
0

0 0
2

�
�

�
cV

V

L

L

ln

( ln )

*

* *
. (28)

At the low impurity concentration the denominator can be

replaced by unity. Thus,

*0
21 2� � )exp ( ( ))cVL . (29)

Correspondingly, it follows from (25) that Re # � cVL.

Therefore, the Dirac point gradually shifts away from the

resonance with increasing the concentration. Generally

speaking, the width of the concentration smearing region

around � � cVL, where the applicability criterion (23) is

violated, should be also of the order of *0.

Both | |cVL and *0 are increasing with the concentra-

tion and, when they are straightforwardly extrapolated,

simultaneously reach the resonance energy by the order

of magnitude. This turns obvious when the expression

(29) is recast as * * *0 0 02� � c V VL L| | ( | | ln ). The corre-

sponding impurity concentration - -c r r0
22� � �ln | | can be

taken as a rough estimate for the critical concentration of

the spectrum rearrangement. At the impurity concentra-

tion far exceeding this value (c c.. 0), the unity in the de-

nominator of fraction in (28) can be omitted. As a result,

the size of the concentration smearing region depends

exclusively on the concentration:

*0 02~ |ln |,c c c c) .. . (30)

The spectrum near the Dirac point can be described in

more detail at c c�� 0. For the small *near the Dirac point

(25) is reduced to

ln cot*
�
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�
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�

1

2 22cVL

. (31)

Respectively, the equation (26) simplifies to

�
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+
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cV
cV

L
L2 2( )
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Combined, they implicitly yield the energy dependence of

the phase,

�
� / 0 +
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( )cot
/ ( )e

e2 2 1 2 2
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Likewise, it follows from the criterion (27) that the width

of the concentration smearing region is exponentially

small:

 R
cV

L�
� �

e
1 4 12/ ( )

.
(34)

By equating two main parameters in (33) with some arbi-

trary constant 1,

cV c VL
cV

L
L2 1 2 2

e
�

�
/ ( )

| |1 , (35)

the critical concentration of the spectrum rearrangement

can be estimated more precisely:

c
V V

r

L L

� �
)

1

2 2 ln ( | | )1
, (36)

which practically coincides with the former rough guess

c0.

Several examples of results that can be obtained by

calculations based on (25)–(27) are presented in Fig. 1.

The unperturbed density of states is depicted by the dot-

dashed line. The fact that the symmetry between the con-

duction and the valence band is lost at any impurity con-

centration immediately arrests one’s attention. The con-

centration smearing regions are shown by dashed lines.

Initially, only one such region opens up around the Dirac

point. In addition, the second one opens near the reso-

nance energy. Both regions merge after a small increase in

the concentration. After that, the spectrum outside of the

broad concentration smearing region practically does not

depend on the magnitude of the impurity perturbation.

The fast growth of the concentration smearing region

~ c was also obtained in [18] in a special case of the infi-

nite in magnitude perturbation VL. Despite the single-im-

purity resonance, the spectrum rearrangement proceeds

by the anomalous type in much the same way to the

scenario described in [19].

Conclusion

To summarize, for the moderate impurity perturbation

(VL � 1) resonance states does not appear, the spectrum re-

arrangement does not take place at all, and the width of

the concentration smearing region is exponentially small

compared to the bandwidth in the whole considered range
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of impurity concentrations. In contrast, for the large im-

purity perturbation (VL . 1), a resonance state due to a sin-

gle impurity is manifested in the vicinity of the Dirac

point. Still, the width of the concentration smearing re-

gion remains exponentially small until the concentration

exceeds the critical value cr . Then, the width of the con-

centration smearing region starts to grow fast in magni-

tude, namely, proportional to c, which means that the

spectrum rearrangement of the anomalous type, which is

inherent in low-dimensional systems, does take place.
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